1
|
Hegyi P, Maléth J, Walters JR, Hofmann AF, Keely SJ. Guts and Gall: Bile Acids in Regulation of Intestinal Epithelial Function in Health and Disease. Physiol Rev 2019; 98:1983-2023. [PMID: 30067158 DOI: 10.1152/physrev.00054.2017] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial cells line the entire surface of the gastrointestinal tract and its accessory organs where they primarily function in transporting digestive enzymes, nutrients, electrolytes, and fluid to and from the luminal contents. At the same time, epithelial cells are responsible for forming a physical and biochemical barrier that prevents the entry into the body of harmful agents, such as bacteria and their toxins. Dysregulation of epithelial transport and barrier function is associated with the pathogenesis of a number of conditions throughout the intestine, such as inflammatory bowel disease, chronic diarrhea, pancreatitis, reflux esophagitis, and cancer. Driven by discovery of specific receptors on intestinal epithelial cells, new insights into mechanisms that control their synthesis and enterohepatic circulation, and a growing appreciation of their roles as bioactive bacterial metabolites, bile acids are currently receiving a great deal of interest as critical regulators of epithelial function in health and disease. This review aims to summarize recent advances in this field and to highlight how bile acids are now emerging as exciting new targets for disease intervention.
Collapse
Affiliation(s)
- Peter Hegyi
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Joszef Maléth
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Julian R Walters
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Alan F Hofmann
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| | - Stephen J Keely
- Momentum Translational Gastroenterology Research Group, Hungarian Academy of Sciences-University of Szeged , Szeged , Hungary ; Institute for Translational Medicine, Medical School, University of Pécs , Pécs , Hungary ; Momentum Epithelial Cell Signalling and Secretion Research Group and First Department of Medicine, University of Szeged , Szeged , Hungary ; Division of Digestive Diseases, Department of Gastroenterology, Hammersmith Hospital, Imperial College London , London , United Kingdom ; Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California ; and Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital , Dublin , Ireland
| |
Collapse
|
2
|
Kusaka G, Uno K, Iijima K, Shimosegawa T. Role of nitric oxide in the pathogenesis of Barrett’s-associated carcinogenesis. World J Gastrointest Pathophysiol 2016; 7:131-137. [PMID: 26909236 PMCID: PMC4753179 DOI: 10.4291/wjgp.v7.i1.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/01/2015] [Accepted: 11/11/2015] [Indexed: 02/06/2023] Open
Abstract
Barrett’s esophagus (BE), a premalignant condition to Barrett’s adenocarcinoma (BAC), is closely associated with chronic inflammation due to gastro-esophageal reflux. Caudal type homeobox 2 (CDX2), a representative marker of BE, is increased during the metaplastic and neoplastic transformation of BE. Nitric oxide (NO) has been proposed to be a crucial mediator of Barrett’s carcinogenesis. We previously demonstrated that CDX2 might be induced directly under stimulation of large amounts of NO generated around the gastro-esophageal junction (GEJ) by activating epithelial growth factor receptor in a ligand-independent manner. Thus, we reviewed recent developments on the role of NO in Barrett’s carcinogenesis. Notably, recent studies have reported that microbial communities in the distal esophagus are significantly different among groups with a normal esophagus, reflux esophagitis, BE or BAC, despite there being no difference in the bacterial quantity. Considering that microorganism components can be one of the major sources of large amounts of NO, these studies suggest that the bacterial composition in the distal esophagus might play an important role in regulating NO production during the carcinogenic process. Controlling an inflammatory reaction due to gastro-esophageal reflux or bacterial composition around the GEJ might help prevent the progression of Barrett’s carcinogenesis by inhibiting NO production.
Collapse
|
3
|
Iijima K, Shimosegawa T. Involvement of luminal nitric oxide in the pathogenesis of the gastroesophageal reflux disease spectrum. J Gastroenterol Hepatol 2014; 29:898-905. [PMID: 24863184 DOI: 10.1111/jgh.12548] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2014] [Indexed: 12/16/2022]
Abstract
Over the last 3 decades, the incidence of esophageal adenocarcinoma has dramatically increased in Western countries; a similar increase may be observed in Asian countries in the near future. Esophageal adenocarcinoma arises from a sequential gastroesophageal reflux disease (GERD) spectrum from reflux erosive esophagitis, to Barrett's esophagus, and finally to esophageal adenocarcinoma. At present, gastric acid and bile are assumed to be primarily involved in the etiology of the GERD spectrum. We reported in 2002 that, at the gastroesophageal junction in humans, abundant amounts of nitric oxide (NO) are generated luminally through the entero-salivary re-circulation of dietary nitrate. Since then, we have carried out a series of experiments to demonstrate that NO diffuses into the adjacent epithelium at cytotoxic levels. This diffusion results in disruption of the epithelial barrier function, exacerbation of inflammation, acceleration of columnar transformation in the esophagus (Barrett's esophagus) via the induction of caudal-type homeobox 2, and the shifting of carcinogenic N-nitroso compound formation from the luminal to epithelial compartment. These results suggest that, in addition to conventionally recognized causative factors, luminal NO could also be involved in the pathogenesis of the GERD spectrum. In addition, we recently showed that there is a prominent gender-related difference in NO-related cytotoxicity in the esophagus and that estrogen attenuated the esophageal tissue damage via the estrogen receptor in female rats. The role of estrogen in attenuating the esophageal tissue damage in NO-related esophageal damage could explain the well-recognized male predominance in the GERD spectrum in humans.
Collapse
Affiliation(s)
- Katsunori Iijima
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | |
Collapse
|
5
|
De Maria S, Scognamiglio I, Lombardi A, Amodio N, Caraglia M, Cartenì M, Ravagnan G, Stiuso P. Polydatin, a natural precursor of resveratrol, induces cell cycle arrest and differentiation of human colorectal Caco-2 cell. J Transl Med 2013; 11:264. [PMID: 24138806 PMCID: PMC3854516 DOI: 10.1186/1479-5876-11-264] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/08/2013] [Indexed: 02/08/2023] Open
Abstract
Background Human colon adenocarcinoma cells are resistant to chemotherapeutic agents, such as anthracyclines, that induce death by increasing the reactive oxygen species. A number of studies have been focused on chemo-preventive use of resveratrol as antioxidant against cardiovascular diseases, aging and cancer. While resveratrol cytotoxic action was due to its pro-oxidant properties. In this study, we investigate whether the Resveratrol (trans-3,5,49-trihydroxystilbene) and its natural precursor Polydatin (resveratrol-3-O-b-mono- D-glucoside, the glycoside form of resveratrol) combination, might have a cooperative antitumor effect on either growing or differentiated human adenocarcinoma colon cancer cells. Methods The polydatin and resveratrol pharmacological interaction was evaluated in vitro on growing and differentiated Caco-2 cell lines by median drug effect analysis calculating a combination index with CalcuSyn software. We have selected a synergistic combination and we have evaluated its effect on the biological and molecular mechanisms of cell death. Results Simultaneous exposure to polydatin and resveratrol produced synergistic antiproliferative effects compared with single compound treatment. We demonstrated that polydatin alone or in combination with resveratrol at 3:1 molar ratio synergistically modulated oxidative stress, cell cycle, differentiation and apoptosis. Worthy of note treatment with polydatin induced a nuclear localization and decreased expression of heat shock protein 27, and vimentin redistributed within the cell. Conclusions From morphological, and biochemical outcome we obtained evidences that polydatin induced a transition from a proliferative morphology to cell-specific differentiated structures and caused human CaCo-2 cell death by induction of apoptosis. Our data suggest the potential use of polydatin in combination chemotherapy for human colon cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Paola Stiuso
- Department of Biochemistry, Biophisics and General Pathology, Second University of Naples, Naples, Italy.
| |
Collapse
|