1
|
Li Y, Pan T, Wang Y, Wang G, Wang F. The predictive value of triglyceride-glucose-high density lipoprotein-body mass index (TGH-BMI) for different degrees of hepatic steatosis and liver fibrosis in metabolic dysfunction-associated steatotic liver disease (MASLD). Clin Nutr ESPEN 2025; 66:290-301. [PMID: 39863255 DOI: 10.1016/j.clnesp.2025.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/22/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND & AIMS The triglyceride-glucose index (TyG) and triglyceride-glucose body mass index (TyG-BMI) have been identified as potential predictive factors for metabolic dysfunction-associated steatotic liver disease (MASLD). However, they do not include high density lipoprotein (HDL-C), which is closely related to lipid metabolism. Furthermore, there is a lack of comprehensive and longitudinal data to determine the cut-off points for different degrees of hepatic steatosis and liver fibrosis in MASLD. This study aimed to investigate the predictive capability of triglyceride-glucose-high density lipoprotein-body mass index (TGH-BMI) in determining hepatic steatosis and liver fibrosis in MASLD, as well as to establish the predictive cut-off points. METHODS We analyzed the relationships of TGH-BMI (TGH-BMI = ln [TG (mg/dL) ∗FBG (mg/dL)/HDL-C (mg/dL)] ∗ BMI (kg/m2)) with different degrees of hepatic steatosis and fibrosis in 35,114 participants who underwent health check-ups. A total of 2262 subjects without MASLD were selected for the analysis of cumulative hazard of hepatic steatosis and liver fibrosis in TGH-BMI dichotomous groups over a follow-up period of 1001 days. RESULTS Controlled attenuation parameter (CAP) and liver stiffness measurement (LSM) demonstrated a consistent upward trend as TGH-BMI increased across quartile groups, as determined by One-way analysis of variance (P < 0.001). TGH-BMI and CAP, LSM exhibit distinct curve-like relationships between males and females when utilizing smoothing functions and conducting threshold effect analysis (P < 0.05). In males, prior to the inflection point at TGH-BMI = 177.733, there was a significant increase of 0.807 in CAP for every 1 unit increase in TGH-BMI (P < 0.05), after the inflection point, there was still an increase of 0.417 in CAP for every 1 unit increase in TGH-BMI (P < 0.05); There was no significant correlation between LSM and TGH-BMI before the first inflection point at TGH-BMI = 131.689 (P > 0.05) and after the second inflection point at TGH-BMI = 253.268 (P > 0.05). Between the first and the second inflection, LSM showed an increase of 0.015 for every 1 unit increase in TGH-BMI (P < 0.05). In females, before the inflection point at TGH-BMI = 94.686, there was a significant increase of 0.272 in CAP for every 1 unit increase in TGH-BMI (P < 0.05), after the inflection point, there was a notable change as CAP increased by 0.806 for every 1 unit increase in TGH-BMI (P < 0.05). There was no significant correlation between LSM and TGH-BMI before the inflection point at TGH-BMI = 118.098 (P > 0.05), after the inflection point, LSM showed an increase of 0.017 for every 1 unit increase in TGH-BMI (P < 0.05). Notably, TGH-BMI has been shown to be a strong predictor for the severity of hepatic steatosis and liver fibrosis in MASLD. The Area Under Curves (AUCs) for hepatic steatosis, moderate or above hepatic steatosis, severe hepatic steatosis and liver fibrosis in males were 0.845, 0.846, 0.882 and 0.668 respectively, the AUCs for hepatic steatosis, moderate or above hepatic steatosis, severe hepatic steatosis and liver fibrosis in females were 0.855, 0.895, 0.939 and 0.705 respectively (P < 0.05). In individuals without MASLD, the cumulative hazard of hepatic steatosis was found to be strongly associated with the dichotomy of increased TGH-BMI (TGH-BMID2: Hazard Ratio (HR) = 2.412, 95 % Confidence interval (CI): 2.0164-2.9071, P < 0.0001), while the same is true in liver fibrosis (TGH-BMID2: HR = 1.454, 95 % CI: 1.0633-1.9883, P = 0.0191). CONCLUSIONS The TGH-BMI demonstrates a strong predictive value for hepatic steatosis and liver fibrosis, with significantly different cut-off points for men and women. Therefore, it is important to consider the potential need for gender-specific cut-off points for triglyceride, glucose, high density lipoprotein and body mass index in clinical practice. In individuals without MASLD, a higher TGH-BMI is associated with an increased risk of developing MASLD in the future.
Collapse
Affiliation(s)
- Ying Li
- Department of Endocrinology, Hefei City First People's Hospital, Hefei 230001, Anhui, China
| | - Tianrong Pan
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Yue Wang
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Guojuan Wang
- Department of Endocrinology, Hefei City First People's Hospital, Hefei 230001, Anhui, China
| | - Fang Wang
- Department of the Health Management Center, The First Affiliated Hospital of USTC: Anhui Provincial Hospital, Hefei 230001, Anhui, China.
| |
Collapse
|
2
|
Zheng C, Qi Z, Chen R, Liao Z, Xie L, Zhang F. The association between the dietary index for gut microbiota and non-alcoholic fatty liver disease and liver fibrosis: evidence from NHANES 2017-2020. BMC Gastroenterol 2025; 25:163. [PMID: 40075346 PMCID: PMC11899059 DOI: 10.1186/s12876-025-03756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Imbalance in the gut microbiota is a key factor in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and liver fibrosis. The Dietary Index for Gut Microbiota (DI-GM) integrates the potential relationship between diet and gut microbiota diversity. This study aims to investigate the association between DI-GM and the risk of NAFLD and liver fibrosis, providing theoretical support for dietary intervention strategies. METHODS This study utilized data from NHANES 2017-2020, including 6,181 eligible adult participants. The relationship between DI-GM and the risk of NAFLD and liver fibrosis was assessed using DI-GM quartiles, multivariate logistic regression, and restricted cubic spline (RCS) analysis. Subgroup analysis was performed to explore the predictive role of DI-GM in different populations. All analyses were weighted to ensure the representativeness of the results. RESULTS DI-GM was negatively associated with the risks of NAFLD and liver fibrosis. As DI-GM scores increased, the risk of NAFLD and liver fibrosis significantly decreased (52.81%, 43.16%, 40.40%, and 31.98%, p < 0.05; 17.52%, 9.04%, 7.21%, and 6.78%, p < 0.05). Multivariate logistic regression analysis revealed that, in the unadjusted model (Model 1), for each unit increase in DI-GM, the risk of NAFLD decreased by 6.9% (OR = 0.931, 95% CI: 0.886-0.979, p < 0.001), while the risk of liver fibrosis decreased by 15.6% (OR = 0.844, 95% CI: 0.757-0.941, p < 0.05). In the quartile analysis, individuals in the highest DI-GM quartile (Q4) had a 58% lower risk of NAFLD compared to those in the lowest quartile (Q1) (OR = 0.42, 95% CI: 0.219-0.806, p < 0.001). The results remained significant even after adjusting for covariates. RCS analysis showed that DI-GM had a nonlinear relationship with the risks of NAFLD and liver fibrosis, with inflection points at scores of 2 and 5, indicating enhanced protective effects. CONCLUSION This study reveals a negative association between DI-GM and the risk of NAFLD and liver fibrosis, highlighting the potential role of healthy dietary patterns in the prevention and management of NAFLD and liver fibrosis through gut microbiota modulation, providing a theoretical basis for dietary interventions.
Collapse
Affiliation(s)
- Ce Zheng
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zeming Qi
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Rui Chen
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhixiong Liao
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lanfeng Xie
- Tongren Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fumang Zhang
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Pradhan R, Yin H, Lu S, Sebastiani G, Yu O, Suissa S, Azoulay L. Glucagon-Like Peptide 1 Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors and the Prevention of Cirrhosis Among Patients With Type 2 Diabetes. Diabetes Care 2025; 48:444-454. [PMID: 39774820 DOI: 10.2337/dc24-1903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
OBJECTIVE To determine whether glucagon-like peptide 1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter 2 (SGLT-2) inhibitors, separately, compared with dipeptidyl peptidase 4 (DPP-4) inhibitors are associated with a reduced risk of cirrhosis and other adverse liver outcomes among patients with type 2 diabetes. RESEARCH DESIGN AND METHODS With an active comparator, new-user approach, we conducted a cohort study using the U.K. Clinical Practice Research Datalink linked with hospital and national statistics databases. Cox proportional hazards models using propensity score fine stratification weighting were used to calculate hazard ratios (HRs) and 95% CIs for cirrhosis (primary outcome) and decompensated cirrhosis, hepatocellular carcinoma, and liver-related mortality (secondary outcomes). RESULTS In the first cohort comparing 25,516 patients starting GLP-1RAs and 186,752 starting DPP-4 inhibitors, GLP-1RAs were not associated with the incidence of cirrhosis (HR 0.90, 95% CI 0.68-1.19) or the secondary outcomes. In a separate cohort comparing 33,161 patients starting SGLT-2 inhibitors and 124,431 starting DPP-4 inhibitors, SGLT-2 inhibitors were associated with a reduced incidence of cirrhosis (HR 0.64, 95% CI 0.46-0.90), as also decompensated cirrhosis (HR 0.74, 95% CI 0.54-1.00), but not with a lower risk of hepatocellular carcinoma or liver-related mortality. CONCLUSIONS In patients with type 2 diabetes in the U.K., GLP-1RAs were not associated with a lower risk of cirrhosis compared with DPP-4 inhibitors in patients with type 2 diabetes. However, SGLT-2 inhibitors were associated with a lower risk of cirrhosis compared with DPP-4 inhibitors.
Collapse
Affiliation(s)
- Richeek Pradhan
- Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Hui Yin
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada
| | - Sally Lu
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, Canada
- Division of Endocrinology, Jewish General Hospital, Montreal, Canada
| | - Oriana Yu
- Division of Endocrinology, Jewish General Hospital, Montreal, Canada
| | - Samy Suissa
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Laurent Azoulay
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
| |
Collapse
|
4
|
Nilghaz M, Sadeghi A, Koochakpoor G, Poustchi H, Khodadadi N, Narimani B, Ghods M, Shafiee M, Shahparvari MR, Hekmatdoost A. The efficacy of DASH combined with time-restricted feeding (16/8) on metabolic associated fatty liver disease management: a randomized controlled trial. Sci Rep 2025; 15:7020. [PMID: 40016311 PMCID: PMC11868424 DOI: 10.1038/s41598-025-88393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 01/28/2025] [Indexed: 03/01/2025] Open
Abstract
Recent studies have utilized time-restricted feeding (16/8) (TRF) and dietary approaches to stop hypertension separately to manage metabolic-associated fatty liver disease (MAFLD); however, the effectiveness of combining these two approaches has not been investigated. The objective of this study was to examine the impact of TRF in conjunction with a DASH diet on various factors related to MAFLD. A 12-week randomized controlled trial was conducted to assess the impact of TRF (16/8), along with a DASH diet, compared with a control diet based on standard meal distribution, in patients with MAFLD. An investigation was conducted to examine alterations in anthropometric indices, as well as liver parameters, serum metabolic indices, and an inflammatory marker. The TRF plus DASH diet reduced body mass index (p = 0.03), abdominal circumference (p = 0.005), controlled attenuation parameter (CAP) (p < 0.001), alanine aminotransferase (p = 0.039), and aspartate aminotransferase (0.047) compared to the control group. The levels of insulin and homeostasis model assessment of insulin resistance reduced in both groups significantly (P < 0.05). In MAFLD patients, TRF (16/8) in combination with a DASH diet is superior to a low-calorie diet in promoting obesity indices, and hepatic steatosis and fibrosis. Further long-term investigations are needed to draw definitive conclusions.
Collapse
Affiliation(s)
- Maryam Nilghaz
- Department of Clinical Nutrition, School of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Hossein Poustchi
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Navideh Khodadadi
- Department of Clinical Nutrition, School of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Narimani
- Department of Clinical Nutrition, School of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Ghods
- Department of Clinical Nutrition, School of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahshad Shafiee
- Department of Clinical Nutrition, School of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Shahparvari
- Department of Clinical Nutrition, School of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition, School of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Xu J, Li Y, Feng Z, Chen H. Cigarette Smoke Contributes to the Progression of MASLD: From the Molecular Mechanisms to Therapy. Cells 2025; 14:221. [PMID: 39937012 DOI: 10.3390/cells14030221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Cigarette smoke (CS), an intricate blend comprising over 4000 compounds, induces abnormal cellular reactions that harm multiple tissues. Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disease (CLD), encompassing non-alcoholic fatty liver (NAFL), non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma (HCC). Recently, the term NAFLD has been changed to metabolic dysfunction-associated steatotic liver disease (MASLD), and NASH has been renamed metabolic dysfunction-associated steatohepatitis (MASH). A multitude of experiments have confirmed the association between CS and the incidence and progression of MASLD. However, the specific signaling pathways involved need to be updated with new scientific discoveries. CS exposure can disrupt lipid metabolism, induce inflammation and apoptosis, and stimulate liver fibrosis through multiple signaling pathways that promote the progression of MASLD. Currently, there is no officially approved efficacious pharmaceutical intervention in clinical practice. Therefore, lifestyle modifications have emerged as the primary therapeutic approach for managing MASLD. Smoking cessation and the application of a series of natural ingredients have been shown to ameliorate pathological changes in the liver induced by CS, potentially serving as an effective approach to decelerating MASLD development. This article aims to elucidate the specific signaling pathways through which smoking promotes MASLD, while summarizing the reversal factors identified in recent studies, thereby offering novel insights for future research on and the treatment of MASLD.
Collapse
Affiliation(s)
- Jiatong Xu
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China
| | - Yifan Li
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China
| | - Zixuan Feng
- Queen Mary School, Medical College, Nanchang University, Nanchang 330006, China
| | - Hongping Chen
- Department of Histology and Embryology, Jiangxi Medical College, Nanchang University, Nanchang 330019, China
| |
Collapse
|
6
|
Ezhilarasan D. Thyromimetics and MASLD: Unveiling the Novel Molecules Beyond Resmetirom. J Gastroenterol Hepatol 2025; 40:367-378. [PMID: 39817461 DOI: 10.1111/jgh.16874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/26/2024] [Accepted: 12/26/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND Resmetirom, the first FDA-approved drug for nonalcoholic steatohepatitis (NASH) with fibrosis in obese patients, when combined with lifestyle modifications, improves NASH resolution and reduces fibrosis by at least one stage. Low thyroid hormone (T3) levels are linked to a higher risk of developing metabolic dysfunction-associated steatotic liver disease (MASLD). Epidemiological studies have confirmed the positive correlation between hypothyroidism and MASLD. Unraveling the molecular mechanisms of T3 signaling pathways in MASLD will enhance the prospects of identifying effective and specific targets. Therefore, this review discusses the significant role of thyroid hormones in the homeostasis of fat metabolism and describes the possible molecular mechanisms of thyromimetics in the treatment of MASLD. METHODS A comprehensive search in PubMed and EMBASE was conducted using the keywords "thyromimetics and liver diseases," "thyroid hormone and liver diseases," "hypothyroidism and liver diseases," "T3, T4 and liver disease," and "resmetirom and liver disease." Relevant papers published before October 2024 were included. RESULTS T3 treatment enhances mitochondrial respiration, biogenesis, β-oxidation, and mitophagy, reducing liver lipid accumulation. However, T3 treatment causes cardiotoxicity through thyroid hormone receptor (THR)α agonistic activity. To address this, molecules with high THRβ agonistic but lower THRα activity have been developed. Besides resmetirom, other THRβ agonists like TG68, CS27109, MB07811, and KB-141 show promising results in experimental studies. These molecules upregulate THRβ target genes, activate genes for fatty acid β-oxidation in mitochondria and fatty acid breakdown in peroxisomes, downregulate the genes involved in de novo lipogenesis, reduce inflammation by downregulating NF-κB/JNK/STAT3 signaling pathways, and accelerate fibrosis resolution by downregulating the expressions of fibrosis marker genes in NASH liver tissue. CONCLUSION Future clinical studies should thoroughly investigate THRβ agonists, including TG68, CS27109, MB07811, and KB-141.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| |
Collapse
|
7
|
Holländer S, von Heesen M, Gäbelein G, Mercier J, Laschke MW, Menger MD, Glanemann M, Spiliotis AE. Perioperative treatment with cilostazol reverses steatosis and improves liver regeneration after major hepatectomy in a steatotic rat model. Sci Rep 2025; 15:2753. [PMID: 39843785 PMCID: PMC11754906 DOI: 10.1038/s41598-025-87135-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025] Open
Abstract
Cilostazol has previously been shown to reduce liver steatosis and enhance hepatic perfusion. We investigated the effects of cilostazol after major hepatectomy in a steatotic rat model. Six weeks prior to surgery, Sprague-Dawley rats were fed with a high-fructose diet. The treatment group received daily 5 mg/kg cilostazol. Seven days following the cilostazol treatment, all animals underwent 70% liver resection (PHX). Analysis of hepatic blood flow and microcirculation and immunohistochemical examinations were conducted 30 min after PHX (postoperative day [POD] 0) as well as on POD 1, POD 3 and POD 7. The weight of cilostazol-treated animals was significantly reduced compared to untreated controls after completion of the 6-week high-FRC diet. Furthermore, 41% macrovesicular steatosis was found in the control group compared to 8% in the cilostazol group. Hepatic arterial and portal venous perfusion were increased in the cilostazol group on POD 7. Lower liver enzyme release was found postoperatively in cilostazol-treated animals. Moreover, apoptosis and neutrophil infiltration were reduced after cilostazol treatment. Proliferation of hepatocytes and liver regeneration after PHX were significantly increased in the cilostazol group. Consequently, cilostazol should be evaluated as a novel strategy to reduce the rate of liver failure after PHX in steatotic liver.
Collapse
Affiliation(s)
- Sebastian Holländer
- Department of General Surgery, Vascular-, Visceral- and Pediatric Surgery, Saarland University Medical Center, 66421, Homburg, Germany
| | - Maximilian von Heesen
- Department of General- and Visceral Surgery, University Hospital Göttingen, 37075, Göttingen, Germany
| | - Gereon Gäbelein
- Department of General Surgery, Vascular-, Visceral- and Pediatric Surgery, Saarland University Medical Center, 66421, Homburg, Germany
| | - Julie Mercier
- Department of General Surgery, Vascular-, Visceral- and Pediatric Surgery, Saarland University Medical Center, 66421, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany
| | - Matthias Glanemann
- Department of General Surgery, Vascular-, Visceral- and Pediatric Surgery, Saarland University Medical Center, 66421, Homburg, Germany
| | - Antonios E Spiliotis
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Germany.
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, 13353, Berlin, Germany.
| |
Collapse
|
8
|
Li Q, Sheng J, Baruscotti M, Liu Z, Wang Y, Zhao L. Identification of Senkyunolide I as a novel modulator of hepatic steatosis and PPARα signaling in zebrafish and hamster models. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118743. [PMID: 39209000 DOI: 10.1016/j.jep.2024.118743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver-related morbidity and mortality, with hepatic steatosis being the hallmark symptom. Salvia miltiorrhiza Bunge (Smil, Dan-Shen) and Ligusticum striatum DC (Lstr, Chuan-Xiong) are commonly used to treat cardiovascular diseases and have the potential to regulate lipid metabolism. However, whether Smil/Lstr combo can be used to treat NAFLD and the mechanisms underlying its lipid-regulating properties remain unclear. PURPOSE To assess the feasibility and reliability of a short-term high-fat diet (HFD) induced zebrafish model for evaluating hepatic steatosis phenotype and to investigate the liver lipid-lowering effects of Smil/Lstr, as well as its active components. METHODS The phenotypic alterations of liver and multiple other organ systems were examined in the HFD zebrafish model using fluorescence imaging and histochemistry. The liver-specific lipid-lowering effects of Smil/Lstr combo were evaluated endogenously. The active molecules and functional mechanisms were further explored in zebrafish, human hepatocytes, and hamster models. RESULTS In 5-day HFD zebrafish, significant lipid accumulation was detected in the blood vessels and the liver, as evidenced by increased staining with Oil Red O and fluorescent lipid probes. Hepatic hypertrophy was observed in the model, along with macrovesicular steatosis. Smil/Lstr combo administration effectively restored the lipid profile and alleviated hepatic hypertrophy in the HFD zebrafish. In oleic-acid stimulated hepatocytes, Smil/Lstr combo markedly reduced lipid accumulation and cell damage. Subsequently, based on zebrafish phenotypic screening, the natural phthalide senkyunolide I (SEI) was identified as a major molecule mediating the lipid-lowering activities of Smil/Lstr combo in the liver. Moreover, SEI upregulated the expression of the lipid metabolism regulator PPARα and downregulated fatty acid translocase CD36, while a PPARα antagonist sufficiently blocked the regulatory effect of SEI on hepatic steatosis. Finally, the roles of SEI on hepatic lipid accumulation and PPARα signaling were further verified in the hamster model. CONCLUSIONS We proposed a zebrafish-based screening strategy for modulators of hepatic steatosis and discovered the regulatory roles of Smil/Lstr combo and its component SEI on liver lipid accumulation and PPARα signaling, suggesting their potential value as novel candidates for NAFLD treatment.
Collapse
Affiliation(s)
- Qingquan Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Sheng
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mirko Baruscotti
- Department of Biosciences, University of Milano, Milan, 1-20133, Italy
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University Medical School, Hangzhou, 310003, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310020, China
| | - Lu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University Medical School, Hangzhou, 310003, China; State Key Laboratory of Chinese Medicine Modernization, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Zhou J, Li W, Chi X, Li D, Yang C, Duan Z. Inhibition of mmu_circ_0009303 improves metabolic dysfunction-associated steatotic liver disease by regulating lipid metabolism and oxidative stress. Endocr J 2025; 72:79-91. [PMID: 39443113 PMCID: PMC11778371 DOI: 10.1507/endocrj.ej24-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Circular RNAs (circRNAs) play an important role in regulating inflammation and oxidative stress during the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD); however, the underlying mechanism is unclear. This study aimed to determine the role of mmu_circ_0009303 in MASLD. We used a bioinformatics approach to identify potential targets and established an in vitro model of MASLD. Oil red O staining, cell transfection and dual-luciferase reporter assay were used to determine the role of mmu_circ_0009303. The results indicated that the mmu_circ_0009303 expression was significantly increased in the MASLD model both in vitro and in vivo and was associated with oxidative stress levels and inflammation. Moreover, bioinformatics analyses revealed that miRNA-182-5p and Foxo3 are targets of mmu_circ_0009303 and miRNA-182-5p, respectively. In the in vitro MASLD model, mmu_circ_0009303 promoted fat deposition in NCTC1469 cells, which was induced by free fatty acid (FFA) through the regulation of miRNA-182-5p/Foxo3. The expression of miRNA-182-5p and Forkhead box O3 (Foxo3) was associated with mmu_circ_0009303 expression in the liver of mice with MASLD, which was induced by a high-fat diet. Furthermore, mmu_circ_0009303 may be involved in regulating the expression of lipid metabolism-related regulatory proteins, such as CPT1A, SLC27A4, ACBD3, SREBP1, FAS, PPARα, and PPARγ. Taken together, mmu_circ_0009303 promotes oxidative stress, inflammation, and excessive fat accumulation in NCTC1469 cells induced by FFA through the regulation of miRNA-182-5p/Foxo3 and lipid metabolism-related regulatory proteins. These findings provide a potential target for the treatment of MASLD.
Collapse
Affiliation(s)
- Ju Zhou
- Department of Infectious Disease, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, China
| | - Wu Li
- Department of Infectious Disease, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, China
| | - Xiaowei Chi
- Department of Infectious Disease, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, China
| | - Dingchun Li
- Department of Infectious Disease, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, China
| | - Chunxia Yang
- Department of Infectious Disease, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, China
| | - Zhiwen Duan
- Department of Infectious Disease, The First Affiliated Hospital, Kunming Medical University, Kunming 650032, China
| |
Collapse
|
10
|
Tiwari RK, Ahmad A, Chadha M, Saha K, Verma H, Borgohain K, Shukla R. Modern-Day Therapeutics and Ongoing Clinical Trials against Type 2 Diabetes Mellitus: A Narrative Review. Curr Diabetes Rev 2025; 21:59-74. [PMID: 38766831 DOI: 10.2174/0115733998294919240506044544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVES Diabetes Mellitus (DM) is a global health concern that affects millions of people globally. The present review aims to narrate the clinical guidelines and therapeutic interventions for Type 2 Diabetes Mellitus (T2DM) patients. Furthermore, the present work summarizes the ongoing phase 1/2/3 and clinical trials against T2DM. METHODS A meticulous and comprehensive literature review was performed using various databases, such as PubMed, MEDLINE, Clinical trials database (https://clinicaltrials.gov/), and Google Scholar, to include various clinical trials and therapeutic interventions against T2DM. RESULTS Based on our findings, we concluded that most T2DM-associated clinical trials are interventional. Anti-diabetic therapeutics, including insulin, metformin, Dipeptidyl Peptidase-4 (DPP-4) inhibitors, Glucagon-Like Peptide-1 Receptor Agonists (GLP-1RAs), and Sodium- Glucose cotransporter-2 (SGLT-2) inhibitors are frontline therapeutics being clinically investigated. Currently, the therapeutics in phase IV clinical trials are mostly SGLT-2 inhibitors, implicating their critical contribution to the clinical management of T2DM. CONCLUSION Despite the success of T2DM treatments, a surge in innovative treatment options to reduce diabetic consequences and improve glycemic control is currently ongoing. More emphasis needs to be on exploring novel targeted drug candidates that can offer more sustained glycemic control.
Collapse
Affiliation(s)
- Rohit Kumar Tiwari
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Gautam Buddh Nagar, Uttar Pradesh, 201310, India
| | - Afza Ahmad
- Department of Public Health, Dr. Giri Lal Gupta Institute of Public Health and Public Affairs, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Muskan Chadha
- Department of Nutrition & Dietetics, Sharda School of Allied Health Sciences, Sharda University, Gautam Buddh Nagar, Uttar Pradesh, 201310, India
| | - Kingshuk Saha
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Gautam Buddh Nagar, Uttar Pradesh, 201310, India
| | - Harshitha Verma
- Department of Science in Biochemistry, Manasagangothri, University of Mysuru, Mysuru, 570006, Karnataka, India
| | - Kalpojit Borgohain
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Gautam Buddh Nagar, Uttar Pradesh, 201310, India
| | - Ratnakar Shukla
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Gautam Buddh Nagar, Uttar Pradesh, 201310, India
| |
Collapse
|
11
|
Mushfiq S, Yatoo GN, Mir BA, Rasool Z. Two faces of the same coin non alcoholic fatty liver disease; with and without diabetes: Comparative clinico pathological analysis: A cross sectional observational study. J Family Med Prim Care 2025; 14:56-61. [PMID: 39989558 PMCID: PMC11844969 DOI: 10.4103/jfmpc.jfmpc_1208_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/26/2023] [Accepted: 05/22/2024] [Indexed: 02/25/2025] Open
Abstract
Background and Aim Non-alcohol fatty liver disease (NAFLD) is a metabolic disorder that represents the hepatic manifestation of systemic process, and is a strong risk factor for diabetes Meletus, whereas the presence of DM increases the severity of NAFLD/NASH and its progression. Data on the impact of diabetes on NASH phenotype is sparse from northern India. We studied and compared the clinical profile of NALFD in the presence and absence of DM and the effect of diabetes on NASH. Methods We did a cross-sectional analysis of data from NAFLD patients (n = 90) who were divided into diabetic and non-diabetic cohorts and their respective demographic, biochemical, imaging and histological features were recorded and compared. Results Out of 90 patients, 53.3% were females with a mean age of 44 ± 12 years. The mean BMI and WHR of the study cohort were 28.9 ± 3.4 and 1.01 ± 0.15, respectively. The current study showed that 35.8% were diabetics. The mean age and WHR were 52 ± 11 years vs 40 ± 10 years and 1.1 ± 0.17 vs 0.99 ± 0.09, respectively, in diabetic and non-diabetic NAFLD patients. Non-invasive fibrosis scores, including BARD (2.8 vs 1.73), FIB-4 (3.4 vs 2.2) and NFS (0.97 vs -1.13), were significantly higher in diabetic NAFLD compared to non-diabetic NAFLD (P < 0.03). The histological grade of steatosis and fibrosis as depicted by the mean NAS score (5.7 ± 1.2 vs 4.63 ± 0.8) was higher in diabetic NAFLD vs non-diabetic NAFLD; however, only the fibrosis stage was statistically significant between the groups (P < 0.001). Conclusion Despite the small no of cases, we should conclude that there is a bidirectional relationship between NAFLD and DM where the progression of one increases the rate of progression of other. Diabetic patients have higher risk of NASH and hence increased risk of liver related mortality and should be screened early for NAFLD/NASH.
Collapse
Affiliation(s)
- Syed Mushfiq
- Department of Gastroenterology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar J and K, India
| | - Ghulam Nabi Yatoo
- Department of Gastroenterology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar J and K, India
| | - Bilal Ahmad Mir
- Department of Gastroenterology, IGMC, Shimla, Himachal Pradesh, India
| | - Zubaida Rasool
- Department of Pathology Sher-I-Kashmir Institute of Medical Sciences, Srinagar J and K, India
| |
Collapse
|
12
|
Zeng G, Liu X, Zheng Z, Zhao J, Zhuo W, Bai Z, Lin E, Cai S, Cai C, Li P, Zou B, Li J. Knockdown of RASD1 improves MASLD progression by inhibiting the PI3K/AKT/mTOR pathway. Lipids Health Dis 2024; 23:424. [PMID: 39731125 DOI: 10.1186/s12944-024-02419-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND There is still no reliable therapeutic targets and effective pharmacotherapy for metabolic dysfunction-associated steatotic liver disease (MASLD). RASD1 is short for Ras-related dexamethasone-induced 1, a pivotal factor in various metabolism processes of Human. However, the role of RASD1 remains poorly illustrated in MASLD. Therefore, we designed a study to elucidate how RASD1 could impact on MASLD as well as the mechanisms involved. METHODS The expression level of RASD1 was validated in MASLD. Lipid metabolism and its underlying mechanism were investigated in hepatocytes and mice with either overexpression or knockdown of RASD1. RESULTS Hepatic RASD1 expression was upregulated in MASLD. Lipid deposition was significantly reduced in RASD1-knockdown hepatocytes and mice, accompanied by a marked downregulation of key genes in the signaling pathway of de novo lipogenesis. Conversely, RASD1 overexpression in hepatocytes had the opposite effect. Mechanistically, RASD1 regulated lipid metabolism in MASLD through the PI3K/AKT/mTOR signaling pathway. CONCLUSIONS We discovered a novel role of RASD1 in MASLD by regulating lipogenesis via the PI3K/AKT/mTOR pathway, thereby identifying a potential treatment target for MASLD.
Collapse
Affiliation(s)
- Guifang Zeng
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China.
| | - Xialei Liu
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Zhouying Zheng
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Jiali Zhao
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Wenfeng Zhuo
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Zirui Bai
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - En Lin
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Shanglin Cai
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Chaonong Cai
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Peiping Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China.
| | - Baojia Zou
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China.
| | - Jian Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China.
| |
Collapse
|
13
|
Kim K, Lee Y, Lee JS, Kim MN, Kim BK, Kim SU, Park JY, Kim DY, Ahn SH, Jung I, Lee HW. Incidence of metabolic dysfunction-associated steatotic liver disease and advanced fibrosis and impact of overweight/obesity in elderly population: a nationwide cohort study. J Gastroenterol Hepatol 2024; 39:2845-2852. [PMID: 39343427 DOI: 10.1111/jgh.16755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND AND AIM The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing worldwide, coinciding with aging population. However, limited studies have evaluated its incidence and progression to advanced fibrosis in the elderly population. Therefore, our study aimed to investigate the incidence of MASLD and advanced fibrosis in this age group. METHODS We included 878 686 individuals aged ≥60 years from the Korea National Health Insurance Service-Senior cohort. After excluding participants with preexisting MASLD, 329 388 individuals were finally analyzed. Participants were categorized into four groups based on the presence of overweight/obesity and additional risk factors (aRF) included in the cardiometabolic diagnostic criteria of MASLD. RESULTS The overall incidence of MASLD was 1.94 per 100 person-years, and the incidence of advanced fibrosis in MASLD patients was 1.78 per 100 person-years. MASLD development was significantly higher in overweight/obese patients (2.65 per 100 person-years) compared to lean patients (1.09 per 100 person-years), and this trend persisted after stratification by the presence of aRF. Similarly, the incidence of advanced fibrosis among MASLD patients was higher in overweight/obese individuals (2.06 per 100 person-years) compared to lean counterparts (0.87 per 100 person-years), irrespective of aRF. CONCLUSIONS The lower incidence of MASLD in the elderly population compared to the general population underscores the importance of identifying age-specific risk factors. Overweight/obesity emerged as a robust predictor of MASLD development and advanced fibrosis. Additionally, the presence of additional cardiometabolic risk factors further increased the risk of incident MASLD and advanced fibrosis among the elderly.
Collapse
Affiliation(s)
- Kunhee Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yaeji Lee
- Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Seung Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
- Yonsei Liver Center, Severance Hospital, Seoul, South Korea
| | - Mi Na Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
- Yonsei Liver Center, Severance Hospital, Seoul, South Korea
| | - Beom Kyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
- Yonsei Liver Center, Severance Hospital, Seoul, South Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
- Yonsei Liver Center, Severance Hospital, Seoul, South Korea
| | - Jun Yong Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
- Yonsei Liver Center, Severance Hospital, Seoul, South Korea
| | - Do Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
- Yonsei Liver Center, Severance Hospital, Seoul, South Korea
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
- Yonsei Liver Center, Severance Hospital, Seoul, South Korea
| | - Inkyung Jung
- Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Won Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
- Yonsei Liver Center, Severance Hospital, Seoul, South Korea
| |
Collapse
|
14
|
Huang Q, An Z, Xin X, Gou X, Tian X, Hu Y, Mei Z, Feng Q. The Effectiveness of Curcumin, Resveratrol, and Silymarin on MASLD: A Systematic Review and Meta-Analysis. Food Sci Nutr 2024; 12:10010-10029. [PMID: 39723101 PMCID: PMC11666838 DOI: 10.1002/fsn3.4595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 09/25/2024] [Accepted: 10/25/2024] [Indexed: 12/28/2024] Open
Abstract
Polyphenols, known for their potent antioxidant and anti-inflammatory properties, have emerged as promising, natural, and safe complementary treatment options for metabolic-associated steatotic liver disease (MASLD). Among these, curcumin, resveratrol, and silymarin are the most extensively studied; however, their differential effects on MASLD outcomes remain inconclusive. This systematic review and meta-analysis of RCTs aimed to evaluate the efficacy of curcumin, resveratrol, and silymarin in patients with MASLD. A comprehensive search of seven databases was conducted up to September 2024. Odds ratios (OR), mean differences (MD), and standardized MD (SMD) with 95% confidence intervals (CI) were used to assess treatment effects. Primary outcomes included improvement in hepatic steatosis and ALT activity, while secondary outcomes included changes in AST activity, blood lipids, glucose, BMI, blood pressure, and TNF-α. Twenty-seven studies involving 1691 participants were included. Curcumin significantly improved hepatic steatosis compared to placebo (OR: 4.39, 95% CI: 1.45 to 13.27, p = 0.009), followed by resveratrol (OR: 3.18, 95% CI: 1.20 to 8.42, p = 0.02). Silymarin exhibited the strongest effect in reducing ALT levels (MD: -6.44 U/L, 95% CI: -10.03 to -2.85, p = 0.0004), with curcumin (MD: -5.88 U/L, 95% CI: -9.05 to -2.72, p = 0.0003) also showing significant reductions. A marked reduction in AST was observed with silymarin (MD: -6.99 U/L, 95% CI: -8.56 to -5.42, p < 0.00001), followed by curcumin (MD: -3.36 U/L, 95% CI: -5.35 to -1.36, p = 0.001). Furthermore, curcumin intake significantly improved metabolic indicators (TG, FBG, HOMA-IR, and BMI). Resveratrol reduced FBG and DBP. Curcumin had the strongest effect on hepatic steatosis and improved both transaminase levels and metabolic markers. Silymarin demonstrated the greatest reduction in transaminase levels, while resveratrol showed modest benefits in steatosis and metabolic improvements. The three polyphenols appear as promising therapeutics for the treatment of MASLD.
Collapse
Affiliation(s)
- Qian Huang
- Institute of Liver DiseasesShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- School of Basic MedicineShaanxi University of Chinese MedicineXianyangShaanxiChina
| | - Ziming An
- Institute of Liver DiseasesShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xin Xin
- Institute of Liver DiseasesShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiaojun Gou
- Central LaboratoryBaoshan District Hospital of Integrated Traditional Chinese and Western Medicine of ShanghaiShanghaiChina
| | - Xiaoting Tian
- Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Yiyang Hu
- Institute of Liver DiseasesShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zubing Mei
- Institute of Anorectal DiseasesShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Qin Feng
- Institute of Liver DiseasesShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Shanghai Key Laboratory of Traditional Chinese Clinical MedicineShanghaiChina
- Key Laboratory of Liver and Kidney DiseasesShanghai University of Traditional Chinese Medicine, Ministry of EducationShanghaiChina
- Central LaboratoryShuguang Hospital Affiliated to Shanghai University of Chinese Traditional MedicineShanghaiChina
| |
Collapse
|
15
|
Tu J, Wang B, Wang X, Huo K, Hu W, Zhang R, Li J, Zhu S, Liang Q, Han S. Current status and new directions for hepatocellular carcinoma diagnosis. LIVER RESEARCH 2024; 8:218-236. [PMID: 39958920 PMCID: PMC11771281 DOI: 10.1016/j.livres.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/17/2024] [Accepted: 12/01/2024] [Indexed: 02/18/2025]
Abstract
Liver cancer ranks as the sixth most common cancer globally, with hepatocellular carcinoma (HCC) accounting for approximately 75%-85% of cases. Most patients present with moderately advanced disease, while those with advanced HCC face limited and ineffective treatment options. Despite diagnostic efforts, no ideal tumor marker exists to date, highlighting the urgent clinical need for improved early detection of HCC. A key research objective is the development of assays that target specific pathways involved in HCC progression. This review explores the pathological origin and development of HCC, providing insights into the mechanistic rationale, clinical statistics, and the advantages and limitations of commonly used diagnostic tumor markers. Additionally, it discusses the potential of emerging biomarkers for early diagnosis and offers a brief overview of relevant assay methodologies. This review aims to summarize existing markers and investigate new ones, providing a basis for subsequent research.
Collapse
Affiliation(s)
- Jinqi Tu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Bo Wang
- Animal Experimental Center, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaoming Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Kugeng Huo
- Cyagen Biosciences (Guangzhou) Inc., Guangzhou, Guangdong, China
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Rongli Zhang
- Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Shijie Zhu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Shuxin Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| |
Collapse
|
16
|
Abdel-Samiee M, Ibrahim ES, Kohla M, Abdelsameea E, Salama M. Regression of hepatic fibrosis after pharmacological therapy for nonalcoholic steatohepatitis. World J Gastrointest Pharmacol Ther 2024; 15:97381. [PMID: 39534523 PMCID: PMC11551621 DOI: 10.4292/wjgpt.v15.i6.97381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/28/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
The global incidence of nonalcoholic fatty liver disease (NAFLD) is escalating considerably. NAFLD covers a range of liver conditions from simple steatosis to the more severe form known as nonalcoholic steatohepatitis, which involves chronic liver inflammation and the transformation of hepatic stellate cells into myofibroblasts that generate excess extracellular matrix, leading to fibrosis. Hepatocyte ballooning is a key catalyst for fibrosis progression, potentially advancing to cirrhosis and its decompensated state. Fibrosis is a critical prognostic factor for outcomes in patients with NAFLD; therefore, those with substantial fibrosis require timely intervention. Although liver biopsy is the most reliable method for fibrosis detection, it is associated with certain risks and limitations, particularly in routine screening. Consequently, various noninvasive diagnostic techniques have been introduced. This review examines the increasing prevalence of NAFLD, evaluates the noninvasive diagnostic techniques for fibrosis, and assesses their efficacy in staging the disease. In addition, it critically appraises current and emerging antifibrotic therapies, focusing on their mechanisms, efficacy, and potential in reversing fibrosis. This review underscores the urgent need for effective therapeutic strategies, given the dire consequences of advanced fibrosis.
Collapse
Affiliation(s)
- Mohamed Abdel-Samiee
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Essam Salah Ibrahim
- Department of Medicine, RCSI Medical University of Bahrain, Adliya 15503, Bahrain
| | - Mohamed Kohla
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Eman Abdelsameea
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Mohsen Salama
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El-Kom 32511, Egypt
| |
Collapse
|
17
|
Maiorana F, Neschuk M, Caronia MV, Elizondo K, Schneider A, Veron G, Zapata PD, Barreyro FJ. Helicobacter pylori cagA/vacAs1-m1 strain is associated with high risk of fibrosis in metabolic-dysfunction-associated steatotic liver disease. Ann Hepatol 2024; 29:101541. [PMID: 39214252 DOI: 10.1016/j.aohep.2024.101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/17/2024] [Accepted: 06/08/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION AND OBJECTIVES Recent studies have suggested an association between H. pylori and metabolic dysfunction associated steatotic liver disease (MASLD). We aim to evaluate the association of H. pylori virulence genes with non-invasive markers of liver injury and fibrosis in MASLD subjects. PATIENTS AND METHODS A total of 362 dyspeptic patients who underwent gastroscopy were selected. Biochemical, clinical parameters, ultrasound, FIB-4 score, liver stiffness measurement (LSM) by vibration-controlled transient elastography (VCTE), gastric biopsies, and H. pylori virulence genes (cagA, vacA) were evaluated. RESULTS A cohort comprised of 61 % women and 39 % men with a median age of 52 (40-60) years. MASLD was observed in 42 %, and H. pylori-positive in 45 %. No differences were observed regarding H. pylori status at co-morbid metabolic conditions. In MASLD cohort, H. pylori-positive was associated with higher AST, ALT, FIB-4 and LSM. Indeed, carriers of cagA/vacA-s1/m1-positive allelic combination were associated with higher AST, ALT, FIB-4 and LSM but not cagA/vacA-s1/m1-negative. The OR for high-risk of significant/advanced- fibrosis by VCTE (≥8 kPa) with H. pylori-positive was 2.56 (95 % CI, 1.2-5.75) and for cagA/vacA-s1/-m1-positive allelic carriers was 4.01 (95 % CI, 1.38-11.56), but non-significant association in cagA/vacA-s1/-m1-negative. After adjusting for age, gender, diabetes, BMI and hypertension the OR for VCTE ≥8 kPa with H. pylori-positive was 2.43 (95 % CI, 1.88-12.44), and cagA/vacA-s1/m1-positive allelic carriers was 4.06 (95 % CI, 1.22-14.49). CONCLUSIONS In our cohort of functional dyspepsia (FD) patients with MASLD, H. pylori was associated with non-invasive markers of liver injury and fibrosis. Carriers of cagA/vacA-s1/m1-positive allelic combination showed an independent risk of significant/advanced fibrosis by VCTE.
Collapse
Affiliation(s)
- Facundo Maiorana
- Laboratorio de Biotecnología Molecular (BIOTECMOL), Instituto de Biotecnología de Misiones "Dra. María Ebbe Reca" (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Misiones, Argentina
| | - Magali Neschuk
- Laboratorio de Biotecnología Molecular (BIOTECMOL), Instituto de Biotecnología de Misiones "Dra. María Ebbe Reca" (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Misiones, Argentina
| | - María Virginia Caronia
- Laboratorio de Biotecnología Molecular (BIOTECMOL), Instituto de Biotecnología de Misiones "Dra. María Ebbe Reca" (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Misiones, Argentina
| | - Karina Elizondo
- Fundación HA Barceló, Instituto Universitario en Ciencias de la Salud. Santo Tomé, Corrientes, Argentina
| | - Adolfo Schneider
- Fundación HA Barceló, Instituto Universitario en Ciencias de la Salud. Santo Tomé, Corrientes, Argentina
| | - Georgina Veron
- Fundación HA Barceló, Instituto Universitario en Ciencias de la Salud. Santo Tomé, Corrientes, Argentina
| | - Pedro D Zapata
- Laboratorio de Biotecnología Molecular (BIOTECMOL), Instituto de Biotecnología de Misiones "Dra. María Ebbe Reca" (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Misiones, Argentina; CONICET, Buenos Aires, Argentina
| | - Fernando Javier Barreyro
- Laboratorio de Biotecnología Molecular (BIOTECMOL), Instituto de Biotecnología de Misiones "Dra. María Ebbe Reca" (InBioMis), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Misiones, Argentina; CONICET, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Xu K, He BW, Yu JL, Kang HM, Zheng TT, Chen ZY, Li JS. Clinical significance of serum FGF21 levels in diagnosing nonalcoholic fatty liver disease early. Sci Rep 2024; 14:25191. [PMID: 39448761 PMCID: PMC11502844 DOI: 10.1038/s41598-024-76585-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
The endogenous FGF21 level is a potential target for diagnosing NAFLD. This study aimed to assess the clinical utility of FGF21 in diagnosing NAFLD and provide new ideas for predicting and preventing NAFLD. A total of 193 patients diagnosed with NAFLD based on diagnostic criteria and 64 healthy individuals were included in the NAFLD and non-NAFLD groups, respectively. Data on the participant names, sex, age, height, weight, blood pressure, serum FGF21 levels, liver function enzyme (AST, ALT, ALP, and GGT) levels, lipid profile (TC, TG, HDL-C, and LDL-C) indicators, and blood glucose levels were collected. The data were statistically analyzed to assess the correlations between serum FGF21 levels and related biochemical markers in NAFLD patients. The areas under the receiver operating characteristic curves (AUCs) of serum FGF21, lipids (TG + TC + HDL + LDL), and FGF21 combined with lipids for the diagnosis of NAFLD were compared. Compared with the non-NAFLD group, the NAFLD group presented significantly higher levels of FGF21. Serum FGF21 levels in the NAFLD group were positively correlated with the TG, TC, and LDL-C levels (P < 0.05). The area under the receiver operating characteristic curve (AUC) of serum FGF21 for the diagnosis of NAFLD was 0.832 (95% CI: 0.77-0.886, P < 0.001). The AUC of FGF21 combined with lipids (TG + TC + HDL + LDL) for the diagnosis of NAFLD was 0.910 (95% CI: 0.874-0.946, P < 0.001). There is a close association between elevated FGF21 levels and the development of NAFLD. The progression of NAFLD is complex and varied, and its pathogenesis is unclear. Early detection, prevention, and intervention may help slow NAFLD development or even reverse the disease. In this study, we found that the FGF21 level could be used as an auxiliary biological indicator for predicting NAFLD, and the role of FGF21 in the progression of NAFLD deserves to be investigated in the future.
Collapse
Affiliation(s)
- Kai Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, China
| | - Bo-Wu He
- Hospital of Chinese Medicine of Changxing County, Huzhou, 313100, China
| | - Jian-Ling Yu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, China
| | - Hui-Min Kang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, China
| | | | - Zhi-Yun Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, China.
| | - Jian-Shuang Li
- Jinhua Municipal Central Hospital, Jinhua, 321000, China.
| |
Collapse
|
19
|
Alqudah O, Alshahwan HF, Alsamhouri JF, Yamin S, Kaffaf A, Alassaf M, Alwarawrah Z. Metabolic Dysfunction-Associated Steatotic Liver Disease MASLD: Jordan's Perspective Based on Knowledge and Attitude Determinants. Risk Manag Healthc Policy 2024; 17:2483-2491. [PMID: 39463728 PMCID: PMC11512787 DOI: 10.2147/rmhp.s481401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Purpose The most prevalent chronic liver disease in both developed and developing nations is Metabolic dysfunction-associated Steatotic Liver Disease (MASLD). The condition increases the risk of comorbidities and liver-related morbidity and mortality. The public's awareness and medical personnel's understanding are essential in creating countermeasures to stop the disease's spread; a positive attitude is essential for early screening. This study aimed to explore the knowledge and attitudes of Jordanians living in Amman toward MASLD to determine the public's awareness and medical personnel's understanding of the disease. Materials and Methods A cross-sectional study was conducted using an online self-administered questionnaire that included 5 items for knowledge and 8 for attitude. Demographic questions were also included to further examine how demographic factors affected knowledge and attitude. Results Among 906 responders, (63.4%) were females, and (36.6%) were males. The majority age group was 18-30 (56.2%). Only 49.5% had previous knowledge of MASLD, (44.6%) believed they were at risk of developing it. There is a statistical significance between age, gender, educational level, and having a good knowledge of MASLD and a positive attitude towards it (p<0.05). Conclusion Generally, Jordan's population has a fair knowledge of MASLD and a positive attitude towards it. Warranting more research into the reasons behind it, and more awareness campaigns.
Collapse
Affiliation(s)
- Omar Alqudah
- Department of Medicine, Division of Hepatology and Gastroenterology, Jordan University Hospital and School of Medicine, The University of Jordan, Amman, Jordan
| | | | | | - Saif Yamin
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Ahmad Kaffaf
- School of Medicine, The University of Jordan, Amman, Jordan
| | | | | |
Collapse
|
20
|
Xia G, Xu Y, Zhang C, Li M, Li H, Chen C. High levels of serum hypersensitive C-reactive protein are associated with non-alcoholic fatty liver disease in non-obese people: a cross-sectional study. Eur J Med Res 2024; 29:496. [PMID: 39402650 PMCID: PMC11476594 DOI: 10.1186/s40001-024-02065-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) and obesity have become one of the most common chronic diseases, and the global prevalence is increasing year by year. Both are accompanied by hypersensitive C-reactive protein (hs-CRP). At present, there are many predictors of NAFLD. Exploring the relationship between hs-CRP and nonalcoholic fatty liver disease in non-obese people will be helpful for risk prediction and clinical screening in high-risk populations. OBJECTIVE To explore the relationship between levels of serum hs-CRP and the presence of NAFLD in non-obese people. METHODS A total of 6558 participants who underwent physical examination from March 2017 to November 2017. Multivariate logistic regression was utilized to analyze the risk factors associated with NAFLD. RESULTS This study including 4240 males and 2318 females ranging from 20 to 94 years. In 1396 patients with NAFLD, the prevalence rate was 21.3%, among which 1056 (24.9%) males and 340 (14.7%) females had NAFLD. The prevalence of NAFLD was much higher in males compared to females (χ2 = 93.748, P < 0.001). In the nonalcoholic fatty liver group, various factors including hs-CRP, age, WC, BMI, systolic blood pressure and blood pressure diastolic blood pressure were significantly higher than those in the control group. Logistic regression analysis confirmed that hs-CRP was an independent risk factor for NAFLD, even after adjusting for relevant variables. CONCLUSIONS The prevalence of NAFLD increases with the level of hs-CRP in both men and women who are non-obese. Hs-CRP levels are an important risk factor for nonalcoholic fatty liver disease in non-obese individuals.
Collapse
Affiliation(s)
- Guitao Xia
- Affiliated People's Hospital of Ningbo University, Ningbo, 315040, Zhejiang Province, China
| | - Yuemei Xu
- Affiliated People's Hospital of Ningbo University, Ningbo, 315040, Zhejiang Province, China
| | - Cheng Zhang
- Affiliated People's Hospital of Ningbo University, Ningbo, 315040, Zhejiang Province, China
| | - Mengting Li
- Affiliated People's Hospital of Ningbo University, Ningbo, 315040, Zhejiang Province, China
| | - Hongliang Li
- Affiliated People's Hospital of Ningbo University, Ningbo, 315040, Zhejiang Province, China.
| | - Changxi Chen
- Affiliated People's Hospital of Ningbo University, Ningbo, 315040, Zhejiang Province, China.
| |
Collapse
|
21
|
Arun Kumar D, Kumar S, Rajagopal R, Ramesh R, M M. Non-invasive Assessment of Liver Fibrosis Using Shear Wave Elastography in Patients With Type 2 Diabetes Mellitus Having Non-alcoholic Fatty Liver Disease. Cureus 2024; 16:e72471. [PMID: 39600758 PMCID: PMC11590170 DOI: 10.7759/cureus.72471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD) frequently coexist due to overlapping risk factors such as metabolic syndrome and obesity. T2DM exacerbates the progression of NAFLD, increasing the risk of cirrhosis and hepatocellular carcinoma. Thus, early detection of liver fibrosis is crucial to prevent severe liver disease. A 2D shear wave elastography (2D SWE) has emerged as a reliable non-invasive method for assessing liver stiffness, potentially reducing the need for liver biopsies and facilitating prompt treatment interventions. Methods This cross-sectional study, conducted over 18 months, included 100 T2DM and NAFLD patients from the Medicine and Diabetes Outpatient Department at SRM Medical College Hospital and Research Centre, Chengalpattu, India. Participants underwent gray-scale ultrasound to classify fatty liver (Grades I, II, and III) and 2D SWE to evaluate liver stiffness. Additional data on fasting and postprandial blood glucose, glycosylated hemoglobin (HbA1c), lipid profiles, liver function tests, and body mass index (BMI) were collected. Statistical analysis was performed using IBM SPSS Statistics for Windows, Version 21 (Released 2012; IBM Corp., Armonk, New York, United States). Results The mean age of participants was 47.9 years, with 61% being male. Fatty liver Grades I, II, and III were present in 47%, 41%, and 12% of patients, respectively. SWE results showed that 30% had stiffness values <5 kPa, 53% had values between 5.1-9 kPa, 16% had values between 9.1-13 kPa, and 1% had values >13 kPa. Liver size increased significantly with fatty liver grade (p=0.029). HbA1c levels and blood glucose levels were significantly correlated with fatty liver grades (p<0.0001). Triglyceride levels were higher with increasing fatty liver grades (p<0.0001). A significant correlation was found between gamma-glutamyl transferase (GGT) levels and SWE values (p=0.04). In the lipid profile, significant correlations were noted between SWE values and triglycerides (p=0.005), cholesterol (p=0.026), and very-low-density lipoprotein (VLDL) (p=0.131). Higher levels of HbA1c, fasting blood sugar, and postprandial blood sugar were also significantly correlated with SWE values (p<0.0001). Increasing grades of hepatic steatosis significantly correlated with SWE values (p<0.0001). BMI positively correlated with SWE values (r=0.321, p=0.001). Conclusion This study highlights the prevalence of advanced liver stiffness in patients with T2DM and NAFLD, which correlates significantly with higher grades of fatty liver, elevated HbA1c, blood sugar levels, and abnormal lipid profiles. SWE is a valuable tool for assessing liver stiffness and guiding the management of NAFLD in patients with T2DM.
Collapse
Affiliation(s)
- Deepthi Arun Kumar
- Radiodiagnosis, SRM Medical College Hospital and Research Centre, Chengalpattu, IND
| | - Senthil Kumar
- Radiodiagnosis, SRM Medical College Hospital and Research Centre, Chengalpattu, IND
| | - Revathi Rajagopal
- Radiodiagnosis, SRM Medical College Hospital and Research Centre, Chengalpattu, IND
| | - Ragitha Ramesh
- Radiodiagnosis, SRM Medical College Hospital and Research Centre, Chengalpattu, IND
| | - Manoj M
- Radiodiagnosis, SRM Medical College Hospital and Research Centre, Chengalpattu, IND
| |
Collapse
|
22
|
Minetti ET, Hamburg NM, Matsui R. Drivers of cardiovascular disease in metabolic dysfunction-associated steatotic liver disease: the threats of oxidative stress. Front Cardiovasc Med 2024; 11:1469492. [PMID: 39411175 PMCID: PMC11473390 DOI: 10.3389/fcvm.2024.1469492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), now known as metabolic-associated steatotic liver disease (MASLD), is the most common liver disease worldwide, with a prevalence of 38%. In these patients, cardiovascular disease (CVD) is the number one cause of mortality rather than liver disease. Liver abnormalities per se due to MASLD contribute to risk factors such as dyslipidemia and obesity and increase CVD incidents. In this review we discuss hepatic pathophysiological changes the liver of MASLD leading to cardiovascular risks, including liver sinusoidal endothelial cells, insulin resistance, and oxidative stress with a focus on glutathione metabolism and function. In an era where there is an increasingly robust recognition of what causes CVD, such as the factors included by the American Heart Association in the recently developed PREVENT equation, the inclusion of liver disease may open doors to how we approach treatment for MASLD patients who are at risk of CVD.
Collapse
Affiliation(s)
| | | | - Reiko Matsui
- Whitaker Cardiovascular Institute, Section of Vascular Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
23
|
Bordagaray MJ, Pellegrini E, Garrido M, Hernández-Ríos P, Villalobos T, Fernández A, Hernández M. Elevated serum hepatic transaminases in apical periodontitis individuals. Int Endod J 2024; 57:1395-1403. [PMID: 38864596 DOI: 10.1111/iej.14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/22/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
AIM Apical periodontitis (AP) is the chronic inflammation of the periradicular tissues in response to root canal infection. Whilst AP has been linked with systemic inflammation and noncommunicable diseases, its potential association with nonalcoholic fatty liver disease (NAFLD) is unknown. We aimed to evaluate the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels as surrogate markers of hepatic injury, and the systemic inflammatory burden in otherwise healthy individuals with and without AP diagnosis. METHODOLOGY Cross-sectional study. Individuals with AP (n = 30) and healthy controls (n = 29) were recruited. The number, mean diameter (mm) and periapical index of the apical lesions of endodontic origin (ALEO) were assessed. ALT and AST levels (pg/mL) were measured through enzyme-linked immunosorbent assays. The serum levels of TNF-α, IL-4, IL-9, IL-10, IL-17A and IL-22 were evaluated by Multiplex assay. Inferential analysis was performed using t-test or Mann-Whitney tests according to data distribution and linear regression models. Data were analysed with StataV16 (p < .05). RESULTS ALT and AST levels were significantly higher in individuals with AP compared to controls (p < .05). Serum inflammatory biomarkers showed no significant differences between the study groups. Bivariate and multivariate analyses confirmed that AP diagnosis was independently associated with ALT and AST elevations (p < .05). Additionally, the number of ALEO positively influenced AST levels (p = .002). IL-22 on the other hand, was associated with reduced ALT levels (p = .043). CONCLUSION AP is associated with higher serum hepatic transaminases ALT and AST, potentially contributing to NAFLD physiopathology in young adults.
Collapse
Affiliation(s)
- María José Bordagaray
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Elizabeth Pellegrini
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Mauricio Garrido
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Patricia Hernández-Ríos
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Thomas Villalobos
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | | | - Marcela Hernández
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| |
Collapse
|
24
|
Gomonova VP, Raikhelson KL, Pazenko EV, Prashnova MK, Lapin SV, Nazarov VD, Sidorenko DV. Compensated advanced chronic liver disease in patients with metabolic dysfunction-associated steatotic liver disease: association with cardiometabolic factors. SECHENOV MEDICAL JOURNAL 2024; 15:15-25. [DOI: 10.47093/2218-7332.2024.1075.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Aim. Тo study cardiometabolic factors and the PNPLA3 I148M (rs738409 C>G) gene polymorphism in association with the compensated advanced chronic liver disease (cACLD) in patients with metabolic dysfunction-associated steatotic liver disease (MASLD).Materials and methods. А retrospective cross-sectional study was conducted. The total of 108 patients with MASLD (33 men and 75 women aged 28 to 89 years) involved were divided into two groups based on results of transient elastography: group 1 – with the presence of cACLD (liver stiffness ≥ 8.0 kPa) – 18 patients and group 2 – without cACLD (<8.0 kPa) – 90 patients. Cardiometabolic risk factors and the PNPLA3 I148M (rs738409 C>G) gene polymorphism were studied in both groups. Odds ratios (OR) and 95% confidence intervals (CI) were calculated, and a logistic regression model was constructed for the detection of cACLD.Results. Compared to group 2, patients with cACLD had statistically significant higher prevalence of: arterial hypertension (p < 0.05), type 2 diabetes mellitus (p < 0.01), obesity (p < 0.05), dyslipidemia (p < 0.05), and PNPLA3 gene polymorphism (p < 0.05). The OR for cACLD in individuals with arterial hypertension was 5.58 (95% CI: 1.21–25.71; p < 0.05), with type 2 diabetes mellitus – 4.58 (95% CI: 1.59–13.21; p < 0.01), with obesity – 3.83 (95% CI: 1.17–12.52; p < 0.05), with dyslipidemia – 6.12 (95% CI: 1.33–28.20; p < 0.05), in the presence of a polymorphic variant of the PNPLA3 gene in a hetero or homozygous state – 3.9 (95% CI: 1.28–11.89; p < 0.05). The binary logistic regression model for detecting cACLD included type 2 diabetes mellitus, dyslipidemia, and waist circumference. The area under the ROC curve was 0.81 (95% CI: 0.70–0.92), sensitivity was 72.2%, specificity was 74.4%, and accuracy was 84.3%.Conclusion. Type 2 diabetes mellitus, dyslipidemia, and waist circumference are the determining factors for the development of cACLD in patients with MASLD. The PNPLA3 I148M gene polymorphism does not play a leading role in the development of progressive MASLD in the study cohort.
Collapse
Affiliation(s)
| | | | | | | | - S. V. Lapin
- Pavlov First Saint Petersburg State Medical University
| | - V. D. Nazarov
- Pavlov First Saint Petersburg State Medical University
| | | |
Collapse
|
25
|
Flavin B. Nonalcoholic steatohepatitis/metabolic dysfunction-associated steatohepatitis emerging market: Preparing managed care for early intervention, equitable access, and integrating the patient perspective. J Manag Care Spec Pharm 2024; 30:S1-S13. [PMID: 39213163 PMCID: PMC11365455 DOI: 10.18553/jmcp.2024.30.9-a.s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Nonalcoholic steatohepatitis (NASH)/metabolic dysfunction-associated steatohepatitis (MASH) is an advanced form of liver disease that can lead to significant morbidity and mortality primarily due to hepatic complications including fibrosis, cirrhosis, hepatocellular carcinoma, and liver failure, as well as cardiovascular disease. As the development of NASH/MASH is closely linked to cardiometabolic risk factors such as obesity and type 2 diabetes mellitus, its prevalence is increasing along with the prevalence of those conditions. Identifying at-risk patients or those early in the disease process is essential to optimizing care and may prevent future complications. Current treatment options include disease-modifying interventions, off-label use of US Food and Drug Administration (FDA)-approved medications for comorbid conditions, and resmetirom, the recently first-ever FDA-approved medication specifically for use in NASH/MASH. There is also considerable continued activity in related drug development research with several other potential emerging treatments. With the increasing prevalence of NASH/MASH and emerging treatments, it is important for managed care organizations (MCOs) to be prepared to assist in patient care and implement equitable treatment management. Understanding patient perspectives and their experience with NASH/MASH provides insights for MCOs such as the need for education of both health care providers and patients to encourage early diagnosis and for enhancing access to individualized care including resources and support. Additionally, MCOs can consider potential management strategies for new and emerging treatments.
Collapse
|
26
|
MJ VB, EH TM, JM ZM, EM BC, U OM, EJ UG, TD SG, DA OA, MJ VJ. Sex-specific differences in NAFLD development: effect of a high-sucrose diet on biochemical, histological, and genetic markers in C57bl/6N mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-14. [DOI: 10.1080/09603123.2024.2386113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/25/2024] [Indexed: 01/03/2025]
Affiliation(s)
- Vega Burgueño MJ
- Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán de Rosales, México
| | - Torres Montoya EH
- Facultad de Biología, Universidad Autónoma de Sinaloa, Culiacán de Rosales, México
| | - Zazueta-Moreno JM
- Facultad de Biología, Universidad Autónoma de Sinaloa, Culiacán de Rosales, México
| | - Barron-Cabrera EM
- Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán de Rosales, México
| | - Osuna-Martínez U
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán de Rosales, México
| | - Urías-García EJ
- Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán de Rosales, México
| | - Salinas-Garza TD
- Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán de Rosales, México
| | - Ochoa-Acosta DA
- Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán de Rosales, México
| | - Vergara-Jiménez MJ
- Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán de Rosales, México
| |
Collapse
|
27
|
Shah R, Kong A, De Melo S, Boktor M, Henriquez R, Mandalia A, Samant H, Alvarez CA, Mansi IA. Association of statins with nonalcoholic fatty liver disease in patients with diabetes. J Investig Med 2024; 72:497-510. [PMID: 38594224 DOI: 10.1177/10815589241248076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in patients with diabetes; limited data suggested that statins may reduce the risk of NAFLD progression. This study aimed to examine the association between statins and the development or progression of NAFLD in veterans with diabetes. In a new-user negative control design, we conducted a retrospective propensity score (PS)-matched cohort study of patients with diabetes between 2003 and 2015. After excluding patients with other causes of liver disease, we formed PS using 85 characteristics. The primary outcome was a composite NAFLD progression outcome. Primary analysis examined odds of outcome in PS-matched cohort. Post-hoc analysis included a PS-matched cohort of statin users with intensive lowering of low-density lipoprotein-cholesterol (LDL-C) vs low-intensity lowering. We matched 34,102 pairs from 300,739 statin users and 38,038 non-users. The composite outcome occurred in 8.8% of statin users and 8.6% of non-users (odds ratio (OR) 1.02, 95% confidence interval (95% CI) 0.97-1.08). In the post-hoc analysis, intensive lowering of LDL-C compared to low-intensity showed increased NAFLD progression (OR 1.21, 95% CI 1.13-1.30). This study showed that statin use in patients with diabetes was not associated with decreased or increased risk of NAFLD progression. Intensive LDL-C lowering, compared to low-intensity LDL-C lowering, was associated with an increased risk of NAFLD progression.
Collapse
Affiliation(s)
- Raj Shah
- Education Services, Orlando VA Healthcare System, Orlando, FL, USA
- University of Central Florida/HCA Florida Healthcare, Greater Orlando, FL, USA
- Department of Internal Medicine, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Alexander Kong
- Department of Internal Medicine, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Silvio De Melo
- Section of Gastroenterology, Orlando VA Healthcare System, Orlando, FL, USA
| | - Moheb Boktor
- Digestive and Liver Diseases Division. University of Texas Southwestern Medical Center, Dallas, TX
| | - Richard Henriquez
- Education Services, Orlando VA Healthcare System, Orlando, FL, USA
- University of Central Florida/HCA Florida Healthcare, Greater Orlando, FL, USA
- Department of Internal Medicine, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Amar Mandalia
- Section of Gastroenterology, Orlando VA Healthcare System, Orlando, FL, USA
| | - Hrishikesh Samant
- Department of Hepatology, Ochsner Medical Clinic, New Orleans, LA, USA
| | - Carlos A Alvarez
- Department of Pharmacy Practice and Center of Excellence in Real-world Evidence, Texas Tech University Health Sciences Center, Dallas, TX, USA
| | - Ishak A Mansi
- Education Services, Orlando VA Healthcare System, Orlando, FL, USA
- Department of Internal Medicine, University of Central Florida College of Medicine, Orlando, FL, USA
| |
Collapse
|
28
|
Lodge M, Dykes R, Kennedy A. Regulation of Fructose Metabolism in Nonalcoholic Fatty Liver Disease. Biomolecules 2024; 14:845. [PMID: 39062559 PMCID: PMC11274671 DOI: 10.3390/biom14070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Elevations in fructose consumption have been reported to contribute significantly to an increased incidence of obesity and metabolic diseases in industrial countries. Mechanistically, a high fructose intake leads to the dysregulation of glucose, triglyceride, and cholesterol metabolism in the liver, and causes elevations in inflammation and drives the progression of nonalcoholic fatty liver disease (NAFLD). A high fructose consumption is considered to be toxic to the body, and there are ongoing measures to develop pharmaceutical therapies targeting fructose metabolism. Although a large amount of work has summarized the effects fructose exposure within the intestine, liver, and kidney, there remains a gap in our knowledge regarding how fructose both indirectly and directly influences immune cell recruitment, activation, and function in metabolic tissues, which are essential to tissue and systemic inflammation. The most recent literature demonstrates that direct fructose exposure regulates oxidative metabolism in macrophages, leading to inflammation. The present review highlights (1) the mechanisms by which fructose metabolism impacts crosstalk between tissues, nonparenchymal cells, microbes, and immune cells; (2) the direct impact of fructose on immune cell metabolism and function; and (3) therapeutic targets of fructose metabolism to treat NAFLD. In addition, the review highlights how fructose disrupts liver tissue homeostasis and identifies new therapeutic targets for treating NAFLD and obesity.
Collapse
Affiliation(s)
| | | | - Arion Kennedy
- Department of Molecular and Structural Biochemistry, North Carolina State University, 128 Polk Hall Campus, Box 7622, Raleigh, NC 27695, USA
| |
Collapse
|
29
|
Cheng Z, Chu H, Seki E, Lin R, Yang L. Hepatocyte programmed cell death: the trigger for inflammation and fibrosis in metabolic dysfunction-associated steatohepatitis. Front Cell Dev Biol 2024; 12:1431921. [PMID: 39071804 PMCID: PMC11272544 DOI: 10.3389/fcell.2024.1431921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
By replacing and removing defective or infected cells, programmed cell death (PCD) contributes to homeostasis maintenance and body development, which is ubiquitously present in mammals and can occur at any time. Besides apoptosis, more novel modalities of PCD have been described recently, such as necroptosis, pyroptosis, ferroptosis, and autophagy-dependent cell death. PCD not only regulates multiple physiological processes, but also participates in the pathogenesis of diverse disorders, including metabolic dysfunction-associated steatotic liver disease (MASLD). MASLD is mainly classified into metabolic dysfunction-associated steatotic liver (MASL) and metabolic dysfunction-associated steatohepatitis (MASH), and the latter putatively progresses to cirrhosis and hepatocellular carcinoma. Owing to increased incidence and obscure etiology of MASH, its management still remains a tremendous challenge. Recently, hepatocyte PCD has been attracted much attention as a potent driver of the pathological progression from MASL to MASH, and some pharmacological agents have been proved to exert their salutary effects on MASH partly via the regulation of the activity of hepatocyte PCD. The current review recapitulates the pathogenesis of different modalities of PCD, clarifies the mechanisms underlying how metabolic disorders in MASLD induce hepatocyte PCD and how hepatocyte PCD contributes to inflammatory and fibrotic progression of MASH, discusses several signaling pathways in hepatocytes governing the execution of PCD, and summarizes some potential pharmacological agents for MASH treatment which exert their therapeutic effects partly via the regulation of hepatocyte PCD. These findings indicate that hepatocyte PCD putatively represents a new therapeutic point of intervention for MASH.
Collapse
Affiliation(s)
- Zilu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Rong Lin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
30
|
Li X, Zhang H, Mao X. Liposomes delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:257-300. [PMID: 39218504 DOI: 10.1016/bs.afnr.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Natural bioactive compounds with antioxidant, antimicrobial, anticancer, and other biological activities are vital for maintaining the body's physiological functions and enhancing immunity. These compounds have great potential as nutritional therapeutic agents, but they can be limited due to their poor flavor, color, unstable nature, and poor water solubility, and degradation by gastrointestinal enzymes. Liposomes, as ideal carriers, can encapsulate both water-soluble and fat-soluble nutrients, enhance the bioavailability of functional substances, promote the biological activity of functional substances, and control the release of nutrients. Despite their potential, liposomes still face obstacles in nutrient delivery. Therefore, the design of liposomes for special needs, optimization of the liposome preparation process, enhancement of liposome encapsulation efficiency, and industrial production are key issues that must be addressed in order to develop food-grade liposomes. Moreover, the research on surface-targeted modification and surface functionalization of liposomes is valuable for expanding the scope of application of liposomes and achieving the release of functional substances from liposomes at the appropriate time and site. The establishment of in vivo and in vitro digestion models of nutrient-loaded liposomes, in-depth study of gastrointestinal digestive behavior after liposome ingestion, targeted nutrient release, and deciphering the nutritional intervention of human diseases and positive health promotion are promising fields with broad development prospects.
Collapse
Affiliation(s)
- Xuehan Li
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, P.R. China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, P.R. China
| | - Haiyang Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, P.R. China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, P.R. China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, P.R. China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, P.R. China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, P.R. China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P.R. China.
| |
Collapse
|
31
|
Thrift AP, Nguyen Wenker TH, Godwin K, Balakrishnan M, Duong HT, Loomba R, Kanwal F, El-Serag HB. An Electronic Health Record Model for Predicting Risk of Hepatic Fibrosis in Primary Care Patients. Dig Dis Sci 2024; 69:2430-2436. [PMID: 38700632 PMCID: PMC11258165 DOI: 10.1007/s10620-024-08437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/26/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND One challenge for primary care providers caring for patients with nonalcoholic fatty liver disease is to identify those at the highest risk for clinically significant liver disease. AIM To derive a risk stratification tool using variables from structured electronic health record (EHR) data for use in populations which are disproportionately affected with obesity and diabetes. METHODS We used data from 344 participants who underwent Fibroscan examination to measure liver fat and liver stiffness measurement [LSM]. Using two approaches, multivariable logistic regression and random forest classification, we assessed risk factors for any hepatic fibrosis (LSM > 7 kPa) and significant hepatic fibrosis (> 8 kPa). Possible predictors included data from the EHR for age, gender, diabetes, hypertension, FIB-4, body mass index (BMI), LDL, HDL, and triglycerides. RESULTS Of 344 patients (56.4% women), 34 had any hepatic fibrosis, and 15 significant hepatic fibrosis. Three variables (BMI, FIB-4, diabetes) were identified from both approaches. When we used variable cut-offs defined by Youden's index, the final model predicting any hepatic fibrosis had an AUC of 0.75 (95% CI 0.67-0.84), NPV of 91.5% and PPV of 40.0%. The final model with variable categories based on standard clinical thresholds (i.e., BMI ≥ 30 kg/m2; FIB-4 ≥ 1.45) had lower discriminatory ability (AUC 0.65), but higher PPV (50.0%) and similar NPV (91.3%). We observed similar findings for predicting significant hepatic fibrosis. CONCLUSIONS Our results demonstrate that standard thresholds for clinical risk factors/biomarkers may need to be modified for greater discriminatory ability among populations with high prevalence of obesity and diabetes.
Collapse
Affiliation(s)
- Aaron P Thrift
- Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Theresa H Nguyen Wenker
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Cambridge Street, Houston, TX, 7200, USA
- Houston VA HSR&D Center for Innovations in Quality, Effectiveness and Safety Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Kyler Godwin
- Houston VA HSR&D Center for Innovations in Quality, Effectiveness and Safety Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Maya Balakrishnan
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Cambridge Street, Houston, TX, 7200, USA
| | - Hao T Duong
- Section of Health Services Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Rohit Loomba
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, San Diego, CA, USA
- NAFLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, CA, USA
| | - Fasiha Kanwal
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Cambridge Street, Houston, TX, 7200, USA
- Houston VA HSR&D Center for Innovations in Quality, Effectiveness and Safety Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Hashem B El-Serag
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Cambridge Street, Houston, TX, 7200, USA.
- Houston VA HSR&D Center for Innovations in Quality, Effectiveness and Safety Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.
| |
Collapse
|
32
|
Amoroso M, Augustin S, Moosmang S, Gashaw I. Non-invasive biomarkers prognostic of decompensation events in NASH cirrhosis: a systematic literature review. J Mol Med (Berl) 2024; 102:841-858. [PMID: 38753041 PMCID: PMC11213726 DOI: 10.1007/s00109-024-02448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/23/2024] [Accepted: 04/17/2024] [Indexed: 06/29/2024]
Abstract
Liver cirrhosis due to nonalcoholic steatohepatitis (NASH) is a life-threatening condition with increasing incidence world-wide. Although its symptoms are unspecific, it can lead to decompensation events such as ascites, hepatic encephalopathy, variceal hemorrhage, and hepatocellular carcinoma (HCC). In addition, an increased risk for cardiovascular events has been demonstrated in patients with NASH. Pharmacological treatments for NASH cirrhosis are not yet available, one of the reasons being the lack in surrogate endpoints available in clinical trials of NASH cirrhosis. The feasibility of non-invasive prognostic biomarkers makes them interesting candidates as possible surrogate endpoints if their change following treatment would result in better outcomes for patients in future clinical trials of NASH cirrhosis. In this systematic literature review, a summary of the available literature on the prognostic performance of non-invasive biomarkers in terms of cardiovascular events, liver-related events, and mortality is outlined. Due to the scarcity of data specific for NASH cirrhosis, this review includes studies on NAFLD whose evaluation focuses on cirrhosis. Our search strategy identified the following non-invasive biomarkers with prognostic value in studies of NASH patients: NAFLD fibrosis score (NFS), Fibrosis-4 (FIB-4), aspartate aminotransferase (AST) to platelet ratio index (APRI), enhanced liver fibrosis (ELF™), BARD (BMI, AST/ALT (alanine aminotransferase) ratio, diabetes), Hepamet Fibrosis Score (HFS), liver enzymes (AST + ALT), alpha-fetoprotein, platelet count, neutrophil to lymphocyte ratio (NLR), Lysyl oxidase-like (LOXL) 2, miR-122, liver stiffness, MEFIB (liver stiffness measured with magnetic resonance elastography (MRE) + FIB-4), and PNPLA3 GG genotype. The aim of the present systematic literature review is to provide the reader with a summary of the non-invasive biomarkers with prognostic value in NASH cirrhosis and give an evaluation of their utility as treatment monitoring biomarkers in future clinical trials.
Collapse
Affiliation(s)
| | | | - Sven Moosmang
- Boehringer Ingelheim Pharma GmbH, Ingelheim, Germany
| | | |
Collapse
|
33
|
Dinić S, Arambašić Jovanović J, Uskoković A, Jovanović A, Grdović N, Rajić J, Đorđević M, Sarić A, Bugarski B, Vidaković M, Mihailović M. Liposome Encapsulation Enhances the Antidiabetic Efficacy of Silibinin. Pharmaceutics 2024; 16:801. [PMID: 38931922 PMCID: PMC11207473 DOI: 10.3390/pharmaceutics16060801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Silibinin has considerable therapeutic potential for the treatment of diabetes through anti-inflammatory, antioxidant, and immunomodulatory properties. However, the therapeutic application of silibinin is quite limited due to its poor bioavailability. In the present study, an attempt was made to improve the antidiabetic efficacy of silibinin by its encapsulation in liposomal vesicles. The liposomes with a high encapsulation efficiency of silibinin (96%) and a zeta potential of -26.2 ± 0.6 mV were developed and studied using nicotinamide/streptozotocin-induced diabetic rats. Administration of silibinin-loaded liposomes to diabetic rats lowered glucose levels, increased insulin levels, and improved pancreatic islet architecture. The anti-inflammatory effect of silibinin-loaded liposomes was demonstrated by a decrease in serum C-reactive protein (CRP) levels and a reduced deposition of collagen fibers in the islets of diabetic rats. Furthermore, silibinin-loaded liposomes were more efficient in lowering glucose, alanine transaminase, triglyceride, and creatinine levels in diabetic rats than pure silibinin. In addition, silibinin-loaded liposomes had a significantly better effect on beta-cell mass and Glut2 glucose receptor distribution in diabetic islets than pure silibinin. The present results clearly show that liposome encapsulation of silibinin enhances its antidiabetic efficacy, which may contribute to the therapeutic benefit of silibinin in the treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Svetlana Dinić
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Jelena Arambašić Jovanović
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Aleksandra Uskoković
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Aleksandra Jovanović
- Institute for the Application of Nuclear Energy INEP, University of Belgrade, 11080 Belgrade, Serbia;
| | - Nevena Grdović
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Jovana Rajić
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Marija Đorđević
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Ana Sarić
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Branko Bugarski
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| | - Mirjana Mihailović
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (J.A.J.); (A.U.); (N.G.); (J.R.); (M.Đ.); (A.S.); (M.V.); (M.M.)
| |
Collapse
|
34
|
Shen X, Yu Z, Wei C, Hu C, Chen J. Iron metabolism and ferroptosis in nonalcoholic fatty liver disease: what is our next step? Am J Physiol Endocrinol Metab 2024; 326:E767-E775. [PMID: 38506752 PMCID: PMC11376490 DOI: 10.1152/ajpendo.00260.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease with increasing prevalence worldwide. NAFLD could develop from simple hepatic steatosis to nonalcoholic steatohepatitis (NASH), NASH-related fibrosis, cirrhosis, and even hepatocellular carcinoma. However, the mechanism of NAFLD development has not yet been fully defined. Recently, emerging evidence shows that the dysregulated iron metabolism marked by elevated serum ferritin, and ferroptosis are involved in the NAFLD. Understanding iron metabolism and ferroptosis can shed light on the mechanisms of NAFLD development. Here, we summarized studies on iron metabolism and the ferroptosis process involved in NAFLD development to highlight potential medications and therapies for treating NAFLD.
Collapse
Affiliation(s)
- Xiang Shen
- Munich Medical Research School, Ludwig Maximilian University of Munich, Munich, Germany
| | - Ziqi Yu
- Munich Medical Research School, Ludwig Maximilian University of Munich, Munich, Germany
| | - Changli Wei
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, People's Republic of China
| | - Chong Hu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, People's Republic of China
| | - Jianyong Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, People's Republic of China
| |
Collapse
|
35
|
Ramachandran G, Pottakkat B. Probiotics-A Promising Novel Therapeutic Approach in the Management of Chronic Liver Diseases. J Med Food 2024; 27:467-476. [PMID: 38574254 DOI: 10.1089/jmf.2023.k.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
An increased incidence of liver diseases has been observed in recent years and is associated with gut dysbiosis, which causes bacterial infection, intestinal permeability, and further leads to disease-related complications. Probiotics, active microbial strains, are gaining more clinical importance due to their beneficial effect in the management of many diseases, including liver diseases. Clinical scenarios show strong evidence that probiotics have efficacy in treating liver diseases due to their ability to improve epithelial barrier function, prevent bacterial translocation, and boost the immune system. Moreover, probiotics survive both bile and gastric acid to reach the gut and exert their health benefit. Evidence shows that probiotics are a promising approach to prevent several complications in clinical practice. Herein, we discuss the recent evidence, challenges, and appropriate use of probiotics in managing advanced liver diseases, which may have an impact on future therapeutic strategies. Furthermore, the superior effect of strain-specific probiotics and their efficacy and safety in managing liver diseases are discussed.
Collapse
Affiliation(s)
- Gokulapriya Ramachandran
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Biju Pottakkat
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
36
|
Reshef N, Gophna U, Reshef L, Konikoff F, Gabay G, Zornitzki T, Knobler H, Maor Y. Prebiotic Treatment in Patients with Nonalcoholic Fatty Liver Disease (NAFLD)-A Randomized Pilot Trial. Nutrients 2024; 16:1571. [PMID: 38892505 PMCID: PMC11174003 DOI: 10.3390/nu16111571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Several studies show that gut microbiotas in patients with nonalcoholic fatty liver disease (NAFLD) differ from those in a healthy population, suggesting that this alteration plays a role in NAFLD pathogenesis. We investigated whether prebiotic administration affects liver fat content and/or liver-related and metabolic parameters. Patients with NAFLD and metabolic syndrome (age: 50 ± 11; 79% men) were randomized to receive either 16 g/day of prebiotic (ITFs-inulin-type fructans) (n = 8) or placebo (maltodextrin) (n = 11) for 12 weeks. Patients were instructed to maintain a stable weight throughout the study. Liver fat content (measured by H1MRS), fecal microbiota, and metabolic, inflammatory, and liver parameters were determined before and after intervention. Fecal samples from patients who received the prebiotic had an increased content of Bifidobacterium (p = 0.025), which was not observed with the placebo. However, the baseline and end-of-study liver fat contents did not change significantly in the prebiotic and placebo groups, neither did the liver function tests' metabolic and inflammatory mediators, including fibroblast growth factor-19 and lipopolysaccharide-binding protein. Body weight remained stable in both groups. These findings suggest that prebiotic treatment without weight reduction is insufficient to improve NAFLD.
Collapse
Affiliation(s)
- Naama Reshef
- Institute of Diabetes and Metabolism-Kaplan Medical Center, Rehovot 7661041, Israel; (T.Z.); (H.K.)
- School of Nutritional Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Jerusalem 9112102, Israel
| | - Uri Gophna
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv 6423906, Israel; (U.G.); (L.R.)
| | - Leah Reshef
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv 6423906, Israel; (U.G.); (L.R.)
| | - Fred Konikoff
- Institute of Gastroenterology and Hepatology-Meir Medical Center, Kefar Sava 4428164, Israel; (F.K.)
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 6423906, Israel
| | - Gila Gabay
- Institute of Gastroenterology and Hepatology-Meir Medical Center, Kefar Sava 4428164, Israel; (F.K.)
| | - Taiba Zornitzki
- Institute of Diabetes and Metabolism-Kaplan Medical Center, Rehovot 7661041, Israel; (T.Z.); (H.K.)
- Hadassah School of Medicine, The Hebrew University, Jerusalem 9112102, Israel;
| | - Hilla Knobler
- Institute of Diabetes and Metabolism-Kaplan Medical Center, Rehovot 7661041, Israel; (T.Z.); (H.K.)
- Hadassah School of Medicine, The Hebrew University, Jerusalem 9112102, Israel;
| | - Yaakov Maor
- Hadassah School of Medicine, The Hebrew University, Jerusalem 9112102, Israel;
- Institute of Gastroenterology and Hepatology-Kaplan Medical Center, Rehovot 7661043, Israel
| |
Collapse
|
37
|
Zhang X, Han XY, Fan H, Guo CN, Li Y, Wang HL, Liu ZQ, Zhang TJ. Potential mediation effect of insulin resistance on the association between iron metabolism indicators and non-alcoholic fatty liver disease. J Dig Dis 2024; 25:285-297. [PMID: 38946678 DOI: 10.1111/1751-2980.13292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/22/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024]
Abstract
OBJECTIVES Iron metabolism and insulin resistance (IR) are closely related to non-alcoholic fatty liver disease (NAFLD). However, the interplay between them on the occurrence and progression of NAFLD is not fully understood. We aimed to disentangle the crosstalk between iron metabolism and IR and explore its impact on NAFLD. METHODS We analyzed data from the National Health and Nutritional Examination Survey (NHANES) 2017-2018 to evaluate the association between serum iron metabolism indicators (ferritin, serum iron, unsaturated iron-binding capacity [UIBC], total iron-binding capacity [TIBC], transferrin saturation, and transferrin receptor) and NAFLD/non-alcoholic steatohepatitis (NASH). Mediation analysis was conducted to explore the role of IR played in these relationship. RESULTS A total of 4812 participants were included, among whom 43.7% were diagnosed with NAFLD and 13.2% were further diagnosed with NASH. After adjusting the covariates, the risk of NAFLD increases with increasing serum ferritin (adjusted odds ratio [aOR] 1.71, 95% confidence interval [CI] 1.37-2.14), UIBC (aOR 1.45, 95% CI 1.17-1.79), and TIBC (aOR 1.36, 95% CI 1.11-1.68). Higher levels of serum ferritin (aOR 3.70, 95% CI 2.25-6.19) and TIBC (aOR 1.69, 95% CI 1.13-2.56) were also positively associated with NASH. Participants with IR were more likely to have NAFLD/NASH. Moreover, IR-mediated efficacy accounted for 85.85% and 64.51% between ferritin and NAFLD and NASH, respectively. CONCLUSION Higher levels of serum ferritin and TIBC are closely associated with the occurrence of NAFLD and NASH. IR may be considered a possible link between NAFLD or NASH and increased serum ferritin levels.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
| | - Xin Yu Han
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
| | - Hong Fan
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
| | - Cheng Nan Guo
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
| | - Yi Li
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
| | - Hai Li Wang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
| | - Zhen Qiu Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu Province, China
| | - Tie Jun Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
- Yiwu Research Institute, Fudan University, Yiwu, Zhejiang Province, China
| |
Collapse
|
38
|
Xu C, Fang T, Qu J, Miao Y, Tian L, Zhang M, Zhuang H, Sun B, Chen L. RASSF4 Attenuates Metabolic Dysfunction-Associated Steatotic Liver Disease Progression via Hippo Signaling and Suppresses Hepatocarcinogenesis. Cell Mol Gastroenterol Hepatol 2024; 18:101348. [PMID: 38697356 PMCID: PMC11217689 DOI: 10.1016/j.jcmgh.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) is a dynamic chronic liver disease closely related to metabolic abnormalities such as diabetes and obesity. MASLD can further progress to metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). However, the mechanisms underlying the progression of MASLD and further progression to liver fibrosis and liver cancer are unknown. METHODS In this study, we performed transcriptome analysis in livers from mice with MASLD and found suppression of a potential anti-oncogene, RAS association domain protein 4 (RASSF4). RASSF4 expression levels were measured in liver or tumor tissues of patients with MASH or HCC, respectively. We established RASSF4 overexpression and knockout mouse models. The effects of RASSF4 were evaluated by quantitative polymerase chain reaction, Western blotting, histopathological analysis, wound healing assays, Transwell assays, EdU incorporation assays, colony formation assays, sorafenib sensitivity assays, and tumorigenesis assays. RESULTS RASSF4 was significantly down-regulated in MASH and HCC samples. Using liver-specific RASSF4 knockout mice, we demonstrated that loss of hepatic RASSF4 exacerbated hepatic steatosis and fibrosis. In contrast, RASSF4 overexpression prevented steatosis in MASLD mice. In addition, RASSF4 in hepatocytes suppressed the activation of hepatic stellate cells (HSCs) by reducing transforming growth factor beta secretion. Moreover, we found that RASSF4 is an independent prognostic factor for HCC. Mechanistically, we found that RASSF4 in the liver interacts with MST1 to inhibit YAP nuclear translocation through the Hippo pathway. CONCLUSIONS These findings establish RASSF4 as a therapeutic target for MASLD and HCC.
Collapse
Affiliation(s)
- Chaofei Xu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Ting Fang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jingru Qu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yahui Miao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Lei Tian
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Man Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Hao Zhuang
- Department of Hepatobiliopancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
39
|
Zhou Q, Hu H, Hu L, Liu S, Chen J, Tong S. Association between processed and unprocessed red meat consumption and risk of nonalcoholic fatty liver disease: A systematic review and dose-response meta-analysis. J Glob Health 2024; 14:04060. [PMID: 38665062 PMCID: PMC11046257 DOI: 10.7189/jogh.14.04060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
Background The nature of the relationship between red meat consumption and nonalcoholic fatty liver disease (NAFLD) remains unclear. Through this meta-analysis, we aimed to determine the association and dose-response relationship between red meat consumption (both processed and unprocessed) and the risk of NAFLD. Methods We systematically searched CENTRAL, PubMed, Embase, Web of Science and Scopus from inception to February 2022 for observational studies in which the exposure of interest was red meat consumption; the outcome of interest was the risk of NAFLD; and where odds ratios (ORs) or risk ratios were provided or could be calculated. We used random-effects meta-analyses to pool the effect sizes and performed analyses to estimate the linearity of the dose-response relationships between red meat intake and NAFLD risk. Results We included 10 studies in this review. The meta-analysis showed a significant association between the intake of red meat (OR = 1.27; 95% confidence interval (CI) = 1.07-1.50, P = 0.000, I2 = 81%), processed red meat (OR = 1.20; 95% CI = 1.04-1.3, P = 0.162, I2 = 34.9%) or unprocessed red meat (OR = 1.28; 95% CI = 1.05-1.55, P = 0.001, I2 = 76.2%) and the risk of NAFLD. We also found a significant linear dose-response association between processed red meat intake and NAFLD, with each 25-g increment of processed red meat intake per day was associated with an 11.1% higher risk of NAFLD (OR = 1.11; 95% CI = 1.01-1.22, P = 0.029), and a nonlinear association between unprocessed meat intake and NAFLD (P = 0.003 for nonlinearity). Conclusions Our findings indicate a potential positive association between red meat consumption (both processed and unprocessed) and NAFLD risk, especially in relation to increased intake of processed red meat compared to unprocessed red meat. However, caution is advised in interpreting these results; further research could establish a clearer understanding of the relationship between red meat consumption and NAFLD risk. Registration PROSPERO: CRD42022332839.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Clinical Nutrition, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huaidong Hu
- Department of Endocrinology and Metabolism, Chongqing General Hospital, Chongqing, China
| | - Lina Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuaibin Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Chen
- Department of Evidence-based Medicine and Clinical Epidemiology, West China Medical School of Medicine/West China Hospital, Sichuan University, Chengdu, China
| | - Shiwen Tong
- Department of Clinical Nutrition, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
40
|
Allen AM, Charlton M, Cusi K, Harrison SA, Kowdley KV, Noureddin M, Shubrook JH. Guideline-based management of metabolic dysfunction-associated steatotic liver disease in the primary care setting. Postgrad Med 2024; 136:229-245. [PMID: 38465573 DOI: 10.1080/00325481.2024.2325332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/26/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing worldwide. Primary care providers play a critical role in the screening, diagnosis, and management of MASLD and/or metabolic dysfunction-associated steatohepatitis (MASH), though they can face challenges in this setting, particularly where healthcare resources are limited and barriers to care exist. To address these challenges, several guidelines have been developed to provide evidence-based recommendations for the clinical assessment and management of patients with MASLD/MASH. AIMS To provide a unified, simple-to-understand, practical guide for MASLD screening, diagnosis, and management based on current guideline recommendations, for use by primary care providers in daily practice. METHODS Evidence-based recommendations from several international guidelines were summarized, focusing on the similarities and differences between them. RESULTS Recommendations are broadly aligned across the guidelines, but several key differences are evident. Practical guidance is provided on screening, identifying target populations for risk stratification, initial evaluation of individuals with suspected MASLD, surveillance, risk stratification and referral, as well as approaches to the management of MASLD and associated comorbidities, with specific considerations for the primary care setting. CONCLUSIONS Primary care providers are ideally placed to identify at-risk individuals, implement evidence-based interventions to prevent the development of fibrosis and cirrhosis, and effectively manage comorbidities. Equipping primary care providers with the necessary knowledge and tools to effectively manage MASLD/MASH may help to improve patient outcomes and reduce the burden of liver disease.
Collapse
Affiliation(s)
- Alina M Allen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Michael Charlton
- Transplantation Institute, University of Chicago Medicine, Chicago, IL, USA
| | - Kenneth Cusi
- Division of Endocrinology, University of Florida, Gainesville, FL, USA
| | | | - Kris V Kowdley
- Liver Institute Northwest and Elson S. Floyd College of Medicine, Washington State University, Seattle, WA, USA
| | - Mazen Noureddin
- Houston Research Institute and Houston Liver Institute, Houston, TX, USA
| | - Jay H Shubrook
- Department of Clinical Sciences and Community Health, Touro University California, Vallejo, CA, USA
| |
Collapse
|
41
|
Chen YF, Fan ZK, Wang YP, Liu P, Guo XF, Li D. Docosahexaenoic Acid Modulates Nonalcoholic Fatty Liver Disease by Suppressing Endocannabinoid System. Mol Nutr Food Res 2024; 68:e2300616. [PMID: 38430210 DOI: 10.1002/mnfr.202300616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/29/2023] [Indexed: 03/03/2024]
Abstract
SCOPE Endocannabinoid signaling regulates energy homeostasis, and is tightly associated with nonalcoholic fatty liver disease (NAFLD). The study previously finds that supplementation of docosahexaenoic acid (DHA) has superior function to ameliorate NAFLD compared with eicosapentaenoic acid (EPA), however, the underlying mechanism remains elusive. The present study aims to investigate whether DHA intervention alleviates NAFLD via endocannabinoid system. METHODS AND RESULTS In a case-control study, the serum endocannabinoid ligands in 60 NAFLD and 60 healthy subjects are measured. Meanwhile, NAFLD model is established in mice fed a high-fat and -cholesterol diet (HFD) for 9 weeks. DHA or EPA is administrated for additional 9 weeks. Serum primary endocannabinoid ligands, namely anandamide (AEA) and 2-arachidoniylglycerol (2-AG), are significantly higher in individuals with NAFLD compared with healthy controls. NAFLD model shows that serum 2-AG concentrations and adipocyte cannabinoid receptor 1 expression levels are significantly lower in DHA group compared with HFD group. Lipidomic and targeted ceramide analyses further confirm that endocannabinoid signaling inhibition has exerted deletion of hepatic C16:0-ceramide contents, resulting in down-regulation of de novo fatty acid synthesis and up-regulation of fatty acid β-oxidation related protein expression levels. CONCLUSIONS This work elucidates that DHA has improved NAFLD by suppressing endocannabinoid system.
Collapse
Affiliation(s)
- Yan-Fang Chen
- Institute of Nutrition & Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Ze-Kai Fan
- Institute of Nutrition & Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Yin-Peng Wang
- Institute of Nutrition & Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Peng Liu
- Institute of Nutrition & Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Xiao-Fei Guo
- Institute of Nutrition & Health, Qingdao University, Qingdao, 266071, China
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Duo Li
- Institute of Nutrition & Health, Qingdao University, Qingdao, 266071, China
- Qingdao University Function Center of Medical Nutrition, Qingdao, 266071, China
| |
Collapse
|
42
|
Liu Y, Qin X, Chen T, Chen M, Wu L, He B. Exploring the interactions between metabolic dysfunction-associated fatty liver disease and micronutrients: from molecular mechanisms to clinical applications. Front Nutr 2024; 11:1344924. [PMID: 38549744 PMCID: PMC10973017 DOI: 10.3389/fnut.2024.1344924] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/05/2024] [Indexed: 01/06/2025] Open
Abstract
Metabolic (dysfunction)-associated fatty liver disease (MAFLD) has emerged as a significant global health concern, representing a major cause of liver disease worldwide. This condition spans a spectrum of histopathologic stages, beginning with simple fatty liver (MAFL), characterized by over 5% fat accumulation, and advancing to metabolic (dysfunction)-associated steatohepatitis, potentially leading to hepatocellular carcinoma. Despite extensive research, there remains a substantial gap in effective therapeutic interventions. This condition's progression is closely tied to micronutrient levels, crucial for biological functions like antioxidant activities and immune efficiency. The levels of these micronutrients exhibit considerable variability among individuals with MAFLD. Moreover, the extent of deficiency in these nutrients can vary significantly throughout the different stages of MAFLD, with disease progression potentially exacerbating these deficiencies. This review focuses on the role of micronutrients, particularly vitamins A, D, E, and minerals like iron, copper, selenium, and zinc, in MAFLD's pathophysiology. It highlights how alterations in the homeostasis of these micronutrients are intricately linked to the pathophysiological processes of MAFLD. Concurrently, this review endeavors to harness the existing evidence to propose novel therapeutic strategies targeting these vitamins and minerals in MAFLD management and offers new insights into disease mechanisms and treatment opportunities in MAFLD.
Collapse
Affiliation(s)
- Yuan Liu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiang Qin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Tianzhu Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Mengyao Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Liyan Wu
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
43
|
Li J, Ni Y, Zhang Y, Liu H. GBA3 promotes fatty acid oxidation and alleviates non-alcoholic fatty liver by increasing CPT2 transcription. Aging (Albany NY) 2024; 16:4591-4608. [PMID: 38428407 PMCID: PMC10968678 DOI: 10.18632/aging.205616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/23/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Excessive lipids accumulation and hepatocytes death are prominent characteristics of non-alcoholic fatty liver disease (NAFLD). Nonetheless, the precise pathophysiological mechanisms are not fully elucidated. METHODS HepG2 cells stimulated with palmitic acids and rats fed with high-fat diet were used as models for NAFLD. The impact of Glucosylceramidase Beta 3 (GBA3) on fatty acid oxidation (FAO) was assessed using Seahorse metabolic analyzer. Lipid content was measured both in vitro and in vivo. To evaluate NAFLD progression, histological analysis was performed along with measurements of inflammatory factors and liver enzyme levels. Western blot and immunohistochemistry were employed to examine the activity levels of necroptosis. Flow cytometry and reactive oxygen species (ROS) staining were utilized to assess levels of oxidative stress. RESULTS GBA3 promoted FAO and enhanced the mitochondrial membrane potential without affecting glycolysis. These reduced the lipid accumulation. Rats supplemented with GBA3 exhibited lower levels of inflammatory factors and liver enzymes, resulting in a slower progression of NAFLD. GBA3 overexpression reduced ROS and the ratio of cell apoptosis. Phosphorylation level was reduced in the essential mediator, MLKL, implicated in necroptosis. Mechanistically, as a transcriptional coactivator, GBA3 promoted the expression of Carnitine Palmitoyltransferase 2 (CPT2), which resulted in enhanced FAO. CONCLUSIONS Increased FAO resulting from GBA3 reduced oxidative stress and the production of ROS, thereby inhibiting necroptosis and delaying the progression of NAFLD. Our research offers novel insights into the potential therapeutic applications of GBA3 and FAO in the management and treatment of NAFLD.
Collapse
Affiliation(s)
- Juyi Li
- Department of Endocrinology, Geriatrics Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230001, Anhui, China
| | - Yingqun Ni
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230001, Anhui, China
| | - Yuanyuan Zhang
- Department of Endocrinology, Geriatrics Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230001, Anhui, China
| | - Huaizhen Liu
- Department of Endocrinology, Geriatrics Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230001, Anhui, China
| |
Collapse
|
44
|
Ding Y, Yanagi K, Yang F, Callaway E, Cheng C, Hensel ME, Menon R, Alaniz RC, Lee K, Jayaraman A. Oral supplementation of gut microbial metabolite indole-3-acetate alleviates diet-induced steatosis and inflammation in mice. eLife 2024; 12:RP87458. [PMID: 38412016 PMCID: PMC10942630 DOI: 10.7554/elife.87458] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries. There is growing evidence that dysbiosis of the intestinal microbiota and disruption of microbiota-host interactions contribute to the pathology of NAFLD. We previously demonstrated that gut microbiota-derived tryptophan metabolite indole-3-acetate (I3A) was decreased in both cecum and liver of high-fat diet-fed mice and attenuated the expression of inflammatory cytokines in macrophages and Tnfa and fatty acid-induced inflammatory responses in an aryl-hydrocarbon receptor (AhR)-dependent manner in hepatocytes. In this study, we investigated the effect of orally administered I3A in a mouse model of diet-induced NAFLD. Western diet (WD)-fed mice given sugar water (SW) with I3A showed dramatically decreased serum ALT, hepatic triglycerides (TG), liver steatosis, hepatocyte ballooning, lobular inflammation, and hepatic production of inflammatory cytokines, compared to WD-fed mice given only SW. Metagenomic analysis show that I3A administration did not significantly modify the intestinal microbiome, suggesting that I3A's beneficial effects likely reflect the metabolite's direct actions on the liver. Administration of I3A partially reversed WD-induced alterations of liver metabolome and proteome, notably, decreasing expression of several enzymes in hepatic lipogenesis and β-oxidation. Mechanistically, we also show that AMP-activated protein kinase (AMPK) mediates the anti-inflammatory effects of I3A in macrophages. The potency of I3A in alleviating liver steatosis and inflammation clearly demonstrates its potential as a therapeutic modality for preventing the progression of steatosis to non-alcoholic steatohepatitis (NASH).
Collapse
Affiliation(s)
- Yufang Ding
- Artie McFerrin Department of Chemical Engineering, Texas A&M UniversityCollege StationUnited States
| | - Karin Yanagi
- Department of Chemical and Biological Engineering, Tufts UniversityMedfordUnited States
| | - Fang Yang
- Artie McFerrin Department of Chemical Engineering, Texas A&M UniversityCollege StationUnited States
| | - Evelyn Callaway
- Artie McFerrin Department of Chemical Engineering, Texas A&M UniversityCollege StationUnited States
| | - Clint Cheng
- Artie McFerrin Department of Chemical Engineering, Texas A&M UniversityCollege StationUnited States
| | - Martha E Hensel
- Department of Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M UniversityCollege StationUnited States
| | - Rani Menon
- Artie McFerrin Department of Chemical Engineering, Texas A&M UniversityCollege StationUnited States
| | - Robert C Alaniz
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas Health Science Center, Texas A&M UniversityBryanUnited States
| | - Kyongbum Lee
- Department of Chemical and Biological Engineering, Tufts UniversityMedfordUnited States
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering, Texas A&M UniversityCollege StationUnited States
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas Health Science Center, Texas A&M UniversityBryanUnited States
| |
Collapse
|
45
|
Cernea S. NAFLD Fibrosis Progression and Type 2 Diabetes: The Hepatic-Metabolic Interplay. Life (Basel) 2024; 14:272. [PMID: 38398781 PMCID: PMC10890557 DOI: 10.3390/life14020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
The bidirectional relationship between type 2 diabetes and (non-alcoholic fatty liver disease) NAFLD is indicated by the higher prevalence and worse disease course of one condition in the presence of the other, but also by apparent beneficial effects observed in one, when the other is improved. This is partly explained by their belonging to a multisystemic disease that includes components of the metabolic syndrome and shared pathogenetic mechanisms. Throughout the progression of NAFLD to more advanced stages, complex systemic and local metabolic derangements are involved. During fibrogenesis, a significant metabolic reprogramming occurs in the hepatic stellate cells, hepatocytes, and immune cells, engaging carbohydrate and lipid pathways to support the high-energy-requiring processes. The natural history of NAFLD evolves in a variable and dynamic manner, probably due to the interaction of a variable number of modifiable (diet, physical exercise, microbiota composition, etc.) and non-modifiable (genetics, age, ethnicity, etc.) risk factors that may intervene concomitantly, or subsequently/intermittently in time. This may influence the risk (and rate) of fibrosis progression/regression. The recognition and control of the factors that determine a rapid progression of fibrosis (or its regression) are critical, as the fibrosis stages are associated with the risk of liver-related and all-cause mortality.
Collapse
Affiliation(s)
- Simona Cernea
- Department M3, Internal Medicine I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540142 Târgu Mureş, Romania; or
- Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, 540136 Târgu Mureş, Romania
| |
Collapse
|
46
|
Lee S, Shaheen AA, Campbell DJT, Naugler C, Jiang J, Walker RL, Quan H, Lee J. Evaluating the coding accuracy of type 2 diabetes mellitus among patients with non-alcoholic fatty liver disease. BMC Health Serv Res 2024; 24:218. [PMID: 38365631 PMCID: PMC10874028 DOI: 10.1186/s12913-024-10634-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 01/24/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) describes a spectrum of chronic fattening of liver that can lead to fibrosis and cirrhosis. Diabetes has been identified as a major comorbidity that contributes to NAFLD progression. Health systems around the world make use of administrative data to conduct population-based prevalence studies. To that end, we sought to assess the accuracy of diabetes International Classification of Diseases (ICD) coding in administrative databases among a cohort of confirmed NAFLD patients in Calgary, Alberta, Canada. METHODS The Calgary NAFLD Pathway Database was linked to the following databases: Physician Claims, Discharge Abstract Database, National Ambulatory Care Reporting System, Pharmaceutical Information Network database, Laboratory, and Electronic Medical Records. Hemoglobin A1c and diabetes medication details were used to classify diabetes groups into absent, prediabetes, meeting glycemic targets, and not meeting glycemic targets. The performance of ICD codes among these groups was compared to this standard. Within each group, the total numbers of true positives, false positives, false negatives, and true negatives were calculated. Descriptive statistics and bivariate analysis were conducted on identified covariates, including demographics and types of interacted physicians. RESULTS A total of 12,012 NAFLD patients were registered through the Calgary NAFLD Pathway Database and 100% were successfully linked to the administrative databases. Overall, diabetes coding showed a sensitivity of 0.81 and a positive predictive value of 0.87. False negative rates in the absent and not meeting glycemic control groups were 4.5% and 6.4%, respectively, whereas the meeting glycemic control group had a 42.2% coding error. Visits to primary and outpatient services were associated with most encounters. CONCLUSION Diabetes ICD coding in administrative databases can accurately detect true diabetic cases. However, patients with diabetes who meets glycemic control targets are less likely to be coded in administrative databases. A detailed understanding of the clinical context will require additional data linkage from primary care settings.
Collapse
Affiliation(s)
- Seungwon Lee
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada.
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Alberta Health Services, Calgary, AB, Canada.
- Data Intelligence for Health Lab, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Abdel Aziz Shaheen
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - David J T Campbell
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christopher Naugler
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jason Jiang
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
| | - Robin L Walker
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Hude Quan
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Joon Lee
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Data Intelligence for Health Lab, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
47
|
Campos-Espinosa A, Guzmán C, Medina-Ávila KZ, Gutierrez-Reyes G. In Vitro Lipid Overload Affects Cellular Proliferation, Apoptosis, and Senescence in a Time-Dependent Manner in HepG2 Hepatocytes and LX-2 Hepatic Stellate Cells. Cells 2024; 13:282. [PMID: 38334674 PMCID: PMC10854820 DOI: 10.3390/cells13030282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
Different cellular mechanisms influence steatotic liver disease (SLD) progression. The influence of different levels of steatogenic inputs has not been studied in hepatocytes and hepatic stellate cells (HSCs). METHODS HepG2 hepatocytes and LX-2 HSCs were cultured in mild (MS) and severe (SS) steatogenic conditions. TGF-β stimulation was also tested for HSCs in control (T) and steatogenic conditions (MS-T and SS-T). Steatosis was stained with Oil Red, and the proliferation was assayed via WST-8 reduction, apoptosis via flow cytometry, and senescence via SA-β-galactosidase activity. RESULTS Regarding hepatocytes, steatosis progressively increased; proliferation was lower in MS and SS; and the viability of both conditions significantly decreased at 72 h. Apoptosis increased in MS at 72 h, while it decreased in SS. Senescence increased in MS and diminished in SS. Regarding HSCs, the SS and SS-T groups showed no proliferation, and the viability was reduced in MS at 72 h and in SS and SS-T. The LX-2 cells showed increased apoptosis in SS and SS-T at 24 h, and in MS and MS-T at 72 h. Senescence decreased in MS, SS, and SS-T. CONCLUSIONS Lipid overload induces differential effects depending on the cell type, the steatogenic input level, and the exposure time. Hepatocytes are resilient to mild steatosis but susceptible to high lipotoxicity. HSCs are sensitive to lipid overload, undergoing apoptosis and lowering senescence and proliferation. Collectively, these data may help explain the development of steatosis and fibrosis in SLD.
Collapse
Affiliation(s)
| | | | | | - Gabriela Gutierrez-Reyes
- Laboratorio de Hígado, Páncreas y Motilidad, Unidad de Medicina Experimental, Facultad de Medicina, UNAM, Hospital General de México “Dr. Eduardo Liceaga”, Ciudad de México 06720, Mexico; (A.C.-E.); (C.G.); (K.Z.M.-Á.)
| |
Collapse
|
48
|
Kannan S, Nelliyanil M, Mendagudli R, Rajeshwari S, Kona C, Kundapur R, Sathyanath S, Kulkarni V, Aggarwal S. Evaluation of risk factors for non-alcoholic fatty liver disease in India: A systematic review and meta-analysis. JOURNAL OF EDUCATION AND HEALTH PROMOTION 2024; 12:435. [PMID: 38464628 PMCID: PMC10920698 DOI: 10.4103/jehp.jehp_208_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/23/2023] [Indexed: 03/12/2024]
Abstract
INTRODUCTION NAFLD is emerging as an important cause of liver disease in India. It is estimated that 16-32% of general population in India (nearly 120 million) has NAFLD. OBJECTIVE This study aimed to identify the risk factors of NAFLD and to identify the association of lifestyle (dietary and physical activity), genetic, and environmental factors with NAFLD in India. MATERIALS AND METHODS A systematic literature search was conducted using an international electronic database: PubMed (MEDLINE) and Google Scholar from the date of inception 31st March 2021 to 28th September 2021. We included studies examining patients with NAFLD: Adults above 18 years of age. Studies with or without a control population were both eligible. The studies with a diagnosis of NAFLD based solely on abnormal liver tests were excluded. We tried to get unpublished data but they were not of the quality of inclusion. Meta-analysis was performed using the software STATA 14.2 (StataCorp, College Station, TX, USA). For each of the studies, the standard error was calculated using the reported number of outcomes and the sample size. A forest plot was used to graphically represent the study-specific and pooled prevalence estimates for overall and subgroup analysis. RESULTS In a systematic review and meta-analysis of 8 studies including data from over 1800 individuals, we found that among components of lipid profile, LDL and HDL had a negative effects on NAFLD while triglycerides had a positive effect on NAFLD. CONCLUSION Type 2 Diabetes Mellitus, Hypertension, and Obesity were the potential risk factors for NAFLD but the evidence generated was only from single studies.
Collapse
Affiliation(s)
- Suthanthira Kannan
- Department of Community Medicine, ESIC Medical College, Chennai, Tamil Nadu, India
| | - Maria Nelliyanil
- Department of Community Medicine, AJ Institute of Medical Sciences and Research Center, Mangalore, Karnataka, India
| | - Roopa Mendagudli
- Department of Community Medicine, MR Medical College, Kalaburgai, Karnataka, India
| | - Swetha Rajeshwari
- Department of Community Medicine, ESIC Medical College, Sanathnagar, Hyderabad, Telangana, India
| | - Chandralekha Kona
- Department of Community Medicine and Family Medicine, AIIMS Bibinagar, Hyderabad, Telangana, India
| | - Rashmi Kundapur
- Department of Community Medicine and Family Medicine, AIIMS Bibinagar, Hyderabad, Telangana, India
| | - Shreyaswi Sathyanath
- Department of Community Medicine, AJ Institute of Medical Sciences and Research Center, Mangalore, Karnataka, India
| | - Vaman Kulkarni
- Department of Community Medicine and Family Medicine, AIIMS Bibinagar, Hyderabad, Telangana, India
| | - Sumit Aggarwal
- Scientist and Program Officer, ICMR, Headquarters, New Delhi, India
| |
Collapse
|
49
|
Mai Y, Meng L, Deng G, Qin Y. The Role of Type 2 Diabetes Mellitus-Related Risk Factors and Drugs in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:159-171. [PMID: 38268569 PMCID: PMC10806369 DOI: 10.2147/jhc.s441672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
With changes in modern lifestyles, type 2 diabetes mellitus (T2DM) has become a global epidemic metabolic disease, and hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. T2DM is a complex metabolic disorder and has been considered an independent risk factor for HCC. Growing evidence supports that T2DM-related risk factors facilitate hepatocarcinogenesis via abundant mechanisms. With the wide implementation of microbiomics, transcriptomics, and immunotherapy, the understanding of the complex mechanisms of intestinal flora and immune cell subsets have advanced tremendously in T2DM-related HCC, uncovering new findings in T2DM-related HCC patients. In addition, reports have indicated the different effects of anti-DM drugs on the progression of HCC. In this review, we summarize the effects of major T2DM-related risk factors (including hyperglycemia, hyperinsulinemia, insulin, chronic inflammation, obesity, nonalcoholic fatty liver disease, gut microbiota and immunomodulation), and anti-DM drugs on the carcinogensis and progression of HCC, as well as their potential molecular mechanisms. In addition, other factors (miRNAs, genes, and lifestyle) related to T2DM-related HCC are discussed. We propose a refined concept by which T2DM-related risk factors and anti-DM drugs contribute to HCC and discuss research directions prompted by such evidence worth pursuing in the coming years. Finally, we put forward novel therapeutic approaches to improve the prognosis of T2DM-related HCC, including exploiting novel diagnostic biomarkers, combination therapy with immunocheckpoint inhibitors, and enhancement of the standardized management of T2DM patients.
Collapse
Affiliation(s)
- Yuhua Mai
- Department of Endocrinology, The First Affiliated Hospital of GuangXi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, People’s Republic of China
| | - Liheng Meng
- Department of Endocrinology, The First Affiliated Hospital of GuangXi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Ganlu Deng
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, People’s Republic of China
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Yingfen Qin
- Department of Endocrinology, The First Affiliated Hospital of GuangXi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
50
|
Kuraji R, Ye C, Zhao C, Gao L, Martinez A, Miyashita Y, Radaic A, Kamarajan P, Le C, Zhan L, Range H, Sunohara M, Numabe Y, Kapila YL. Nisin lantibiotic prevents NAFLD liver steatosis and mitochondrial oxidative stress following periodontal disease by abrogating oral, gut and liver dysbiosis. NPJ Biofilms Microbiomes 2024; 10:3. [PMID: 38233485 PMCID: PMC10794237 DOI: 10.1038/s41522-024-00476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Oral microbiome dysbiosis mediates chronic periodontal disease, gut microbial dysbiosis, and mucosal barrier disfunction that leads to steatohepatitis via the enterohepatic circulation. Improving this dysbiosis towards health may improve liver disease. Treatment with antibiotics and probiotics have been used to modulate the microbial, immunological, and clinical landscape of periodontal disease with some success. The aim of the present investigation was to evaluate the potential for nisin, an antimicrobial peptide produced by Lactococcus lactis, to counteract the periodontitis-associated gut dysbiosis and to modulate the glycolipid-metabolism and inflammation in the liver. Periodontal pathogens, namely Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia and Fusobacterium nucleatum, were administrated topically onto the oral cavity to establish polymicrobial periodontal disease in mice. In the context of disease, nisin treatment significantly shifted the microbiome towards a new composition, commensurate with health while preventing the harmful inflammation in the small intestine concomitant with decreased villi structural integrity, and heightened hepatic exposure to bacteria and lipid and malondialdehyde accumulation in the liver. Validation with RNA Seq analyses, confirmed the significant infection-related alteration of several genes involved in mitochondrial dysregulation, oxidative phosphorylation, and metal/iron binding and their restitution following nisin treatment. In support of these in vivo findings indicating that periodontopathogens induce gastrointestinal and liver distant organ lesions, human autopsy specimens demonstrated a correlation between tooth loss and severity of liver disease. Nisin's ability to shift the gut and liver microbiome towards a new state commensurate with health while mitigating enteritis, represents a novel approach to treating NAFLD-steatohepatitis-associated periodontal disease.
Collapse
Affiliation(s)
- Ryutaro Kuraji
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Changchang Ye
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chuanjiang Zhao
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Li Gao
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - April Martinez
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
| | - Yukihiro Miyashita
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Allan Radaic
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Pachiyappan Kamarajan
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Charles Le
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
| | - Ling Zhan
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
| | - Helene Range
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Periodontology, University of Rennes, UFR of Odontology; Service d'Odontologie, CHU de Rennes, Rennes, France
- INSERM CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer); CIC 1414, Rennes, France
| | - Masataka Sunohara
- Department of Anatomy, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Yukihiro Numabe
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Yvonne L Kapila
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA.
- Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|