1
|
Jacobo-Delgado YM, Rodríguez-Carlos A, Santos-Mena A, González-Muñiz ÓE, Félix-Arellano C, Navarro-Tovar G, Rivas-Santiago B. A new target for drug repositioning: CEBPα elicits LL-37 expression in a vitamin D-independent manner promoting Mtb clearance. Microb Pathog 2025; 205:107586. [PMID: 40252936 DOI: 10.1016/j.micpath.2025.107586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/27/2025] [Accepted: 04/12/2025] [Indexed: 04/21/2025]
Abstract
Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb) and is a growing public health problem worldwide. Within the innate immune response, we highlight the secretion of the antimicrobial peptide LL-37, which is crucial for Mtb elimination in infected cells. Previous reports have shown that CEBPα activation induces LL-37 independently of its main inducer, vitamin D, under endoplasmic reticulum (ER) stress. In this study, we report that infection with Mtb causes ER stress in pulmonary epithelial cells and macrophages. The stress induces the activation of CEBPα, which in turn promotes the LL-37 expression. Furthermore, the participation of CEBPα is necessary for the correct clearance of Mtb in an in vitro infection model. We identify candidate drugs (mycophenolic acid, indapamide, and glibenclamide) capable of activating CEBPα and promoting LL-37 through in silico assays. The effect of the drugs was corroborated by gene and protein expression analysis. Finally, we observed that treatment with these drugs improves bacterial clearance in infected cells. Our results lead us to suggest CEBPα as a potential therapeutic target as an adjuvant in the standard treatment of tuberculosis, seeking a reduction in treatment time, and thus a lower appearance of drug resistance.
Collapse
Affiliation(s)
- Yolanda M Jacobo-Delgado
- Zacatecas Biomedical Research Unit, Mexican Social Security Institute. Interior de la Alameda #45 Colonia Centro 98000, Zacatecas, Mexico; Faculty of Chemical Sciences, Autonomous University of San Luis Potosi. Av. Manuel Nava #6, Zona Universitaria, 78290, San Luis Potosi, . Mexico.
| | - Adrián Rodríguez-Carlos
- Zacatecas Biomedical Research Unit, Mexican Social Security Institute. Interior de la Alameda #45 Colonia Centro 98000, Zacatecas, Mexico.
| | - Alan Santos-Mena
- Zacatecas Biomedical Research Unit, Mexican Social Security Institute. Interior de la Alameda #45 Colonia Centro 98000, Zacatecas, Mexico.
| | - Óscar E González-Muñiz
- Zacatecas Biomedical Research Unit, Mexican Social Security Institute. Interior de la Alameda #45 Colonia Centro 98000, Zacatecas, Mexico; Faculty of Chemical Sciences, Autonomous University of San Luis Potosi. Av. Manuel Nava #6, Zona Universitaria, 78290, San Luis Potosi, . Mexico.
| | - Camelia Félix-Arellano
- Zacatecas Biomedical Research Unit, Mexican Social Security Institute. Interior de la Alameda #45 Colonia Centro 98000, Zacatecas, Mexico.
| | - Gabriela Navarro-Tovar
- Faculty of Chemical Sciences, Autonomous University of San Luis Potosi. Av. Manuel Nava #6, Zona Universitaria, 78290, San Luis Potosi, . Mexico.
| | - Bruno Rivas-Santiago
- Zacatecas Biomedical Research Unit, Mexican Social Security Institute. Interior de la Alameda #45 Colonia Centro 98000, Zacatecas, Mexico.
| |
Collapse
|
2
|
Vajeethaveesin N, Kanitwithayanun J, Suriyo T, Chujan S, Satayavivad J. Perfluorooctane sulfonic acid: a possible risk factor of endothelial dysfunction based on in silico and in vitro studies. Arch Toxicol 2025:10.1007/s00204-025-04047-7. [PMID: 40244404 DOI: 10.1007/s00204-025-04047-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025]
Abstract
Perfluorooctane sulfonic acid (PFOS) is a fluorinated chemical utilized in a variety of industrial and household products. PFOS has been detected in human serum and is associated with multiple human adverse health effects. Epidemiological evidence has linked PFOS exposure to endothelial dysfunction, which is a key contributor to atherosclerosis. However, the underlying mechanisms of PFOS-induced endothelial dysfunction associated atherosclerosis has not been investigated. In the present study, human microvascular endothelial cells (HMEC-1) exposed to PFOS (15 μM) for 72 h, mimicking long-term exposure. We further employed integrated RNA-sequencing (RNA-seq) and transcriptomic analysis to identify differentially expressed genes (DEGs) for biological alterations: gene ontology (GO), pathway enrichment analysis (KEGG), protein-protein interaction network and modular clustering analysis. Furthermore, the Metascape database was used for disease association, tissue specificity, and transcription factor analysis. Hub genes were verified using atherosclerosis patient data sets from the GEO dataset. Alteration of hub genes in patients was then validated using immunoblotting and ELISA. Our results revealed that PFOS altered amino acid biosynthesis, lipid metabolism and induced the ER-stress response through the HRI/eIF2α/ATF4 pathway, leading to endothelial dysfunction. Interestingly, we found that PFOS induced inflammation by increasing COX-2, ICAM-1 and IL-6 expression through NF-κB and JAK2/STAT3 pathway in endothelial cells. Moreover, up-regulated C/EBPβ and ATF4 were observed in both patients and PFOS-exposed endothelium, which may use as an early biomarker and may have a potential role in PFOS-induced endothelial dysfunction. These findings provide novel insight into the underlying molecular mechanisms of PFOS-induced endothelial dysfunction associated with atherosclerosis.
Collapse
Affiliation(s)
- Nutsira Vajeethaveesin
- Environmental Toxicology Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| | - Jantamas Kanitwithayanun
- Environmental Toxicology Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Center of Excellence On Environmental Health and Toxicology, Bangkok, 10400, Thailand
| | - Tawit Suriyo
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Center of Excellence On Environmental Health and Toxicology, Bangkok, 10400, Thailand
| | - Suthipong Chujan
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand.
- Center of Excellence On Environmental Health and Toxicology, Bangkok, 10400, Thailand.
| | - Jutamaad Satayavivad
- Environmental Toxicology Program, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand.
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand.
- Center of Excellence On Environmental Health and Toxicology, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Yang C, Wang S, Qi Y, Jin Y, Guan R, Huang Z. Mechanisms of adipocyte regulation: Insights from HADHB gene modulation. PLoS One 2025; 20:e0319384. [PMID: 40146690 PMCID: PMC11949335 DOI: 10.1371/journal.pone.0319384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/31/2025] [Indexed: 03/29/2025] Open
Abstract
The HADHB gene encodes the beta-subunit of 3-hydroxy acyl-CoA dehydrogenase, closely related to energy metabolism, fatty acid synthesis, and catabolism. This study aimed to investigate the effect of the HADHB gene on the proliferation and differentiation of bovine preadipocytes and to gain new insights into the mechanisms of adipocyte regulation. RNA was extracted from adipose tissue of yellow cattle and the HADHB gene CDS region was cloned. Meanwhile, isolation and cultivation of preadipocytes were used for siRNA and adenovirus overexpression, quantitative real-time PCR, transcriptome sequencing, and cell proliferation and cell cycle were measured by oil red staining, CCK8 assay, and flow cytometry. Subsequently, the transcriptome data were analyzed using bioinformatics. The results showed that the HADHB gene modulates significantly the expression of critical genes involved in proliferation (CDK2 and PCNA) and differentiation (PPARγ and CEBPα), influencing preadipocyte proliferation and differentiation and altering cell cycle progression. The results of transcriptome sequencing demonstrated that the overexpression of the HADHB gene markedly altered the transcriptional profile of preadipocytes, with 170 genes exhibiting a significant increase in expression and 113 genes displaying a decrease. The HADHB gene exerts a regulatory influence on the differentiation process of precursor adipocytes by modulating the expression of key genes involved in proliferation and differentiation.These findings highlight the central role of the HADHB gene in adipocyte regulation and provide new insights into the regulatory mechanisms governing adipocyte biology.
Collapse
Affiliation(s)
- Chaoyun Yang
- College of Animal Science and Technology, Xichang University, Xichang, China
| | - Shuzhe Wang
- College of Animal Science and Technology, Xichang University, Xichang, China
| | - Yunxia Qi
- College of Animal Science and Technology, Xichang University, Xichang, China
| | - Yadong Jin
- College of Animal Science and Technology, Xichang University, Xichang, China
| | - Ran Guan
- College of Animal Science and Technology, Xichang University, Xichang, China
| | - Zengwen Huang
- College of Animal Science and Technology, Xichang University, Xichang, China
| |
Collapse
|
4
|
Li T, Lin S, Zhu Y, Ye D, Rong X, Wang L. Basic biology and roles of CEBPD in cardiovascular disease. Cell Death Discov 2025; 11:102. [PMID: 40087290 PMCID: PMC11909146 DOI: 10.1038/s41420-025-02357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/25/2025] [Accepted: 02/12/2025] [Indexed: 03/17/2025] Open
Abstract
CCAAT/enhancer-binding protein delta (CEBPD), as an evolutionarily conserved protein in mammals, belongs to the CEBP transcription factor family, which modulates many biological processes. The diversity of CEBPD functions partly depends on the cell type and cellular context. Aberrant CEBPD expression and activity are associated with multiple organ diseases, including cardiovascular diseases. In this review, we describe the basic molecular biology of CEBPD to understand its expression regulation, modifications, and functions. Here, we summarize the recent advances in genetically modified animals with CEBPD. Finally, we discuss the contribution of CEBPD to cardiovascular diseases and highlight the strategies for developing novel therapies targeting CEBPD.
Collapse
Affiliation(s)
- Tongjun Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Shaoling Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Yingyin Zhu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Dewei Ye
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| | - Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
5
|
Wang F, Keating CR, Xu Y, Hou W, Malnassy G, Boedeker K, Perera A, Ham E, Patel D, Ding X, Qiu W. Suppression of Hepatocellular Carcinoma by Deletion of SIRT2 in Hepatocytes via Elevated C/EBPβ/GADD45γ. Cell Mol Gastroenterol Hepatol 2025; 19:101494. [PMID: 40081570 DOI: 10.1016/j.jcmgh.2025.101494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND & AIMS There is a gap in our understanding of mechanisms promoting hepatocellular carcinoma (HCC), and this limits our ability to provide targeted therapy interventions for HCC. In HCC samples, NAD-dependent deacetylase sirtuin 2 (SIRT2) levels are increased and associated with a significantly worse prognosis, but the role of SIRT2 in hepatocarcinogenesis remains controversial. METHODS To assess the role of SIRT2 in hepatocarcinogenesis, we used a hepatocyte-specific knockout of SIRT2 and two plasmid overexpression HCC models: c-MET (MET)/β-catenin (CAT) and protein kinase B (AKT)/Nras. RNA sequencing of mouse liver tissue was performed, and mechanistic findings were confirmed using immunohistochemistry (IHC), quantitative polymerase chain reaction, Western blot, and Cell Counting Kit-8. RESULTS Using the MET/CAT and AKT/Nras models, we found that SIRT2 is a significant mediator of liver tumorigenesis, with the knockout of SIRT2 delaying tumor growth. RNA sequencing of MET/CAT-driven tumor tissue showed an increase in growth arrest and DNA-damage-inducible protein gamma (GADD45γ) in SIRT2 knockout mice compared with wild-type. GADD45γ is a known tumor suppressor, but the regulation of GADD45γ by SIRT2 has not been shown. CCAAT/enhancer-binding protein beta (C/EBPβ) proteins are known to regulate GADD45γ expression, and we found that C/EBPβ expression was increased in SIRT2 knockout livers and HCC cells. Also, C/EBPβ knockdown reversed GADD45γ expression and growth suppression following SIRT2 inhibition. Finally, C/EBPβ or GADD45γ overexpression significantly suppressed MET/CAT-induced HCC development. CONCLUSIONS SIRT2 is a potent tumor promotor in HCC that negatively regulates GADD45γ expression through C/EBPβ. The SIRT2-C/EBPβ-GADD45γ pathway elucidates a novel mechanism in HCC and establishes SIRT2 as a therapeutic target for patients with HCC.
Collapse
Affiliation(s)
- Fang Wang
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Claudia Rose Keating
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Yingchen Xu
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei Hou
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Greg Malnassy
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Kyle Boedeker
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Aldeb Perera
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Eugene Ham
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Diya Patel
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Xianzhong Ding
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Wei Qiu
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois.
| |
Collapse
|
6
|
Liu N, He J, Yang Y, Wang Y, Zhang L, Xiao Z, Xiong Z, Zhong S, Xu Y, Gu Y, Wang J, Lan Y, Du Y, Zhu P, Zhang Z, Fan X, Liu B, Fan Z. Enteric GABAergic neuron-derived γ-aminobutyric acid initiates expression of Igfbp7 to sustain ILC3 homeostasis. Nat Immunol 2025; 26:404-415. [PMID: 40033120 DOI: 10.1038/s41590-025-02081-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 01/08/2025] [Indexed: 03/05/2025]
Abstract
Neuronal signals have emerged as critical factors that regulate group 3 innate lymphoid cell (ILC3) response and tissue homeostasis, but the molecular mechanisms underlying this regulation remain largely elusive. Here, we identified that the enteric GABAergic neuron-derived neurotransmitter γ-aminobutyric acid (GABA) inhibited proliferation and IL-17A production in ILC3s in a manner dependent on the GABA receptors Gabbr1 and Gabbr2. Conditional deletion of Gabbr1 or ablation of GABAergic neurons caused increased IL-17A production and aggravated colitis. Mechanistically, GABA suppressed the expression of the LIP isoform of the transcription factor C/EBP-β in ILC3s, which repressed the transcription of Igfbp7, which encodes the secreted factor Igfbp7. Autocrine Igfbp7 signaling through the receptor Igf1R inhibited ILC3 proliferation and IL-17A production. Suppression of signaling through the GABA-C/EBP-β-IGFBP7 pathway highly correlated with severity of intestinal inflammation in patients with inflammatory bowel disease (IBD). Collectively, our findings describe an important molecular mechanism underlying the maintenance of gut immune homeostasis.
Collapse
Affiliation(s)
- Nian Liu
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiacheng He
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanmei Yang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, China
| | - Yunlong Wang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lingwei Zhang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ziqi Xiao
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Xiong
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shangxun Zhong
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuwei Xu
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Gu
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianyi Wang
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Drug Control, Beijing, China
| | - Yufei Lan
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Du
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhi Zhang
- Department of Anesthesiology and Pain Medicine, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinjuan Fan
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
- Department of Pathology, Henan Provincial Key Laboratory of Radiation Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Benyu Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, China.
| | - Zusen Fan
- Key Laboratory of RNA Science and Engineering, Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Wang L, Li W, Wu W, Liu Q, You M, Liu X, Ye C, Chen J, Tan Q, Liu G, Du Y. Effects of electroacupuncture on microglia phenotype and epigenetic modulation of C/EBPβ in SAMP8 mice. Brain Res 2025; 1849:149339. [PMID: 39577714 DOI: 10.1016/j.brainres.2024.149339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Alzheimer's disease (AD), an age-progressive neurodegenerative disease, is featured by a relentless deterioration of cognitive abilities. In parallel with the hypotheses of Aβ and tau, microglia-mediated neuroinflammation is a core pathological hallmark of AD. Promoting the transition of microglia from M1 to M2 phenotype and inhibition of neuroinflammatory response provide new insights into the treatment of AD. And substantial studies have confirmed that overexpression of C/EBPβ accelerates the progression of AD pathology. Acupuncture is renowned for its unique advantages including safety and effectiveness, which has gained wide application in geriatric diseases, and thoroughly exploring the mechanism for its treatment of AD will provide scientific basis for its clinical application. METHODS In this study, SAMP8 mice were employed and EA therapy was performed as the main intervention. The combination of behavioural experiments (including water maze and novel objective recognition), Immunofluorescence, Western blot, and Chip-qPCR assay were performed to compare between different groups. RESULTS EA therapy facilitates the polarization of microglia from M1 to M2 phenotype, reduces pro-inflammatory cytokines (IL-6, IL-1β and TNF-α) and promotes the expression of anti-inflammatory factors (IL-4 and IL-10), as well as attenuates neuroinflammation. Simultaneously, EA also inhibits the enrichment of H3K9ac at C/EBPβ promoter region and expression of C/EBPβ. Thus, it was evident that EA had a favorable effect on ameliorating cognitive decline in SAMP8 mice. CONCLUSION EA therapy may ameliorate cognitive deficits in AD via facilitating microglia shift from M1 to M2 phenotype and epigenetically regulating C/EBPβ. And further studies are required to better understand how the mechanism between microglia and epigenetic modulation of C/EBPβ are effective in reversing AD.
Collapse
Affiliation(s)
- Li Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China; Hubei Shizhen Laboratory, Wuhan, Hubei, China.
| | - Weixian Li
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Wenhui Wu
- Department of Rehabilitation Medicine, Central Theater General Hospital of the Chinese People's Liberation Army, Wuhan, Hubei, China
| | - Qing Liu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Min You
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Xinyuan Liu
- Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cheng Ye
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Jiangmin Chen
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Qian Tan
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Guangya Liu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Yanjun Du
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China; Hubei Shizhen Laboratory, Wuhan, Hubei, China; Affiliated Hospital of Hubei University of Chinese Medicine (Hubei Provincial Hospital of Traditional Chinese Medicine), Wuhan, Hubei, China.
| |
Collapse
|
8
|
Luo X, Liang J, Lei X, Sun F, Gong M, Liu B, Zhou Z. C/EBPβ in Alzheimer's disease: An integrative regulator of pathological mechanisms. Brain Res Bull 2025; 221:111198. [PMID: 39788461 DOI: 10.1016/j.brainresbull.2025.111198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Alzheimer's disease (AD) stands as one of the most prevalent neurodegenerative disorders, characterized by a progressive decline in cognitive function, neuroinflammation, amyloid-beta (Aβ) plaques, and neurofibrillary tangles (NFTs). With the global aging population, the incidence of AD continues to rise, yet current therapeutic strategies remain limited in their ability to significantly alleviate cognitive impairments. Therefore, a deeper understanding of the molecular mechanisms underlying AD is imperative for the development of more effective treatments. In recent years, the transcription factor C/EBPβ has emerged as a pivotal regulator in several pathological processes of AD, including neuroinflammation, lipid metabolism, Aβ processing, and tau phosphorylation. Through intricate post-translational modifications, C/EBPβ modulates these processes and may influence the progression of AD on multiple fronts. This review systematically explores the multifaceted roles of C/EBPβ in the pathogenesis of AD, delving into its crucial involvement in neuroinflammation, Aβ production, tau pathology, and lipid metabolism dysregulation. Furthermore, we critically assess therapeutic strategies targeting C/EBPβ, examining the challenges and opportunities in regulating this factor. By synthesizing the latest research findings, we offer a more comprehensive understanding of the role of C/EBPβ in AD and discuss its potential as a therapeutic intervention target.
Collapse
Affiliation(s)
- Xiaoting Luo
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Junyi Liang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Xue Lei
- The First Hospital Affiliated to Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Fengqi Sun
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | | | - Bin Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China.
| | - Zhongguang Zhou
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
9
|
Li JP, Qiu S, Tai GJ, Liu YM, Wei W, Fu MM, Fang PQ, Otieno JN, Battulga T, Li XX, Xu M. NLRP3 inflammasome-modulated angiogenic function of EPC via PI3K/ Akt/mTOR pathway in diabetic myocardial infarction. Cardiovasc Diabetol 2025; 24:6. [PMID: 39762890 PMCID: PMC11705910 DOI: 10.1186/s12933-024-02541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Inflammatory diseases impair the reparative properties of endothelial progenitor cells (EPC); however, the involvement of diabetes in EPC dysfunction associated with myocardial infarction (MI) remains unknown. METHODS A model was established combining high-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice with myocardial infarction. The therapeutic effects of transplanted wild-type EPC, Nlrp3 knockout EPC, and Nlrp3 overexpression EPC were evaluated. Chip and Luciferase assay revealed CEBPB regulated the transcriptional expression of Nlrp3 as a transcription factor in EPC stimulated by high glucose (HG) or advanced glycation end products (AGEs). CO-IP results suggested that USP14 selectively suppressed NLRP3 degradation. KEGG enrichment revealed PI3K/ Akt/mTOR signaling showed striking significance in the entire pathway. RESULTS In our study, wild-type, Nlrp3 knockout and Nlrp3 overexpressed EPC, intracardiac injections effectively improved cardiac function, increased angiogenesis, and reduced infarct size in mice with myocardial infarction. However, in the HFD/STZ-induced diabetic mice model combined with myocardial infarction, Nlrp3 knockout EPC significantly restored angiogenic capacity. Mechanically, CEBPB regulated the transcriptional level of Nlrp3 as a transcription factor in EPC. Meanwhile, we found that USP14 selectively suppressed NLRP3 protein degradation through the USP motif on the NACHT domain in mediating inflammasome activation. Cardiac functional outcomes in recipient mice after intramyocardial injection of shNlrp3 EPC overexpressing CEBPB or USP14 validated the modulation of EPC function by regulating Nlrp3 transcription or post-translational modification. Furthermore, KEGG enrichment and validation at the protein levels revealed PI3K/ Akt/mTOR cascade might be a downstream signal for NLRP3 inflammasome. CONCLUSION Our study provides a new understanding of how diabetes affected progenitor cell-mediated cardiac repair and identifies NLRP3 as a new therapeutic target for improving myocardial infarction repair in inflammatory diseases.
Collapse
Affiliation(s)
- Jia-Peng Li
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing, 210009, People's Republic of China
| | - Shu Qiu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing, 210009, People's Republic of China
| | - Guang-Jie Tai
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing, 210009, People's Republic of China
| | - Yi-Ming Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210009, People's Republic of China
| | - Wei Wei
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing, 210009, People's Republic of China
| | - Meng-Meng Fu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing, 210009, People's Republic of China
| | - Pan-Qi Fang
- Department of Pharmacy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Joseph Nicolao Otieno
- Director Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciencea, P.O.BOX 65001, Dar es Salaam, Tanzania
| | - Tungalag Battulga
- School of Pharmacy, Mongolian National University of Medical Sciences, 24210, Ulaanbaatar, Mongolia
| | - Xiao-Xue Li
- Department of Cardiology, School of Medicine, Zhongda Hospital, Southeast University, 87 Ding Jiaqiao, Nanjing, 210009, People's Republic of China
| | - Ming Xu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
10
|
Jo M, Brännström M, Akins JW, Curry TE. New insights into the ovulatory process in the human ovary. Hum Reprod Update 2025; 31:21-47. [PMID: 39331957 PMCID: PMC11696709 DOI: 10.1093/humupd/dmae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Successful ovulation is essential for natural conception and fertility. Defects in the ovulatory process are associated with various conditions of infertility or subfertility in women. However, our understanding of the intra-ovarian biochemical mechanisms underlying this process in women has lagged compared to our understanding of animal models. This has been largely due to the limited availability of human ovarian samples that can be used to examine changes across the ovulatory period and delineate the underlying cellular/molecular mechanisms in women. Despite this challenge, steady progress has been made to improve our knowledge of the ovulatory process in women by: (i) collecting granulosa cells across the IVF interval, (ii) creating a novel approach to collecting follicular cells and tissues across the periovulatory period from normally cycling women, and (iii) developing unique in vitro models to examine the LH surge or hCG administration-induced ovulatory changes in gene expression, the regulatory mechanisms underlying the ovulatory changes, and the specific functions of the ovulatory factors. OBJECTIVE AND RATIONALE The objective of this review is to summarize findings generated using in vivo and in vitro models of human ovulation, with the goal of providing new insights into the mechanisms underlying the ovulatory process in women. SEARCH METHODS This review is based on the authors' own studies and a search of the relevant literature on human ovulation to date using PubMed search terms such as 'human ovulation EGF-signaling', 'human ovulation steroidogenesis', 'human ovulation transcription factor', 'human ovulation prostaglandin', 'human ovulation proteinase', 'human ovulation angiogenesis' 'human ovulation chemokine', 'human ovulatory disorder', 'human granulosa cell culture'. Our approach includes comparing the data from the authors' studies with the existing microarray or RNA-seq datasets generated using ovarian cells obtained throughout the ovulatory period from humans, monkeys, and mice. OUTCOMES Current findings from studies using in vivo and in vitro models demonstrate that the LH surge or hCG administration increases the expression of ovulatory mediators, including EGF-like factors, steroids, transcription factors, prostaglandins, proteolytic systems, and other autocrine and paracrine factors, similar to those observed in other animal models such as rodents, ruminants, and monkeys. However, the specific ovulatory factors induced, their expression pattern, and their regulatory mechanisms vary among different species. These species-specific differences stress the necessity of utilizing human samples to delineate the mechanisms underlying the ovulatory process in women. WIDER IMPLICATIONS The data from human ovulation in vivo and in vitro models have begun to fill the gaps in our understanding of the ovulatory process in women. Further efforts are needed to discover novel ovulatory factors. One approach to address these gaps is to improve existing in vitro models to more closely mimic in vivo ovulatory conditions in humans. This is critically important as the knowledge obtained from these human studies can be translated directly to aid in the diagnosis of ovulation-associated pathological conditions, for the development of more effective treatment to help women with anovulatory infertility or, conversely, to better manage ovulation for contraceptive purposes. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | | | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
11
|
Takai T, Asahara SI, Ikushiro H, Kobayashi K, Yano T, Kido Y, Ogawa W. Protective effect of CK2 against endoplasmic reticulum stress in pancreatic β cells. Diabetol Int 2025; 16:131-144. [PMID: 39877448 PMCID: PMC11769914 DOI: 10.1007/s13340-024-00775-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/21/2024] [Indexed: 01/31/2025]
Abstract
Endoplasmic reticulum (ER) stress due to obesity or systemic insulin resistance is an important pathogenic factor that could lead to pancreatic β-cell failure. We have previously reported that CCAAT/enhancer-binding protein β (C/EBPβ) is highly induced by ER stress in pancreatic β cells. Moreover, its accumulation hampers the response of these cells to ER stress by inhibiting the induction of the molecular chaperone 78 kDa glucose-regulated protein (GRP78). We also demonstrated that C/EBPβ is phosphorylated by CK2, which is reportedly associated with the ER stress signal. In the present study, we aimed to clarify the mechanisms underlying the effect of CK2 on pancreatic β cells using a CK2-specific inhibitor, CX4945, and shRNA-mediated knockdown and overexpression of CK2β, the regulatory subunit of CK2. The results indicate that CK2 was activated in MIN6 cells under ER stress and in pancreatic β cells of a diabetic mouse model. Under normal conditions, CK2 interacted with FL-ATF6α in MIN6 cells and regulated the expression of GRP78 and ERAD-associated proteins. Mechanistically, CK2 activation in MIN6 cells upon the overexpression of the CK2β subunit reduced ER stress signals and the accumulation of unfolded proteins via an increase in GRP78 and ERAD-associated protein levels. These results highlight the important role of CK2 in protecting against ER stress-induced apoptosis by regulating GRP78 and ERAD proteins. CK2 contributed to the clearance of unfolded or misfolded proteins in MIN6 cells under both normal and ER stress conditions. Therefore, CK2 activation could be a promising novel approach for preventing type 2 diabetes. Supplementary Information The online version contains supplementary material available at 10.1007/s13340-024-00775-w.
Collapse
Affiliation(s)
- Tomoko Takai
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| | - Shun-ichiro Asahara
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| | - Hiroko Ikushiro
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Japan
| | - Takato Yano
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Yoshiaki Kido
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| |
Collapse
|
12
|
Seo SH, Lee JH, Choi EK, Rho SB, Yoon K. C/EBPβ Regulates HIF-1α-Driven Invasion of Non-Small-Cell Lung Cancer Cells. Biomolecules 2024; 15:36. [PMID: 39858431 PMCID: PMC11764306 DOI: 10.3390/biom15010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
Metastatic cancer accounts for most cancer-related deaths, and identifying specific molecular targets that contribute to metastatic progression is crucial for the development of effective treatments. Hypoxia, a feature of solid tumors, plays a role in cancer progression by inducing resistance to therapy and accelerating metastasis. Here, we report that CCAAT/enhancer-binding protein beta (C/EBPβ) transcriptionally regulates hypoxia-inducible factor 1 subunit alpha (HIF1A) and thus promotes migration and invasion of non-small-cell lung cancer (NSCLC) cells under hypoxic conditions. Our results show that knockdown or forced expression of C/EBPβ was correlated with HIF-1α expression and that C/EBPβ directly bound to the promoter region of HIF1A. Silencing HIF1A inhibited the enhanced migration and invasion induced by C/EBPβ overexpression in NSCLC cells under hypoxia. Expression of the HIF-1α target gene, SLC2A1, was also altered in a C/EBPβ-dependent manner, and knockdown of SLC2A1 reduced migration and invasion enhanced by C/EBPβ overexpression. These results indicate that C/EBPβ is a critical regulator for the invasion of NSCLC cells in the hypoxic tumor microenvironment. Collectively, the C/EBPβ-HIF-1α-GLUT1 axis represents a potential therapeutic target for preventing metastatic progression of NSCLC and improving patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Kyungsil Yoon
- Cancer Metastasis Branch, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea; (S.H.S.); (J.H.L.); (S.B.R.)
| |
Collapse
|
13
|
Choe N, Shin S, Kim YK, Kook H, Kwon DH. CCAAT/Enhancer-Binding Protein β (C/EBPβ) Regulates Calcium Deposition in Smooth Muscle Cells. Int J Mol Sci 2024; 25:13667. [PMID: 39769429 PMCID: PMC11728292 DOI: 10.3390/ijms252413667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Calcium deposition in vascular smooth muscle cells (VSMCs), a form of ectopic ossification in blood vessels, can result in rigidity of the vasculature and an increase in cardiac events. Here, we report that CCAAT/enhancer-binding protein beta (C/EBPβ) potentiates calcium deposition in VSMCs and mouse aorta induced by inorganic phosphate (Pi) or vitamin D3. Based on cDNA microarray and RNA sequencing data of Pi-treated rat VSMCs, C/EBPβ was found to be upregulated and thus selected for further evaluation. Quantitative RT-PCR and Western blot analysis confirmed that C/EBPβ was upregulated in Pi-treated A10 cells, a rat VSMC line, as well as vitamin D3-treated mouse aorta. The overexpression of C/EBPβ in A10 cells increased bone runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and osteopontin (OPN) mRNA in the presence of Pi, as well as potentiating the Pi-induced increase in calcium contents. The Runx2 expression was increased by C/EBPβ through Runx2 P2 promotor. Our results suggest that a Pi-induced increase in C/EBPβ is a critical step in vascular calcification.
Collapse
Affiliation(s)
- Nakwon Choe
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Sera Shin
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Young-Kook Kim
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- BK21 Plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- BK21 Plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Duk-Hwa Kwon
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- BK21 Plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
14
|
Boštjančić LL, Dragičević P, Bonassin L, Francesconi C, Tarandek A, Schardt L, Rutz C, Hudina S, Schwenk K, Lecompte O, Theissinger K. Expression of C/EBP and Kr-h1 transcription factors under immune stimulation in the noble crayfish. Gene 2024; 929:148813. [PMID: 39094714 DOI: 10.1016/j.gene.2024.148813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Transcription factors (TFs) have an important role in the regulation of the gene expression network. The role of TFs in the immune response of freshwater crayfish is poorly understood, but leveraging the regulatory mechanisms of immune response could augment the resistance against the invasive oomycete pathogen, Aphanomyces astaci. Previous studies indicated that the TFs CCAAT/enhancer-binding protein (C/EBP) and putative Krüppel homolog-1 protein (Kr-h1) might play a role in immune and stress response of the noble crayfish (Astacus astacus). Here, we aimed to further characterise these two gene products to gain a better understanding of their evolutionary origin, domain organisation and expression patterns across different crayfish tissues. Furthermore, we conducted an immune stimulation experiment to observe the potential changes in the gene expression of C/EBP and Kr-h1 under immune challenge in different crayfish tissues. Our results showed that both C/EBP and Kr-h1 are closely related to other C/EBPs and Kr-h1s in Malacostraca. Gene expression analysis revealed that both TFs are present in all analysed tissues, with higher expression of C/EBP in the gills and Kr-h1 in the abdominal muscle. Immune stimulation with laminarin (mimicking β-1-3-glucan in the oomycete cell wall) showed an activation of the crayfish immune system, with an overall increase in the total haemocyte count (THC) compared to untreated control and crayfish buffered saline (CBS) treatment. On the gene expression level, an up-regulation of the C/EBP gene was detected in the laminarin treated group in hepatopancreas and heart, while no changes were observed for the Kr-h1 gene. Our results indicate an early change in C/EBP expression in multiple tissues during immune stimulation and suggest its involvement in the immune response of the noble crayfish.
Collapse
Affiliation(s)
- Ljudevit Luka Boštjančić
- Institute of Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26, 35392 Gießen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany; Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000 Strasbourg, France; iES - Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau, Germany.
| | - Paula Dragičević
- Depatment of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Lena Bonassin
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany; Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000 Strasbourg, France; iES - Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Caterina Francesconi
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany; iES - Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Anita Tarandek
- Depatment of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Leonie Schardt
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Christelle Rutz
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000 Strasbourg, France
| | - Sandra Hudina
- Depatment of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Klaus Schwenk
- iES - Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Odile Lecompte
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Rue Eugène Boeckel 1, 67000 Strasbourg, France
| | - Kathrin Theissinger
- Institute of Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26, 35392 Gießen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| |
Collapse
|
15
|
Yaghmouri M, Izadi P. Role of the Neanderthal Genome in Genetic Susceptibility to COVID-19: 3p21.31 Locus in the Spotlight. Biochem Genet 2024; 62:4239-4263. [PMID: 38345759 DOI: 10.1007/s10528-024-10669-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/02/2024] [Indexed: 11/29/2024]
Abstract
Since the outbreak of COVID-19, genome-wide association studies have tried to discover the role of genetic predisposition in the clinical variability of this viral infection. The findings of various investigations have led to several loci for COVID-19 genetic susceptibility. Among candidate regions, the 3p21.31 locus has been in the spotlight among scientists, as it can increase the risk of severe COVID-19 by almost two fold. In addition to its substantial association with COVID-19 severity, this locus is related to some common diseases, such as diabetes, malignancies, and coronary artery disease. This locus also harbors evolutionary traces of Neanderthal genomes, which is believed to be the underlying reason for its association with COVID-19 severity. Additionally, the inheritance of this locus from Neanderthals seems to be under positive selection. This review aims to summarize a collection of evidence on the 3p21.31 locus and its impact on COVID-19 outcomes by focusing on the risk variants originated from the Neanderthal genome. Moreover, we discuss candidate genes at this locus and the possible mechanisms by which they influence the progression of COVID-19 symptoms. Better insights into human genetic susceptibility to newly emerging diseases such as COVID-19 and its evolutionary origin can provide fundamentals for risk assessment of different populations as well as the development of personalized prevention and treatments based on genomic medicine.
Collapse
Affiliation(s)
- Mohammad Yaghmouri
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pantea Izadi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Milan KL, Ramkumar KM. Regulatory mechanisms and pathological implications of CYP24A1 in Vitamin D metabolism. Pathol Res Pract 2024; 264:155684. [PMID: 39488987 DOI: 10.1016/j.prp.2024.155684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/23/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
CYP24A1 is a crucial gene within the cytochrome P450 superfamily, responsible for encoding the enzyme 25-hydroxyvitamin D3-24-hydroxylase. This enzyme is involved in the catabolism of 1,25-dihydroxyvitamin D3, the biologically active form of vitamin D3, by hydroxylating its side chain. Through this process, CYP24A1 tightly regulates the bioavailability and physiological impact of vitamin D3 in the body. Dysregulation of CYP24A1, particularly its overexpression, has been increasingly associated with the progression of various diseases, including cancers, autoimmune disorders, and chronic inflammatory conditions. Elevated levels of CYP24A1 can lead to excessive degradation of vitamin D3, resulting in diminished levels of this critical hormone, which is essential for calcium homeostasis, immune function, and cellular proliferation. This review explores into the structural characteristics of CYP24A1, exploring how it influences its enzymatic activity. Furthermore, it examines the expression patterns of CYP24A1 across different diseases, emphasizing the enzyme's role in disease pathology. The review also discusses the regulatory mechanisms governing CYP24A1 expression, including genetic mutations, epigenetic modifications, and metabolite-mediated regulation. By understanding these mechanisms, the review provides insight into the potential therapeutic strategies that could target CYP24A1, aiming to alleviate its overexpression and restore vitamin D3 balance in disease states.
Collapse
Affiliation(s)
- K L Milan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - K M Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India.
| |
Collapse
|
17
|
He X, Liu Y, Gao X, Tang F, Tian Y, Gong S, Shen J, Wang A, Sun L, Wei W, Weng L. N-terminal acetylation of transcription factor LIP induces immune therapy resistance via suppression of PD-L1 expression in non-small cell lung cancer. J Immunother Cancer 2024; 12:e009905. [PMID: 39615895 PMCID: PMC11624798 DOI: 10.1136/jitc-2024-009905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/05/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Programmed death-1 (PD-1) checkpoint blockade has revolutionized cancer therapy, yet its clinical success is confined to a subset of patients, underscoring the urgent need to understand the molecular underpinnings of programmed cell death ligand 1 (PD-L1) expression to combat immunotherapy resistance. METHODS Employing CRISPR/Cas9 screening, we identified key regulators of PD-L1 in non-small cell lung cancer (NSCLC) cells, focusing on the transcription factor CEBPB and its isoform liver-enriched inhibitory protein (LIP). Through chromatin immunoprecipitation (ChIP) and luciferase reporter assays, we explored the interaction between LIP and basic-helix-loop-helix E22 (BHLHE22) in controlling PD-L1 transcription. We also used immunofluorescence and NBD-CI assays to examine how N-terminal acetylation affects LIP's subcellular localization. The impact of LIP on tumor growth was assessed via subcutaneous tumorigenicity assays, while immunohistochemistry and immunofluorescence were used to analyze LIP-induced alterations in the tumor immune microenvironment. RESULTS Our research indicates that CEBPB, particularly its LIP isoform, significantly suppresses PD-L1 expression in NSCLC cells. This suppression is contingent on LIP's N-terminal acetylation by the N-terminal acetyltransferase A complex, which facilitates LIP's nuclear entry and interaction with BHLHE22. This interaction leads to the formation of a co-repressor complex at the PD-L1 promoter, effectively reducing PD-L1 expression and enhancing the tumor immune response. CONCLUSIONS Identifying CEBPB, especially the LIP isoform, as a pivotal regulator of PD-L1 expression sheds light on the mechanisms behind PD-1 blockade resistance in NSCLC. Our findings suggest that modulating LIP's function or its molecular interactions might offer a novel approach to boosting the efficacy of immunotherapies.
Collapse
Affiliation(s)
- Xiang He
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Xiangya Cancer Center, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Yongshuo Liu
- Department of Pathology and Lab Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xing Gao
- Department of Stomatology, Xiangya Hospital Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Feiyu Tang
- Center for Biotherapy, Sun Yat-Sen University, Guangzhou, China
| | - Yuxi Tian
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Siyuan Gong
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Xiangya Cancer Center, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Jia Shen
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Xiangya Cancer Center, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Aimin Wang
- Department of Emergency, Xiangya Hospital Central South University, Changsha, China
| | - Lunquan Sun
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Xiangya Cancer Center, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, Peking University School of Life Sciences, Beijing, China
- Changping Laboratory, Beijing, China
| | - Liang Weng
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, China
| |
Collapse
|
18
|
Wu Y, Ren L, Mao C, Shen Z, Zhu W, Su Z, Lin X, Lin X. Small hepatitis B virus surface antigen (SHBs) induces dyslipidemia by suppressing apolipoprotein-AII expression through ER stress-mediated modulation of HNF4α and C/EBPγ. J Virol 2024; 98:e0123924. [PMID: 39470210 PMCID: PMC11575332 DOI: 10.1128/jvi.01239-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
Persistent infection with hepatitis B virus (HBV) often leads to disruptions in lipid metabolism. Apolipoprotein AII (apoAII) plays a crucial role in lipid metabolism and is implicated in various metabolic disorders. However, whether HBV could regulate apoAII and contribute to HBV-related dyslipidemia and the underlying mechanism remain unclear. This study revealed significant reductions in apoAII expression in HBV-expressing cell lines, the serum, and liver tissues of HBV-transgenic mice. The impact of HBV on apoAII is related to small hepatitis B virus surface antigen (SHBs). Overexpression of SHBs decreased apoAII levels in SHBs-expressing hepatoma cells, transgenic mice, and the serum of HBV-infected patients, whereas suppression of SHBs increased apoAII expression. Mechanistic investigations demonstrated that SHBs repressed the apoAII promoter activity through a HNF4α- and C/EBPγ-dependent manner; SHBs simultaneously upregulated C/EBPγ and downregulated HNF4α by inhibiting the PI3K/AKT signaling pathway through activating endoplasmic reticulum (ER) stress. Serum lipid profile assessments revealed notable decreases in high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), and triglycerides (TG) in SHBs-transgenic mice compared to control mice. However, concurrent overexpression of apoAII in these mice effectively counteracted these reductions in lipid levels. In HBV patients, SHBs levels were negatively correlated with serum levels of HDL-C, LDL-C, TC, and TG, whereas apoAII levels positively correlated with lipid content. This study underscores that SHBs contributes to dyslipidemia by suppressing the PI3K/AKT pathway via inducing ER stress, leading to altered expression of HNF4α and C/EBPγ, and subsequently reducing apoAII expression.IMPORTANCEThe significance of this study lies in its comprehensive examination of how the hepatitis B virus (HBV), specifically through its small hepatitis B virus surface antigen (SHBs), impacts lipid metabolism-a key aspect often disrupted by chronic HBV infection. By elucidating the role of SHBs in regulating apolipoprotein AII (apoAII), a critical player in lipid processes and associated metabolic disorders, this research provides insights into the molecular pathways contributing to HBV-related dyslipidemia. Discovering that SHBs downregulates apoAII through mechanisms involving the repression of the apoAII promoter via HNF4α and C/EBPγ, and the modulation of the PI3K/AKT signaling pathway via endoplasmic reticulum (ER) stress, adds critical knowledge to HBV pathogenesis. The research also shows an inverse correlation between SHBs expression and key lipid markers in HBV-infected individuals, suggesting that apoAII overexpression could counteract the lipid-altering effects of SHBs, offering new avenues for understanding and managing the metabolic implications of HBV infection.
Collapse
Affiliation(s)
- Yunli Wu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Lan Ren
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Chenglei Mao
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Zhiqing Shen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Wenyu Zhu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Zhijun Su
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Xinjian Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Xu Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
19
|
Shi R, Chang X, Banaschewski T, Barker GJ, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot17, MLP, Artiges E, Nees F, Orfanos DP, Poustka L, Hohmann S, Holz N, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Lin X, Feng J. Gene-environment interactions in the influence of maternal education on adolescent neurodevelopment using ABCD study. SCIENCE ADVANCES 2024; 10:eadp3751. [PMID: 39546599 PMCID: PMC11567010 DOI: 10.1126/sciadv.adp3751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
Maternal education was strongly correlated with adolescent brain morphology, cognitive performances, and mental health. However, the molecular basis for the effects of maternal education on the structural neurodevelopment remains unknown. Here, we conducted gene-environment-wide interaction study using the Adolescent Brain Cognitive Development cohort. Seven genomic loci with significant gene-environment interactions (G×E) on regional gray matter volumes were identified, with enriched biological functions related to metabolic process, inflammatory process, and synaptic plasticity. Additionally, genetic overlapping results with behavioral and disease-related phenotypes indicated shared biological mechanism between maternal education modified neurodevelopment and related behavioral traits. Finally, by decomposing the multidimensional components of maternal education, we found that socioeconomic status, rather than family environment, played a more important role in modifying the genetic effects on neurodevelopment. In summary, our study provided analytical evidence for G×E effects regarding adolescent neurodevelopment and explored potential biological mechanisms as well as social mechanisms through which maternal education could modify the genetic effects on regional brain development.
Collapse
Affiliation(s)
- Runye Shi
- School of Data Science, Fudan University, Shanghai, China
| | - Xiao Chang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Gareth J. Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Arun L. W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, VT, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité–Universitätsmedizin, Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 “Trajectoires développementales en psychiatrie”, Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
| | | | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 “Trajectoires développementales en psychiatrie”, Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein Kiel University, Kiel, Germany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075 Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathalie Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité–Universitätsmedizin, Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Xiaolei Lin
- School of Data Science, Fudan University, Shanghai, China
| | - Jianfeng Feng
- School of Data Science, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, UK
| | | |
Collapse
|
20
|
Kayama K, Nakazawa T, Yamaguchi I, Kawauchi M, Sakamoto M, Honda Y. Effects of hap2 deletion on mnp/vp transcription in Pleurotus ostreatus grown on lignocellulosic substrates. Appl Microbiol Biotechnol 2024; 108:513. [PMID: 39535609 PMCID: PMC11561020 DOI: 10.1007/s00253-024-13352-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The regulatory mechanisms governing expression of genes encoding lignin-modifying enzymes (LME) in white-rot fungi remain largely unexplored. Although molecular cloning has identified CCAAT-boxes frequently located 5'-upstream of these genes, their role in transcriptional regulation is not well understood. This study examines the function of hap2, a gene encoding a hypothetical protein homologous to a component of the CCAAT-binding Hap complex, in the white-rot fungus Pleurotus ostreatus. Deletion of hap2 resulted in significantly reduced Mn2+-dependent peroxidase activity and lignin-degrading capacity compared to the parental strain 20b grown on beech wood sawdust (BWS) medium. Real-time PCR revealed that vp2 transcript levels were significantly lower in hap2 deletants than in 20b grown when cultured on the three solid media consisting of BWS, holocellulose, or Avicel, but not on yeast-malt-glucose (YMG) agar plates. Additionally, glutathione S-transferase (GST) pulldown and electrophoretic mobility shift assays demonstrated that recombinant P. ostreatus Hap2, Hap3, and Hap5 expressed in Escherichia coli form a complex capable of binding to the CCAAT sequence 5'-upstream of vp2 in vitro. These results suggest that Hap2, as part of the CCAAT-binding complex, is essential for transcriptional upregulation of vp2 in P. ostreatus growing on lignocellulosic substrates. KEY POINTS: • P. ostreatus hap2 deletants were generated. • Lignin-degrading capacity was significantly reduced in the hap2 deletants. • vp2 was significantly downregulated upon hap2 deletion.
Collapse
Affiliation(s)
- Keita Kayama
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Iori Yamaguchi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
21
|
Chen K, Wu J, Zhang Y, Liu W, Chen X, Zhang W, Huang Z. Cebpa is required for haematopoietic stem and progenitor cell generation and maintenance in zebrafish. Open Biol 2024; 14:240215. [PMID: 39500381 PMCID: PMC11537755 DOI: 10.1098/rsob.240215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 11/09/2024] Open
Abstract
The CCAAT enhancer binding protein alpha (CEBPA) is crucial for myeloid differentiation and the balance of haematopoietic stem and progenitor cell (HSPC) quiescence and self-renewal, and its dysfunction can drive leukemogenesis. However, its role in HSPC generation has not been fully elucidated. Here, we utilized various zebrafish cebpa mutants to investigate the function of Cebpa in the HSPC compartment. Co-localization analysis showed that cebpa expression is enriched in nascent HSPCs. Complete loss of Cebpa function resulted in a significant reduction in early HSPC generation and the overall HSPC pool during embryonic haematopoiesis. Interestingly, while myeloid differentiation was impaired in cebpa N-terminal mutants expressing the truncated zP30 protein, the number of HSPCs was not affected, indicating a redundant role of Cebpa P42 and P30 isoforms in HSPC development. Additionally, epistasis experiments confirmed that Cebpa functions downstream of Runx1 to regulate HSPC emergence. Our findings uncover a novel role of Cebpa isoforms in HSPC generation and maintenance, and provide new insights into HSPC development.
Collapse
Affiliation(s)
- Kemin Chen
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Jieyi Wu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Yuxian Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Wei Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Xiaohui Chen
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Wenqing Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, Guangdong518055, People’s Republic of China
| | - Zhibin Huang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| |
Collapse
|
22
|
Guo G, Wang W, Tu M, Zhao B, Han J, Li J, Pan Y, Zhou J, Ma W, Liu Y, Sun T, Han X, An Y. Deciphering adipose development: Function, differentiation and regulation. Dev Dyn 2024; 253:956-997. [PMID: 38516819 DOI: 10.1002/dvdy.708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024] Open
Abstract
The overdevelopment of adipose tissues, accompanied by excess lipid accumulation and energy storage, leads to adipose deposition and obesity. With the increasing incidence of obesity in recent years, obesity is becoming a major risk factor for human health, causing various relevant diseases (including hypertension, diabetes, osteoarthritis and cancers). Therefore, it is of significance to antagonize obesity to reduce the risk of obesity-related diseases. Excess lipid accumulation in adipose tissues is mediated by adipocyte hypertrophy (expansion of pre-existing adipocytes) or hyperplasia (increase of newly-formed adipocytes). It is necessary to prevent excessive accumulation of adipose tissues by controlling adipose development. Adipogenesis is exquisitely regulated by many factors in vivo and in vitro, including hormones, cytokines, gender and dietary components. The present review has concluded a comprehensive understanding of adipose development including its origin, classification, distribution, function, differentiation and molecular mechanisms underlying adipogenesis, which may provide potential therapeutic strategies for harnessing obesity without impairing adipose tissue function.
Collapse
Affiliation(s)
- Ge Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wanli Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiali Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yanbing Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wen Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| |
Collapse
|
23
|
Lei WJ, Zhang F, Li MD, Pan F, Ling LJ, Lu JW, Myatt L, Sun K, Wang WS. C/EBPδ deficiency delays infection-induced preterm birth. BMC Med 2024; 22:432. [PMID: 39379940 PMCID: PMC11462803 DOI: 10.1186/s12916-024-03650-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Parturition is an inflammation process. Exaggerated inflammatory reactions in infection lead to preterm birth. Although nuclear factor kappa B (NF-κB) has been recognized as a classical transcription factor mediating inflammatory reactions, those mediated by NF-κB per se are relatively short-lived. Therefore, there may be other transcription factors involved to sustain NF-κB-initiated inflammatory reactions in gestational tissues in infection-induced preterm birth. METHODS Cebpd-deficient mice were generated to investigate the role of CCAAT enhancer-binding protein δ (C/EBPδ) in lipopolysaccharide (LPS)-induced preterm birth, and the contribution of fetal and maternal C/EBPδ was further dissected by transferring Cebpd-/- or WT embryos to Cebpd-/- or WT dams. The effects of C/EBPδ pertinent to parturition were investigated in mouse and human myometrial and amnion cells. The interplay between C/EBPδ and NF-κB was examined in cultured human amnion fibroblasts. RESULTS The mouse study showed that LPS-induced preterm birth was delayed by Cebpd deficiency in either the fetus or the dam, with further delay being observed in conceptions where both the dam and the fetus were deficient in Cebpd. Mouse and human studies showed that the abundance of C/EBPδ was significantly increased in the myometrium and fetal membranes in infection-induced preterm birth. Furthermore, C/EBPδ participated in LPS-induced upregulation of pro-inflammatory cytokines as well as genes pertinent to myometrial contractility and fetal membrane activation in the myometrium and amnion respectively. A mechanistic study in human amnion fibroblasts showed that C/EBPδ, upon induction by NF-κB, could serve as a supplementary transcription factor to NF-κB to sustain the expression of genes pertinent to parturition. CONCLUSIONS C/EBPδ is a transcription factor to sustain the expression of gene initiated by NF-κB in the myometrium and fetal membranes in infection-induced preterm birth. Targeting C/EBPδ may be of therapeutic value in the treatment of infection-induced preterm birth.
Collapse
Affiliation(s)
- Wen-Jia Lei
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Li-Jun Ling
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| |
Collapse
|
24
|
Rojo MD, Bandyopadhyay I, Burke CM, Sturtz AD, Phillips ES, Matherne MG, Embrey SJ, LaRue R, Qiu Y, Schwertfeger KL, Machado HL. C/EBPβ deletion in macrophages impairs mammary gland alveolar budding during the estrous cycle. Life Sci Alliance 2024; 7:e202302516. [PMID: 39025525 PMCID: PMC11258408 DOI: 10.26508/lsa.202302516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
Macrophages have important roles in mammary gland development and tissue homeostasis, but the specific mechanisms that regulate macrophage function need further elucidation. We have identified C/EBPβ as an important transcription factor expressed by multiple macrophage populations in the normal mammary gland. Mammary glands from mice with C/EBPβ-deficient macrophages (Cebpb ΔM) show a significant decrease in alveolar budding during the diestrus stage of the reproductive cycle, whereas branching morphogenesis remains unchanged. Defects in alveolar budding were found to be the result of both systemic hormones and local macrophage-directed signals. RNA sequencing shows significant changes in PR-responsive genes and alterations in the Wnt landscape of mammary epithelial cells of Cebpb ΔM mice, which regulate stem cell expansion during diestrus. Cebpb ΔM macrophages demonstrate a shift from a pro-inflammatory to a tissue-reparative phenotype, and exhibit increased phagocytic capacity as compared to WT. Finally, Cebpb ΔM macrophages down-regulate Notch2 and Notch3, which normally promote stem cell expansion during alveolar budding. These results suggest that C/EBPβ is an important macrophage factor that facilitates macrophage-epithelial crosstalk during a key stage of mammary gland tissue homeostasis.
Collapse
Affiliation(s)
- Michelle D Rojo
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ishitri Bandyopadhyay
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Caitlin M Burke
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alexa D Sturtz
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Emily S Phillips
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Megan G Matherne
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Samuel J Embrey
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Rebecca LaRue
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, and Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Yinjie Qiu
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, and Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Kathryn L Schwertfeger
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, and Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Heather L Machado
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
- Tulane Cancer Center, Louisiana Cancer Research Consortium, New Orleans, LA, USA
| |
Collapse
|
25
|
Dey I, Li Y, Taylor TC, Peroumal D, Asada N, Panzer U, Biswas PS, Sterneck E, Gaffen SL. C/EBPδ Mediates Immunity to Renal Autoinflammatory Disorders in a Stage-specific Manner. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:767-778. [PMID: 39082925 PMCID: PMC11371505 DOI: 10.4049/jimmunol.2400124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/05/2024] [Indexed: 09/05/2024]
Abstract
Kidney disease represents a major medical and economic burden for which improved treatments are urgently needed. Emerging data have implicated Th17 cells and IL-17 signaling in the underlying pathogenesis of autoantibody-induced glomerulonephritis (AGN). However, the downstream transduction pathways mediated by IL-17 in autoimmunity are not well defined. In this article, we show that CCAAT/enhancer-binding protein (C/EBP) δ is elevated in kidney biopsies from multiple manifestations of human AGN. C/EBPδ is similarly upregulated in a mouse model of anti-glomerular basement membrane protein-mediated kidney disease, and Cebpd-/- mice were fully refractory to disease. Although C/EBPδ is expressed in a variety of cell types, C/EBPδ was required only in the radioresistant compartment to drive GN pathology. C/EBPδ induced expression of several IL-17-induced kidney injury markers and cytokines implicated in disease, including Il6 and Lcn2. Because mouse AGN models do not progress to fibrosis, we employed a nephrotoxic injury model using aristolochic acid I to assess the contribution of the IL-17-C/EBPδ pathway to renal fibrotic events. Surprisingly, deficiency of either C/EBPδ or the IL-17 receptor caused kidney fibrosis to be enhanced. Thus, C/EBPδ and IL-17 play divergent and apparently stage-specific roles in the pathogenesis of kidney disease.
Collapse
Affiliation(s)
- Ipsita Dey
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, PA
| | - Yang Li
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, PA
| | - Tiffany C Taylor
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, PA
| | - Doureradjou Peroumal
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, PA
| | - Nariaki Asada
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Partha S Biswas
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, PA
| | - Esta Sterneck
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD
| | - Sarah L Gaffen
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh, PA
| |
Collapse
|
26
|
Cantarella S, Vezzoli M, Carnevali D, Morselli M, Zemke N, Montanini B, Daussy CF, Wodrich H, Teichmann M, Pellegrini M, Berk A, Dieci G, Ferrari R. Adenovirus small E1A directs activation of Alu transcription at YAP/TEAD- and AP-1-bound enhancers through interactions with the EP400 chromatin remodeler. Nucleic Acids Res 2024; 52:9481-9500. [PMID: 39011896 PMCID: PMC11381368 DOI: 10.1093/nar/gkae615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
Alu retrotransposons, which form the largest family of mobile DNA elements in the human genome, have recently come to attention as a potential source of regulatory novelties, most notably by participating in enhancer function. Even though Alu transcription by RNA polymerase III is subjected to tight epigenetic silencing, their expression has long been known to increase in response to various types of stress, including viral infection. Here we show that, in primary human fibroblasts, adenovirus small e1a triggered derepression of hundreds of individual Alus by promoting TFIIIB recruitment by Alu-bound TFIIIC. Epigenome profiling revealed an e1a-induced decrease of H3K27 acetylation and increase of H3K4 monomethylation at derepressed Alus, making them resemble poised enhancers. The enhancer nature of e1a-targeted Alus was confirmed by the enrichment, in their upstream regions, of the EP300/CBP acetyltransferase, EP400 chromatin remodeler and YAP1 and FOS transcription factors. The physical interaction of e1a with EP400 was critical for Alu derepression, which was abrogated upon EP400 ablation. Our data suggest that e1a targets a subset of enhancer Alus whose transcriptional activation, which requires EP400 and is mediated by the e1a-EP400 interaction, may participate in the manipulation of enhancer activity by adenoviruses.
Collapse
Affiliation(s)
- Simona Cantarella
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Marco Vezzoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Davide Carnevali
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Marco Morselli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Nathan R Zemke
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Barbara Montanini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Coralie F Daussy
- Bordeaux University, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Bordeaux, France
| | - Harald Wodrich
- Bordeaux University, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Bordeaux, France
| | - Martin Teichmann
- Bordeaux University, Inserm U 1312, Bordeaux Institute of Oncology, 33076 Bordeaux, France
| | - Matteo Pellegrini
- Department of Molecular Cellular and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Arnold J Berk
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Giorgio Dieci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Roberto Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| |
Collapse
|
27
|
Habib S. Team players in the pathogenesis of metabolic dysfunctions-associated steatotic liver disease: The basis of development of pharmacotherapy. World J Gastrointest Pathophysiol 2024; 15:93606. [PMID: 39220834 PMCID: PMC11362842 DOI: 10.4291/wjgp.v15.i4.93606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Nutrient metabolism is regulated by several factors. Social determinants of health with or without genetics are the primary regulator of metabolism, and an unhealthy lifestyle affects all modulators and mediators, leading to the adaptation and finally to the exhaustion of cellular functions. Hepatic steatosis is defined by presence of fat in more than 5% of hepatocytes. In hepatocytes, fat is stored as triglycerides in lipid droplet. Hepatic steatosis results from a combination of multiple intracellular processes. In a healthy individual nutrient metabolism is regulated at several steps. It ranges from the selection of nutrients in a grocery store to the last step of consumption of ATP as an energy or as a building block of a cell as structural component. Several hormones, peptides, and genes have been described that participate in nutrient metabolism. Several enzymes participate in each nutrient metabolism as described above from ingestion to generation of ATP. As of now several publications have revealed very intricate regulation of nutrient metabolism, where most of the regulatory factors are tied to each other bidirectionally, making it difficult to comprehend chronological sequence of events. Insulin hormone is the primary regulator of all nutrients' metabolism both in prandial and fasting states. Insulin exerts its effects directly and indirectly on enzymes involved in the three main cellular function processes; metabolic, inflammation and repair, and cell growth and regeneration. Final regulators that control the enzymatic functions through stimulation or suppression of a cell are nuclear receptors in especially farnesoid X receptor and peroxisome proliferator-activated receptor/RXR ligands, adiponectin, leptin, and adiponutrin. Insulin hormone has direct effect on these final modulators. Whereas blood glucose level, serum lipids, incretin hormones, bile acids in conjunction with microbiota are intermediary modulators which are controlled by lifestyle. The purpose of this review is to overview the key players in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) that help us understand the disease natural course, risk stratification, role of lifestyle and pharmacotherapy in each individual patient with MASLD to achieve personalized care and target the practice of precision medicine. PubMed and Google Scholar databases were used to identify publication related to metabolism of carbohydrate and fat in states of health and disease states; MASLD, cardiovascular disease and cancer. More than 1000 publications including original research and review papers were reviewed.
Collapse
Affiliation(s)
- Shahid Habib
- Department of Hepatology, Liver Institute PLLC, Tucson, AZ 85712, United States
| |
Collapse
|
28
|
Shanley M, Daher M, Dou J, Li S, Basar R, Rafei H, Dede M, Gumin J, Pantaleόn Garcίa J, Nunez Cortes AK, He S, Jones CM, Acharya S, Fowlkes NW, Xiong D, Singh S, Shaim H, Hicks SC, Liu B, Jain A, Zaman MF, Miao Q, Li Y, Uprety N, Liu E, Muniz-Feliciano L, Deyter GM, Mohanty V, Zhang P, Evans SE, Shpall EJ, Lang FF, Chen K, Rezvani K. Interleukin-21 engineering enhances NK cell activity against glioblastoma via CEBPD. Cancer Cell 2024; 42:1450-1466.e11. [PMID: 39137729 PMCID: PMC11370652 DOI: 10.1016/j.ccell.2024.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/31/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024]
Abstract
Glioblastoma (GBM) is an aggressive brain cancer with limited therapeutic options. Natural killer (NK) cells are innate immune cells with strong anti-tumor activity and may offer a promising treatment strategy for GBM. We compared the anti-GBM activity of NK cells engineered to express interleukin (IL)-15 or IL-21. Using multiple in vivo models, IL-21 NK cells were superior to IL-15 NK cells both in terms of safety and long-term anti-tumor activity, with locoregionally administered IL-15 NK cells proving toxic and ineffective at tumor control. IL-21 NK cells displayed a unique chromatin accessibility signature, with CCAAT/enhancer-binding proteins (C/EBP), especially CEBPD, serving as key transcription factors regulating their enhanced function. Deletion of CEBPD resulted in loss of IL-21 NK cell potency while its overexpression increased NK cell long-term cytotoxicity and metabolic fitness. These results suggest that IL-21, through C/EBP transcription factors, drives epigenetic reprogramming of NK cells, enhancing their anti-tumor efficacy against GBM.
Collapse
Affiliation(s)
- Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Sufang Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Hind Rafei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Merve Dede
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Jezreel Pantaleόn Garcίa
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Ana Karen Nunez Cortes
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Shan He
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Corry M Jones
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Sunil Acharya
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Natalie W Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Donghai Xiong
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Sanjay Singh
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Hila Shaim
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Samantha Claire Hicks
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Bin Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Abhinav Jain
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Mohammad Fayyad Zaman
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Qi Miao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Nadima Uprety
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Enli Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Luis Muniz-Feliciano
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Gary M Deyter
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Patrick Zhang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Scott E Evans
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA.
| |
Collapse
|
29
|
Fu M, Gao Q, Xiao M, Li RF, Sun XY, Li SL, Peng X, Ge XY. Extracellular Vesicles Containing circMYBL1 Induce CD44 in Adenoid Cystic Carcinoma Cells and Pulmonary Endothelial Cells to Promote Lung Metastasis. Cancer Res 2024; 84:2484-2500. [PMID: 38657100 DOI: 10.1158/0008-5472.can-23-3508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/13/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Adenoid cystic carcinoma (ACC) is a rare malignant epithelial neoplasm that arises in secretory glands and commonly metastasizes to the lungs. MYBL1 is frequently overexpressed in ACC and has been suggested to be a driver of the disease. In this study, we identified a circular RNA (circRNA) derived from MYBL1 pre-mRNA that was accompanied by the overexpression of MYBL1 in ACC. Overexpression of circMYBL1 was correlated with increased lung metastasis and poor overall survival in patients with ACC. Ectopic circMYBL1 overexpression promoted malignant phenotypes and lung metastasis of ACC cells. Mechanistically, circMYBL1 formed a circRNA-protein complex with CCAAT enhancer-binding protein β (CEBPB), which inhibited ubiquitin-mediated degradation and promoted nuclear translocation of CEBPB. In the nucleus, circMYBL1 increased the binding of CEBPB to the CD44 promoter region and enhanced its transcription. In addition, circMYBL1 was enriched in small extracellular vesicles (sEV) isolated from the plasma of patients with ACC. Treatment with sEVs containing circMYBL1 in sEVs enhanced prometastatic phenotypes of ACC cells, elevated the expression of CD44 in human pulmonary microvascular endothelial cells (HPMEC), and enhanced the adhesion between HPMECs and ACC cells. Moreover, circMYBL1 encapsulated in sEVs increased the arrest of circulating ACC cells in the lung and enhanced lung metastatic burden. These data suggest that circMYBL1 is a tumor-promoting circRNA that could serve as a potential biomarker and therapeutic target for ACC. Significance: circMYBL1 stabilizes CEBPB and upregulates CD44 to promote adhesion between cancer cells and endothelial cells and enables lung metastasis of adenoid cystic carcinoma, suggesting that inhibition of this axis could improve patient outcomes.
Collapse
MESH Headings
- Humans
- Lung Neoplasms/secondary
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/genetics
- Hyaluronan Receptors/metabolism
- Hyaluronan Receptors/genetics
- Carcinoma, Adenoid Cystic/pathology
- Carcinoma, Adenoid Cystic/metabolism
- Carcinoma, Adenoid Cystic/genetics
- Carcinoma, Adenoid Cystic/secondary
- Mice
- Animals
- Extracellular Vesicles/metabolism
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- CCAAT-Enhancer-Binding Protein-beta/metabolism
- CCAAT-Enhancer-Binding Protein-beta/genetics
- Cell Line, Tumor
- Female
- Mice, Nude
- Male
- Gene Expression Regulation, Neoplastic
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Min Fu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, PR China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China
- National Center for Stomatology, Beijing, PR China
- National Clinical Research Center for Oral Diseases, Beijing, PR China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Qian Gao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Mian Xiao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Rui-Feng Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Xin-Yi Sun
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Sheng-Lin Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Xin Peng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Xi-Yuan Ge
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, PR China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, PR China
- National Center for Stomatology, Beijing, PR China
- National Clinical Research Center for Oral Diseases, Beijing, PR China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| |
Collapse
|
30
|
Gu W, Eke C, Gonzalez Santiago E, Olaloye O, Konnikova L. Single-cell atlas of the small intestine throughout the human lifespan demonstrates unique features of fetal immune cells. Mucosal Immunol 2024; 17:599-617. [PMID: 38555026 PMCID: PMC11384551 DOI: 10.1016/j.mucimm.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Proper development of mucosal immunity is critical for human health. Over the past decade, it has become evident that in humans, this process begins in utero. However, there are limited data on the unique features and functions of fetal mucosal immune cells. To address this gap, we integrated several single-cell ribonucleic acid sequencing datasets of the human small intestine (SI) to create an SI transcriptional atlas throughout the human life span, ranging from the first trimester to adulthood, with a focus on immune cells. Fetal SI displayed a complex immune landscape comprising innate and adaptive immune cells that exhibited distinct transcriptional programs from postnatal samples, especially compared with pediatric and adult samples. We identified shifts in myeloid populations across gestation and progression of memory T-cell states throughout the human lifespan. In particular, there was a marked shift of memory T cells from those with stem-like properties in the fetal samples to fully differentiated cells with a high expression of activation and effector function genes in adult samples, with neonatal samples containing both features. Finally, we demonstrate that the SI developmental atlas can be used to elucidate improper trajectories linked to mucosal diseases by implicating developmental abnormalities underlying necrotizing enterocolitis, a severe intestinal complication of prematurity. Collectively, our data provide valuable resources and important insights into intestinal immunity that will facilitate regenerative medicine and disease understanding.
Collapse
Affiliation(s)
- Weihong Gu
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Chino Eke
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | | | - Oluwabunmi Olaloye
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Department of Obstetrics, Gynecology and Reproductive Science, Yale University School of Medicine, New Haven, CT, USA; Program in Translational Biomedicine, Yale University School of Medicine, New Haven, CT, USA; Program in Human Translational Immunology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
31
|
Wu Y, Sun Y, Song Y, Wang J, Han Y, Yang N, Lin H, Yin Y, Han X. PPA1 promotes adipogenesis by regulating the stability of C/EBPs. Cell Death Differ 2024; 31:1044-1056. [PMID: 38762596 PMCID: PMC11303681 DOI: 10.1038/s41418-024-01309-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/20/2024] Open
Abstract
Adipogenesis significantly contributes to healthy adipose tissue expansion in obesity. Increasing adipocyte number or function to alleviate adipose tissue overload could serve as a therapeutic strategy for both lipodystrophy and obesity-related metabolic syndrome. Inorganic pyrophosphatase (PPA1) is an enzyme that catalyzes the hydrolysis of pyrophosphate (PPi) and is involved in many biochemical reactions, but its function in adipose tissue has not been studied previously. In this study, we demonstrated that adipose-specific PPA1 knockout (PPA1AKO) mice showed lipodystrophy and spontaneously developed hepatic steatosis and severe insulin resistance under normal chow diet feeding. PPA1 deficiency suppressed the differentiation of primary adipocyte precursors and 3T3-L1 cells. Notably, PPA1 overexpression can restore inhibited adipogenesis in preadipocytes isolated from db/db mice and type 2 diabetes patients. Mechanistic studies have revealed that PPA1 acts as a positive regulator of early adipocyte differentiation by promoting CCAAT/enhancer-binding proteinβ and δ (C/EBPβ and δ) protein stability. Moreover, the function of PPA1 in adipogenesis is independent of its PPi catalytic activity. Collectively, our in vivo and in vitro findings demonstrated that PPA1 is a novel critical upstream regulator of adipogenesis, controlling adipose tissue development and whole-body metabolic homeostasis.
Collapse
Affiliation(s)
- Yangyang Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Sun
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuqing Song
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiateng Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ye Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nan Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haiyan Lin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Ye Yin
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
32
|
Chen J, Pan Y, Lu Y, Fang X, Ma T, Chen X, Wang Y, Fang X, Zhang C, Song C. The Function and Mechanism of Long Noncoding RNAs in Adipogenic Differentiation. Genes (Basel) 2024; 15:875. [PMID: 39062654 PMCID: PMC11275360 DOI: 10.3390/genes15070875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Adipocytes are crucial for maintaining energy balance. Adipocyte differentiation involves distinct stages, including the orientation stage, clone amplification stage, clone amplification termination stage, and terminal differentiation stage. Understanding the regulatory mechanisms governing adipogenic differentiation is essential for comprehending the physiological processes and identifying potential biomarkers and therapeutic targets for metabolic diseases, ultimately improving glucose and fat metabolism. Adipogenic differentiation is influenced not only by key factors such as hormones, the peroxisome proliferator-activated receptor (PPAR) family, and the CCATT enhancer-binding protein (C/EBP) family but also by noncoding RNA, including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA). Among these, lncRNA has been identified as a significant regulator in adipogenic differentiation. Research has demonstrated various ways in which lncRNAs contribute to the molecular mechanisms of adipogenic differentiation. Throughout the adipogenesis process, lncRNAs modulate adipocyte differentiation and development by influencing relevant signaling pathways and transcription factors. This review provides a brief overview of the function and mechanism of lncRNAs in adipogenic differentiation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (J.C.); (Y.P.); (Y.L.); (X.F.); (T.M.); (X.C.); (Y.W.); (X.F.)
| | - Chengchuang Song
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (J.C.); (Y.P.); (Y.L.); (X.F.); (T.M.); (X.C.); (Y.W.); (X.F.)
| |
Collapse
|
33
|
Chen N, Xu Y, Liu Y, Zhao H, Liu R, Zhang Z. CEBPD aggravates apoptosis and oxidative stress of neuron after ischemic stroke by Nrf2/HO-1 pathway. Exp Cell Res 2024; 440:114127. [PMID: 38857839 DOI: 10.1016/j.yexcr.2024.114127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/12/2024]
Abstract
CCAAT enhancer binding protein delta (CEBPD) is a transcription factor and plays an important role in apoptosis and oxidative stress, which are the main pathogenesis of ischemic stroke. However, whether CEBPD regulates ischemic stroke through targeting apoptosis and oxidative stress is unclear. Therefore, to answer this question, rat middle cerebral artery occlusion (MCAO) reperfusion model and oxygen-glucose deprivation/reoxygenation (OGD/R) primary cortical neuron were established to mimic ischemic reperfusion injury. We found that CEBPD was upregulated and accompanied with increased neurological deficit scores and infarct size, and decreased neuron in MCAO rats. The siRNA targeted CEBPD inhibited CEBPD expression in rats, and meanwhile lentivirus system was used to blocked CEBPD expression in primary neuron. CEBPD degeneration decreased neurological deficit scores, infarct size and brain water content of MCAO rats. Knockdown of CEBPD enhanced cell viability and reduced apoptosis as well as oxidative stress in vivo and in vitro. CEBPD silencing promoted the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus and the expression of heme oxygenase 1 (HO-1). Newly, CEBPD facilitated the transcription of cullin 3 (CUL3), which intensified ischemic stroke through Nrf2/HO-1 pathway that was proposed by our team in the past. In conclusion, targeting CEBPD-CUL3-Nrf2/HO-1 axis may be contributed to cerebral ischemia therapy.
Collapse
Affiliation(s)
- Nan Chen
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Yuanqi Xu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Yushuang Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Hanshu Zhao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Ruijia Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Zhongling Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
34
|
Cai R, Jiang Q, Chen D, Feng Q, Liang X, Ouyang Z, Liao W, Zhang R, Fang H. Identification of osteoblastic autophagy-related genes for predicting diagnostic markers in osteoarthritis. iScience 2024; 27:110130. [PMID: 38952687 PMCID: PMC11215306 DOI: 10.1016/j.isci.2024.110130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/15/2024] [Accepted: 05/24/2024] [Indexed: 07/03/2024] Open
Abstract
The development of osteoarthritis (OA) involves subchondral bone lesions, but the role of osteoblastic autophagy-related genes (ARGs) in osteoarthritis is unclear. Through integrated analysis of single-cell dataset, Bulk RNA dataset, and 367 ARGs extracted from GeneCards, 40 ARGs were found. By employing multiple machine learning algorithms and PPI networks, three key genes (DDIT3, JUN, and VEGFA) were identified. Then the RF model constructed from these genes indicated great potential as a diagnostic tool. Furthermore, the model's effectiveness in predicting OA has been confirmed through external validation datasets. Moreover, the expression of ARGs was examined in osteoblasts subject to excessive mechanical stress, human and mouse tissues. Finally, the role of ARGs in OA was confirmed through co-culturing explants and osteoblasts. Thus, osteoblastic ARGs could be crucial in OA development, providing potential diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Rulong Cai
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qijun Jiang
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Urology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
| | - Dongli Chen
- Department of Ultrasound, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Qi Feng
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xinzhi Liang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhaoming Ouyang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Weijian Liao
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Rongkai Zhang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hang Fang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
35
|
Giammona A, Di Franco S, Lo Dico A, Stassi G. The miRNA Contribution in Adipocyte Maturation. Noncoding RNA 2024; 10:35. [PMID: 38921832 PMCID: PMC11206860 DOI: 10.3390/ncrna10030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Mesenchymal stem cells, due to their multipotent ability, are considered one of the best candidates to be used in regenerative medicine. To date, the most used source is represented by the bone marrow, despite the limited number of cells and the painful/invasive procedure for collection. Therefore, the scientific community has investigated many alternative sources for the collection of mesenchymal stem cells, with the adipose tissue representing the best option, given the abundance of mesenchymal stem cells and the easy access. Although adipose mesenchymal stem cells have recently been investigated for their multipotency, the molecular mechanisms underlying their adipogenic potential are still unclear. In this scenario, this communication is aimed at defining the role of miRNAs in adipogenic potential of adipose-derived mesenchymal stem cells via real-time PCR. Even if preliminary, our data show that cell culture conditions affect the expression of specific miRNA involved in the adipogenic potential of mesenchymal stem cells. The in vitro/in vivo validation of these results could pave the way for novel therapeutic strategies in the field of regenerative medicine. In conclusion, our research highlights how specific cell culture conditions can modulate the adipogenic potential of adipose mesenchymal stem cells through the regulation of specific miRNAs.
Collapse
Affiliation(s)
- Alessandro Giammona
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), 20054 Segrate, Italy;
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Laboratory of Cellular and Molecular Pathophysiology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy;
| | - Simone Di Franco
- Laboratory of Cellular and Molecular Pathophysiology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy;
| | - Alessia Lo Dico
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), 20054 Segrate, Italy;
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Giorgio Stassi
- Laboratory of Cellular and Molecular Pathophysiology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
36
|
Cao S, Liu M, Han Y, Li S, Zhu X, Li D, Shi Y, Liu B. Effects of Saponins on Lipid Metabolism: The Gut-Liver Axis Plays a Key Role. Nutrients 2024; 16:1514. [PMID: 38794751 PMCID: PMC11124185 DOI: 10.3390/nu16101514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Unhealthy lifestyles (high-fat diet, smoking, alcohol consumption, too little exercise, etc.) in the current society are prone to cause lipid metabolism disorders affecting the health of the organism and inducing the occurrence of diseases. Saponins, as biologically active substances present in plants, have lipid-lowering, inflammation-reducing, and anti-atherosclerotic effects. Saponins are thought to be involved in the regulation of lipid metabolism in the body; it suppresses the appetite and, thus, reduces energy intake by modulating pro-opiomelanocortin/Cocaine amphetamine regulated transcript (POMC/CART) neurons and neuropeptide Y/agouti-related peptide (NPY/AGRP) neurons in the hypothalamus, the appetite control center. Saponins directly activate the AMP-activated protein kinase (AMPK) signaling pathway and related transcriptional regulators such as peroxisome-proliferator-activated-receptors (PPAR), CCAAT/enhancer-binding proteins (C/EBP), and sterol-regulatory element binding proteins (SREBP) increase fatty acid oxidation and inhibit lipid synthesis. It also modulates gut-liver interactions to improve lipid metabolism by regulating gut microbes and their metabolites and derivatives-short-chain fatty acids (SCFAs), bile acids (BAs), trimethylamine (TMA), lipopolysaccharide (LPS), et al. This paper reviews the positive effects of different saponins on lipid metabolism disorders, suggesting that the gut-liver axis plays a crucial role in improving lipid metabolism processes and may be used as a therapeutic target to provide new strategies for treating lipid metabolism disorders.
Collapse
Affiliation(s)
- Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
| | - Yao Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
| | - Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
- Henan Provincial Key Laboratory of Forage Resource Innovation and Utilization, Zhengzhou 450046, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450046, China
| | - Defeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
- Henan Provincial Key Laboratory of Forage Resource Innovation and Utilization, Zhengzhou 450046, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450046, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
- Henan Provincial Key Laboratory of Forage Resource Innovation and Utilization, Zhengzhou 450046, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450046, China
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (S.C.); (M.L.); (Y.H.); (S.L.); (X.Z.); (D.L.)
- Henan Provincial Key Laboratory of Forage Resource Innovation and Utilization, Zhengzhou 450046, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450046, China
| |
Collapse
|
37
|
Qian J, Cartee A, Xu W, Yan Y, Wang B, Artsimovitch I, Dunlap D, Finzi L. Reciprocating RNA Polymerase batters through roadblocks. Nat Commun 2024; 15:3193. [PMID: 38609371 PMCID: PMC11014978 DOI: 10.1038/s41467-024-47531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
RNA polymerases must transit through protein roadblocks to produce full-length transcripts. Here we report real-time measurements of Escherichia coli RNA polymerase passing through different barriers. As intuitively expected, assisting forces facilitated, and opposing forces hindered, RNA polymerase passage through lac repressor protein bound to natural binding sites. Force-dependent differences were significant at magnitudes as low as 0.2 pN and were abolished in the presence of the transcript cleavage factor GreA, which rescues backtracked RNA polymerase. In stark contrast, opposing forces promoted passage when the rate of RNA polymerase backtracking was comparable to, or faster than the rate of dissociation of the roadblock, particularly in the presence of GreA. Our experiments and simulations indicate that RNA polymerase may transit after roadblocks dissociate, or undergo cycles of backtracking, recovery, and ramming into roadblocks to pass through. We propose that such reciprocating motion also enables RNA polymerase to break protein-DNA contacts that hold RNA polymerase back during promoter escape and RNA chain elongation. This may facilitate productive transcription in vivo.
Collapse
Affiliation(s)
- Jin Qian
- Physics Department, Emory University, Atlanta, GA, USA
| | | | - Wenxuan Xu
- Physics Department, Emory University, Atlanta, GA, USA
| | - Yan Yan
- Physics Department, Emory University, Atlanta, GA, USA
| | - Bing Wang
- The Center for RNA Biology and Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Irina Artsimovitch
- The Center for RNA Biology and Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - David Dunlap
- Physics Department, Emory University, Atlanta, GA, USA
| | - Laura Finzi
- Physics Department, Emory University, Atlanta, GA, USA.
| |
Collapse
|
38
|
Yao Q, Long C, Yi P, Zhang G, Wan W, Rao X, Ying J, Liang W, Hua F. C/EBPβ: A transcription factor associated with the irreversible progression of Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14721. [PMID: 38644578 PMCID: PMC11033503 DOI: 10.1111/cns.14721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder distinguished by a swift cognitive deterioration accompanied by distinctive pathological hallmarks such as extracellular Aβ (β-amyloid) peptides, neuronal neurofibrillary tangles (NFTs), sustained neuroinflammation, and synaptic degeneration. The elevated frequency of AD cases and its proclivity to manifest at a younger age present a pressing challenge in the quest for novel therapeutic interventions. Numerous investigations have substantiated the involvement of C/EBPβ in the progression of AD pathology, thus indicating its potential as a therapeutic target for AD treatment. AIMS Several studies have demonstrated an elevation in the expression level of C/EBPβ among individuals afflicted with AD. Consequently, this review predominantly delves into the association between C/EBPβ expression and the pathological progression of Alzheimer's disease, elucidating its underlying molecular mechanism, and pointing out the possibility that C/EBPβ can be a new therapeutic target for AD. METHODS A systematic literature search was performed across multiple databases, including PubMed, Google Scholar, and so on, utilizing predetermined keywords and MeSH terms, without temporal constraints. The inclusion criteria encompassed diverse study designs, such as experimental, case-control, and cohort studies, restricted to publications in the English language, while conference abstracts and unpublished sources were excluded. RESULTS Overexpression of C/EBPβ exacerbates the pathological features of AD, primarily by promoting neuroinflammation and mediating the transcriptional regulation of key molecular pathways, including δ-secretase, apolipoprotein E4 (APOE4), acidic leucine-rich nuclear phosphoprotein-32A (ANP32A), transient receptor potential channel 1 (TRPC1), and Forkhead BoxO (FOXO). DISCUSSION The correlation between overexpression of C/EBPβ and the pathological development of AD, along with its molecular mechanisms, is evident. Investigating the pathways through which C/EBPβ regulates the development of AD reveals numerous multiple vicious cycle pathways exacerbating the pathological progression of the disease. Furthermore, the exacerbation of pathological progression due to C/EBPβ overexpression and its molecular mechanism is not limited to AD but also extends to other neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and multiple sclerosis (MS). CONCLUSION The overexpression of C/EBPβ accelerates the irreversible progression of AD pathophysiology. Additionally, C/EBPβ plays a crucial role in mediating multiple pathways linked to AD pathology, some of which engender vicious cycles, leading to the establishment of feedback mechanisms. To sum up, targeting C/EBPβ could hold promise as a therapeutic strategy not only for AD but also for other degenerative diseases.
Collapse
Affiliation(s)
- Qing Yao
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Chubing Long
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Pengcheng Yi
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Guangyong Zhang
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Wei Wan
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Xiuqin Rao
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Jun Ying
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Weidong Liang
- Department of AnesthesiologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxi ProvinceChina
| | - Fuzhou Hua
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| |
Collapse
|
39
|
Mei X, Huang T, Chen A, Liu W, Jiang L, Zhong S, Shen D, Qiao P, Zhao Q. BmC/EBPZ gene is essential for the larval growth and development of silkworm, Bombyx mori. Front Physiol 2024; 15:1298869. [PMID: 38523808 PMCID: PMC10959570 DOI: 10.3389/fphys.2024.1298869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
The genetic male sterile line (GMS) of the silkworm Bombyx mori is a recessive mutant that is naturally mutated from the wild-type 898WB strain. One of the major characteristics of the GMS mutant is its small larvae. Through positional cloning, candidate genes for the GMS mutant were located in a region approximately 800.5 kb long on the 24th linkage group of the silkworm. One of the genes was Bombyx mori CCAAT/enhancer-binding protein zeta (BmC/EBPZ), which is a member of the basic region-leucine zipper transcription factor family. Compared with the wild-type 898WB strain, the GMS mutant features a 9 bp insertion in the 3'end of open reading frame sequence of BmC/EBPZ gene. Moreover, the high expression level of the BmC/EBPZ gene in the testis suggests that the gene is involved in the regulation of reproduction-related genes. Using the CRISPR/Cas9-mediated knockout system, we found that the BmC/EBPZ knockout strains had the same phenotypes as the GMS mutant, that is, the larvae were small. However, the larvae of BmC/EBPZ knockout strains died during the development of the third instar. Therefore, the BmC/EBPZ gene was identified as the major gene responsible for GMS mutation.
Collapse
Affiliation(s)
- Xinglin Mei
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Tianchen Huang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Anli Chen
- Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang, Shaanxi, China
| | - Weibin Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Li Jiang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Shanshan Zhong
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Dongxu Shen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Peitong Qiao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Qiaoling Zhao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
40
|
Li L, Zeng J, Zhang X, Feng Y, Lei JH, Xu X, Chen Q, Deng CX. Sirt6 ablation in the liver causes fatty liver that increases cancer risky by upregulating Serpina12. EMBO Rep 2024; 25:1361-1386. [PMID: 38332150 PMCID: PMC10933290 DOI: 10.1038/s44319-024-00071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
Non-alcoholic fatty liver disease is a chronic liver abnormality that exhibits high variability and can lead to liver cancer in advanced stages. Hepatic ablation of SIRT6 results in fatty liver disease, yet the potential mechanism of SIRT6 deficiency, particularly in relation to downstream mediators for NAFLD, remains elusive. Here we identify Serpina12 as a key gene regulated by Sirt6 that plays a crucial function in energy homeostasis. Specifically, Sirt6 suppresses Serpina12 expression through histone deacetylation at its promoter region, after which the transcription factor, Cebpα, binds to and regulates its expression. Sirt6 deficiency results in an increased expression of Serpina12 in hepatocytes, which enhances insulin signaling and promotes lipid accumulation. Importantly, CRISPR-Cas9 mediated Serpina12 knockout in the liver ameliorated fatty liver disease caused by Sirt6 ablation. Finally, we demonstrate that Sirt6 functions as a tumor suppressor in the liver, and consequently, deletion of Sirt6 in the liver leads to not only the spontaneous development of tumors but also enhanced tumorigenesis in response to DEN treatment or under conditions of obesity.
Collapse
Affiliation(s)
- Licen Li
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jianming Zeng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xin Zhang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Yangyang Feng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Josh Haipeng Lei
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xiaoling Xu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Qiang Chen
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China.
| | - Chu-Xia Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China.
| |
Collapse
|
41
|
Villano G, Novo E, Turato C, Quarta S, Ruvoletto M, Biasiolo A, Protopapa F, Chinellato M, Martini A, Trevellin E, Granzotto M, Cannito S, Cendron L, De Siervi S, Guido M, Parola M, Vettor R, Pontisso P. The protease activated receptor 2 - CCAAT/enhancer-binding protein beta - SerpinB3 axis inhibition as a novel strategy for the treatment of non-alcoholic steatohepatitis. Mol Metab 2024; 81:101889. [PMID: 38307387 PMCID: PMC10864841 DOI: 10.1016/j.molmet.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/11/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024] Open
Abstract
OBJECTIVE The serine protease inhibitor SerpinB3 has been described as critical mediator of liver fibrosis and it has been recently proposed as an additional hepatokine involved in NASH development and insulin resistance. Protease Activated Receptor 2 has been identified as a novel regulator of hepatic metabolism. A targeted therapeutic strategy for NASH has been investigated, using 1-Piperidine Propionic Acid (1-PPA), since this compound has been recently proposed as both Protease Activated Receptor 2 and SerpinB3 inhibitor. METHODS The effect of SerpinB3 on inflammation and fibrosis genes was assessed in human macrophage and stellate cell lines. Transgenic mice, either overexpressing SerpinB3 or carrying Serpinb3 deletion and their relative wild type strains, were used in experimental NASH models. Subgroups of SerpinB3 transgenic mice and their controls were also injected with 1-PPA to assess the efficacy of this compound in NASH inhibition. RESULTS 1-PPA did not present significant cell and organ toxicity and was able to inhibit SerpinB3 and PAR2 in a dose-dependent manner. This effect was associated to a parallel reduction of the synthesis of the molecules induced by endogenous SerpinB3 or by its paracrine effects both in vitro and in vivo, leading to inhibition of lipid accumulation, inflammation and fibrosis in experimental NASH. At mechanistic level, the antiprotease activity of SerpinB3 was found essential for PAR2 activation, determining upregulation of the CCAAT Enhancer Binding Protein beta (C/EBP-β), another pivotal regulator of metabolism, inflammation and fibrosis, which in turn determined SerpinB3 synthesis. CONCLUSIONS 1-PPA treatment was able to inhibit the PAR2 - C/EBP-β - SerpinB3 axis and to protect from NASH development and progression, supporting the potential use of a similar approach for a targeted therapy of NASH.
Collapse
Affiliation(s)
- Gianmarco Villano
- Dept. of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Italy
| | - Erica Novo
- Dept. of Clinical and Biological Sciences, University of Torino, Italy
| | | | | | | | | | | | | | | | | | | | - Stefania Cannito
- Dept. of Clinical and Biological Sciences, University of Torino, Italy
| | | | | | - Maria Guido
- Dept. of Medicine, University of Padova, Italy
| | - Maurizio Parola
- Dept. of Clinical and Biological Sciences, University of Torino, Italy
| | | | | |
Collapse
|
42
|
Hu Z, Sui Q, Jin X, Shan G, Huang Y, Yi Y, Zeng D, Zhao M, Zhan C, Wang Q, Lin Z, Lu T, Chen Z. IL6-STAT3-C/EBPβ-IL6 positive feedback loop in tumor-associated macrophages promotes the EMT and metastasis of lung adenocarcinoma. J Exp Clin Cancer Res 2024; 43:63. [PMID: 38424624 PMCID: PMC10903044 DOI: 10.1186/s13046-024-02989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Lung cancer is one of the most common tumors in the world, and metastasis is one of the major causes of tumor-related death in lung cancer patients. Tumor-associated macrophages (TAMs) are a major component of the tumor microenvironment (TME) and are frequently associated with tumor metastasis in human cancers. However, the regulatory mechanisms of TAMs in lung cancer metastasis remain unclear. METHODS Single-cell sequencing analysis of lung cancer and normal tissues from public databases and from 14 patients who underwent surgery at Zhongshan Hospital was performed. In vitro co-culture experiments were performed to evaluate the effects of TAMs on lung cancer migration and invasion. Changes in the expression of IL-6, STAT3, C/EBPΒ, and EMT pathway were verified using RT-qPCR, western blotting, and immunofluorescence. Dual luciferase reporter assays and ChIP were used to reveal potential regulatory sites on the transcription factor sets. In addition, the effects of TAMs on lung cancer progression and metastasis were confirmed by in vivo models. RESULTS TAM infiltration is associated with tumor progression and poor prognosis. IL-6 secreted by TAMs can activate the JAK2/STAT3 pathway through autocrine secretion, and STAT3 acts as a transcription factor to activate the expression of C/EBPβ, which further promotes the transcription and expression of IL-6, forming positive feedback loops for IL6-STAT3-C/EBPβ-IL6 in TAMs. IL-6 secreted by TAMs promotes lung cancer progression and metastasis in vivo and in vitro by activating the EMT pathway, which can be attenuated by the use of JAK2/STAT3 pathway inhibitors or IL-6 monoclonal antibodies. CONCLUSIONS Our data suggest that TAMs promote IL-6 expression by forming an IL6-STAT3-C/EBPβ-IL6 positive feedback loop. Released IL-6 can induce the EMT pathway in lung cancer to enhance migration, invasion, and metastasis. The use of IL-6-neutralizing antibody can partially counteract the promotion of LUAD by TAMs. A novel mechanism of macrophage-promoted tumor progression was revealed, and the IL6-STAT3-C/EBPβ-IL6 signaling cascade may be a potential therapeutic target against lung cancer.
Collapse
Affiliation(s)
- Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Xing Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Yanjun Yi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Dejun Zeng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Mengnan Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China.
| | - Tao Lu
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital / Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences / Cancer Hospital Affiliated to Shanxi Medical University, No. 3 Gongren Xin Jie, Xinghualing District, Taiyuan, 030013, Shanxi Province, China.
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
43
|
Guo Y, Zhang Y, Guan Y, Chen N, Zhao M, Li Y, Zhou T, Zhang X, Zhu F, Guo C, Shi Y, Wang Q, Zhang L, Li Y. IL-37d enhances COP1-mediated C/EBPβ degradation to suppress spontaneous neutrophil migration and tumor progression. Cell Rep 2024; 43:113787. [PMID: 38363681 DOI: 10.1016/j.celrep.2024.113787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/18/2024] Open
Abstract
The spontaneous migration of bone marrow neutrophils (BMNs) is typically induced by distant tumor cells during the early stage of the tumor and critically controls tumor progression and metastases. Therefore, identifying the key molecule that prevents this process is extremely important for suppressing tumors. Interleukin-37 (IL-37) can suppress pro-inflammatory cytokine generation via an IL-1R8- or Smad3-mediated pathway. Here, we demonstrate that human neutrophil IL-37 is responsively reduced by tumor cells and the recombinant IL-37 isoform d (IL-37d) significantly inhibits spontaneous BMN migration and tumor lesion formation in the lung by negatively modulating CCAAT/enhancer binding protein beta (C/EBPβ) in a Lewis lung carcinoma (LLC)-inducing lung cancer mouse model. Mechanistically, IL-37d promotes C/EBPβ ubiquitination degradation by facilitating ubiquitin ligase COP1 recruitment and disrupts C/EBPβ DNA binding abilities, thereby reducing neutrophil ATP generation and migration. Our work reveals an anti-tumor mechanism for IL-37 via destabilization of C/EBPβ to prevent spontaneous BMN migration and tumor progression.
Collapse
Affiliation(s)
- Yaxin Guo
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yi Zhang
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yetong Guan
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Nuo Chen
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Ming Zhao
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yubin Li
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Tian Zhou
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Xinyue Zhang
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Faliang Zhu
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Chun Guo
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Yongyu Shi
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Qun Wang
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Lining Zhang
- Department of Immunology, School of Basic Medical Science, Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China.
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medical Science, Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China.
| |
Collapse
|
44
|
Begg LR, Orriols AM, Zannikou M, Yeh C, Vadlamani P, Kanojia D, Bolin R, Dunne SF, Balakrishnan S, Camarda R, Roth D, Zielinski-Mozny NA, Yau C, Vassilopoulos A, Huang TH, Kim KYA, Horiuchi D. S100A8/A9 predicts response to PIM kinase and PD-1/PD-L1 inhibition in triple-negative breast cancer mouse models. COMMUNICATIONS MEDICINE 2024; 4:22. [PMID: 38378783 PMCID: PMC10879183 DOI: 10.1038/s43856-024-00444-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Understanding why some triple-negative breast cancer (TNBC) patients respond poorly to existing therapies while others respond well remains a challenge. This study aims to understand the potential underlying mechanisms distinguishing early-stage TNBC tumors that respond to clinical intervention from non-responders, as well as to identify clinically viable therapeutic strategies, specifically for TNBC patients who may not benefit from existing therapies. METHODS We conducted retrospective bioinformatics analysis of historical gene expression datasets to identify a group of genes whose expression levels in early-stage tumors predict poor clinical outcomes in TNBC. In vitro small-molecule screening, genetic manipulation, and drug treatment in syngeneic mouse models of TNBC were utilized to investigate potential therapeutic strategies and elucidate mechanisms of drug action. RESULTS Our bioinformatics analysis reveals a robust association between increased expression of immunosuppressive cytokine S100A8/A9 in early-stage tumors and subsequent disease progression in TNBC. A targeted small-molecule screen identifies PIM kinase inhibitors as capable of decreasing S100A8/A9 expression in multiple cell types, including TNBC and immunosuppressive myeloid cells. Combining PIM inhibition and immune checkpoint blockade induces significant antitumor responses, especially in otherwise resistant S100A8/A9-high PD-1/PD-L1-positive tumors. Notably, serum S100A8/A9 levels mirror those of tumor S100A8/A9 in a syngeneic mouse model of TNBC. CONCLUSIONS Our data propose S100A8/A9 as a potential predictive and pharmacodynamic biomarker in clinical trials evaluating combination therapy targeting PIM and immune checkpoints in TNBC. This work encourages the development of S100A8/A9-based liquid biopsy tests for treatment guidance.
Collapse
Affiliation(s)
- Lauren R Begg
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Adrienne M Orriols
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- University of Florida College of Medicine, Gainesville, FL, USA
| | - Markella Zannikou
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chen Yeh
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Biostatistics Collaboration Center, Northwestern University, Chicago, IL, USA
- Rush University Medical Center, Chicago, IL, USA
| | | | - Deepak Kanojia
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Mythic Therapeutics, Waltham, MA, USA
| | - Rosemary Bolin
- Center for Comparative Medicine, Northwestern University, Chicago, IL, USA
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Sara F Dunne
- High Throughput Analysis Laboratory, Northwestern University, Evanston, IL, USA
| | - Sanjeev Balakrishnan
- University of California, San Francisco, San Francisco, CA, USA
- Pulze.ai, San Francisco, CA, USA
| | - Roman Camarda
- University of California, San Francisco, San Francisco, CA, USA
- Novo Ventures US, Inc., San Francisco, CA, USA
| | - Diane Roth
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nicolette A Zielinski-Mozny
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Comparative Medicine, Northwestern University, Chicago, IL, USA
| | - Christina Yau
- University of California, San Francisco, San Francisco, CA, USA
| | - Athanassios Vassilopoulos
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
- AbbVie, Inc., North Chicago, IL, USA
| | - Tzu-Hsuan Huang
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kwang-Youn A Kim
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Biostatistics Collaboration Center, Northwestern University, Chicago, IL, USA
| | - Dai Horiuchi
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- Center for Human Immunobiology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
45
|
Danielewski M, Rapak A, Kruszyńska A, Małodobra-Mazur M, Oleszkiewicz P, Dzimira S, Kucharska AZ, Słupski W, Matuszewska A, Nowak B, Szeląg A, Piórecki N, Zaleska-Dorobisz U, Sozański T. Cornelian Cherry ( Cornus mas L.) Fruit Extract Lowers SREBP-1c and C/EBPα in Liver and Alters Various PPAR-α, PPAR-γ, LXR-α Target Genes in Cholesterol-Rich Diet Rabbit Model. Int J Mol Sci 2024; 25:1199. [PMID: 38256272 PMCID: PMC10816641 DOI: 10.3390/ijms25021199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Cornelian cherry (Cornus mas L.) fruits, abundant in iridoids and anthocyanins, are natural products with proven beneficial impacts on the functions of the cardiovascular system and the liver. This study aims to assess and compare whether and to what extent two different doses of resin-purified cornelian cherry extract (10 mg/kg b.w. or 50 mg/kg b.w.) applied in a cholesterol-rich diet rabbit model affect the levels of sterol regulatory element-binding protein 1c (SREBP-1c) and CCAAT/enhancer binding protein α (C/EBPα), and various liver X receptor-α (LXR-α), peroxisome proliferator-activated receptor-α (PPAR-α), and peroxisome proliferator-activated receptor-γ (PPAR-γ) target genes. Moreover, the aim is to evaluate the resistive index (RI) of common carotid arteries (CCAs) and aortas, and histopathological changes in CCAs. For this purpose, the levels of SREBP-1c, C/EBPα, ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), fatty acid synthase (FAS), endothelial lipase (LIPG), carnitine palmitoyltransferase 1A (CPT1A), and adiponectin receptor 2 (AdipoR2) in liver tissue were measured. Also, the levels of lipoprotein lipase (LPL), visceral adipose tissue-derived serine protease inhibitor (Vaspin), and retinol-binding protein 4 (RBP4) in visceral adipose tissue were measured. The RI of CCAs and aortas, and histopathological changes in CCAs, were indicated. The oral administration of the cornelian cherry extract decreased the SREBP-1c and C/EBPα in both doses. The dose of 10 mg/kg b.w. increased ABCA1 and decreased FAS, CPT1A, and RBP4, and the dose of 50 mg/kg b.w. enhanced ABCG1 and AdipoR2. Mitigations in atheromatous changes in rabbits' CCAs were also observed. The obtained outcomes were compared to the results of our previous works. The beneficial results confirm that cornelian cherry fruit extract may constitute a potentially effective product in the prevention and treatment of obesity-related disorders.
Collapse
Affiliation(s)
- Maciej Danielewski
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Andrzej Rapak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (A.R.); (A.K.)
| | - Angelika Kruszyńska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (A.R.); (A.K.)
| | - Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland;
| | - Paweł Oleszkiewicz
- Department of Radiology and Imaging Diagnostics II, Lower Silesian Center of Oncology, Pulmonology and Hematology, Grabiszynska 105, 53-439 Wroclaw, Poland;
| | - Stanisław Dzimira
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 31, 50-375 Wroclaw, Poland;
| | - Alicja Z. Kucharska
- Department of Fruit, Vegetable, and Plant Nutraceutical Technology, Wroclaw University of Environmental and Life Sciences, J. Chelmonskiego 37, 51-630 Wroclaw, Poland;
| | - Wojciech Słupski
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Agnieszka Matuszewska
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Beata Nowak
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (W.S.); (A.M.); (B.N.); (A.S.)
| | - Narcyz Piórecki
- Bolestraszyce Arboretum and Institute of Physiography, Bolestraszyce 130, 37-722 Wyszatyce, Poland;
- Institute of Physical Culture Sciences, Medical College, University of Rzeszow, Cicha 2A, 35-326 Rzeszow, Poland
| | - Urszula Zaleska-Dorobisz
- Department of General and Pediatric Radiology, Wroclaw Medical University, M. Sklodowskiej-Curie 50/52, 50-369 Wroclaw, Poland;
| | - Tomasz Sozański
- Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Faculty of Medicine, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;
| |
Collapse
|
46
|
Ren Q, Liu Z, Wu L, Yin G, Xie X, Kong W, Zhou J, Liu S. C/EBPβ: The structure, regulation, and its roles in inflammation-related diseases. Biomed Pharmacother 2023; 169:115938. [PMID: 38000353 DOI: 10.1016/j.biopha.2023.115938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023] Open
Abstract
Inflammation, a mechanism of the human body, has been implicated in many diseases. Inflammatory responses include the release of inflammatory mediators by activating various signaling pathways. CCAAT/enhancer binding protein β (C/EBPβ), a transcription factor in the C/EBP family, contains the leucine zipper (bZIP) domain. The expression of C/EBPβ is mediated at the transcriptional and post-translational levels, such as phosphorylation, acetylation, methylation, and SUMOylation. C/EBPβ has been involved in inflammatory responses by mediating several signaling pathways, such as MAPK/NF-κB and IL-6/JAK/STAT3 pathways. C/EBPβ plays an important role in the pathological development of inflammation-related diseases, such as osteoarthritis, pneumonia, hepatitis, inflammatory bowel diseases, and rheumatoid arthritis. Here, we comprehensively discuss the structure and biological effects of C/EBPβ and its role in inflammatory diseases.
Collapse
Affiliation(s)
- Qun Ren
- Department of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Zhaowen Liu
- Department of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Longhuo Wu
- Department of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Guoqiang Yin
- Ganzhou People's Hospital Affiliated to Nanchang University, Ganzhou 341000, China
| | - Xunlu Xie
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Weihao Kong
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Shiwei Liu
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China.
| |
Collapse
|
47
|
Zhu YN, Pan F, Gan XW, Liu Y, Wang WS, Sun K. The Role of DNMT1 and C/EBPα in the Regulation of CYP11A1 Expression During Syncytialization of Human Placental Trophoblasts. Endocrinology 2023; 165:bqad195. [PMID: 38146648 DOI: 10.1210/endocr/bqad195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Progesterone synthesized in the placenta is essential for pregnancy maintenance. CYP11A1 is a key enzyme in progesterone synthesis, and its expression increases greatly during trophoblast syncytialization. However, the underlying mechanism remains elusive. Here, we demonstrated that passive demethylation of CYP11A1 promoter accounted for the upregulation of CYP11A1 expression during syncytialization with the participation of the transcription factor C/EBPα. We found that the methylation rate of a CpG locus in the CYP11A1 promoter was significantly reduced along with decreased DNA methyltransferase 1 (DNMT1) expression and its enrichment at the CYP11A1 promoter during syncytialization. DNMT1 overexpression not only increased the methylation of this CpG locus in the CYP11A1 promoter, but also decreased CYP11A1 expression and progesterone production. In silico analysis disclosed multiple C/EBPα binding sites in both CYP11A1 and DNMT1 promoters. C/EBPα expression and its enrichments at both the DNMT1 and CYP11A1 promoters were significantly increased during syncytialization. Knocking-down C/EBPα expression increased DNMT1 while it decreased CYP11A1 expression during syncytialization. Conclusively, C/EBPα plays a dual role in the regulation of CYP11A1 during syncytialization. C/EBPα not only drives CYP11A1 expression directly, but also indirectly through downregulation of DNMT1, which leads to decreased methylation in the CpG locus of the CYP11A1 promoter, resulting in increased progesterone production during syncytialization.
Collapse
Affiliation(s)
- Ya-Nan Zhu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
- Center for Reproductive Medicine, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Xiao-Wen Gan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Yun Liu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| |
Collapse
|
48
|
Kalinin A, Zubkova E, Menshikov M. Integrated Stress Response (ISR) Pathway: Unraveling Its Role in Cellular Senescence. Int J Mol Sci 2023; 24:17423. [PMID: 38139251 PMCID: PMC10743681 DOI: 10.3390/ijms242417423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cellular senescence is a complex process characterized by irreversible cell cycle arrest. Senescent cells accumulate with age, promoting disease development, yet the absence of specific markers hampers the development of selective anti-senescence drugs. The integrated stress response (ISR), an evolutionarily highly conserved signaling network activated in response to stress, globally downregulates protein translation while initiating the translation of specific protein sets including transcription factors. We propose that ISR signaling plays a central role in controlling senescence, given that senescence is considered a form of cellular stress. Exploring the intricate relationship between the ISR pathway and cellular senescence, we emphasize its potential as a regulatory mechanism in senescence and cellular metabolism. The ISR emerges as a master regulator of cellular metabolism during stress, activating autophagy and the mitochondrial unfolded protein response, crucial for maintaining mitochondrial quality and efficiency. Our review comprehensively examines ISR molecular mechanisms, focusing on ATF4-interacting partners, ISR modulators, and their impact on senescence-related conditions. By shedding light on the intricate relationship between ISR and cellular senescence, we aim to inspire future research directions and advance the development of targeted anti-senescence therapies based on ISR modulation.
Collapse
Affiliation(s)
- Alexander Kalinin
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.K.); (E.Z.)
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ekaterina Zubkova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.K.); (E.Z.)
| | - Mikhail Menshikov
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.K.); (E.Z.)
| |
Collapse
|
49
|
Wu DM, Liu JP, Liu J, Ge WH, Wu SZ, Zeng CJ, Liang J, Liu K, Lin Q, Hong XW, Sun YE, Lu J. Immune pathway activation in neurons triggers neural damage after stroke. Cell Rep 2023; 42:113368. [PMID: 37917581 DOI: 10.1016/j.celrep.2023.113368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/24/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
Ischemic brain injury is a severe medical condition with high incidences in elderly people without effective treatment for the resulting neural damages. Using a unilateral mouse stroke model, we analyze single-cell transcriptomes of ipsilateral and contralateral cortical penumbra regions to objectively reveal molecular events with single-cell resolution at 4 h and 1, 3, and 7 days post-injury. Here, we report that neurons are among the first cells that sense the lack of blood supplies by elevated expression of CCAAT/enhancer-binding protein β (C/EBPβ). To our surprise, the canonical inflammatory cytokine gene targets for C/EBPβ, including interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α), are subsequently induced also in neuronal cells. Neuronal-specific silencing of C/EBPβ or IL-1β and TNF-α substantially alleviates downstream inflammatory injury responses and is profoundly neural protective. Taken together, our findings reveal a neuronal inflammatory mechanism underlying early pathological triggers of ischemic brain injury.
Collapse
Affiliation(s)
- Dong-Mei Wu
- Clinical Medicine Center, Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Guangdong 528000, China
| | - Ji-Ping Liu
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jie Liu
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; Clinical Medicine Center, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Wei-Hong Ge
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Su-Zhen Wu
- Clinical Medicine Center, Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Guangdong 528000, China
| | - Chi-Jia Zeng
- Clinical Medicine Center, Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Guangdong 528000, China
| | - Jia Liang
- Life Science Institution, Jinzhou Medical University, Jinzhou 121000, China
| | - KeJian Liu
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Quan Lin
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiao-Wu Hong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Research Institute of Fudan University in Ningbo, Zhejiang 315336, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Jun Lu
- Clinical Medicine Center, Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Guangdong 528000, China.
| |
Collapse
|
50
|
Westin ER, Khodadadi-Jamayran A, Pham LK, Tung ML, Goldman FD. CRISPR screen identifies CEBPB as contributor to dyskeratosis congenita fibroblast senescence via augmented inflammatory gene response. G3 (BETHESDA, MD.) 2023; 13:jkad207. [PMID: 37717172 PMCID: PMC10627266 DOI: 10.1093/g3journal/jkad207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/18/2023]
Abstract
Aging is the consequence of intra- and extracellular events that promote cellular senescence. Dyskeratosis congenita (DC) is an example of a premature aging disorder caused by underlying telomere/telomerase-related mutations. Cells from these patients offer an opportunity to study telomere-related aging and senescence. Our previous work has found that telomere shortening stimulates DNA damage responses (DDRs) and increases reactive oxygen species (ROS), thereby promoting entry into senescence. This work also found that telomere elongation via TERT expression, the catalytic component of the telomere-elongating enzyme telomerase, or p53 shRNA could decrease ROS by disrupting this telomere-DDR-ROS pathway. To further characterize this pathway, we performed a CRISPR/Cas9 knockout screen to identify genes that extend life span in DC cells. Of the cellular clones isolated due to increased life span, 34% had a guide RNA (gRNA) targeting CEBPB, while gRNAs targeting WSB1, MED28, and p73 were observed multiple times. CEBPB is a transcription factor associated with activation of proinflammatory response genes suggesting that inflammation may be present in DC cells. The inflammatory response was investigated using RNA sequencing to compare DC and control cells. Expression of inflammatory genes was found to be significantly elevated (P < 0.0001) in addition to a key subset of these inflammation-related genes [IL1B, IL6, IL8, IL12A, CXCL1 (GROa), CXCL2 (GROb), and CXCL5]. which are regulated by CEBPB. Exogenous TERT expression led to downregulation of RNA/protein CEBPB expression and the inflammatory response genes suggesting a telomere length-dependent mechanism to regulate CEBPB. Furthermore, unlike exogenous TERT and p53 shRNA, CEBPB shRNA did not significantly decrease ROS suggesting that CEBPB's contribution in DC cells' senescence is ROS independent. Our findings demonstrate a key role for CEBPB in engaging senescence by mobilizing an inflammatory response within DC cells.
Collapse
Affiliation(s)
- Erik R Westin
- Department of Pediatrics, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Cancer Precision Medicine, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Alireza Khodadadi-Jamayran
- Genome Technology Center, Applied Bioinformatics Laboratories, NYU Langone Medical Center, New York, NY 10016, USA
| | - Linh K Pham
- Department of Pediatrics, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Moon Ley Tung
- Stead Family Department of Pediatrics, Division of Medical Genetics and Genomics, University of Iowa, Iowa City, IA 52242, USA
| | - Frederick D Goldman
- Department of Pediatrics, Division of Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|