1
|
Gal-Mandelbaum N, Carasso S, Kedem A, Ziv T, Keshet-David R, Abboud R, Zaatry R, Gefen T, Geva-Zatorsky N. Dietary carbohydrates alter immune-modulatory functionalities and DNA inversions in Bacteroides thetaiotaomicron. Nat Commun 2025; 16:4938. [PMID: 40436824 PMCID: PMC12120099 DOI: 10.1038/s41467-025-60202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 05/15/2025] [Indexed: 06/01/2025] Open
Abstract
The gut bacteria environment is highly dynamic. Environmental conditions were shown to affect microbial composition. Yet, their influences on bacterial functionality (e.g., immune-modulation activity) are mostly overlooked. Distinct strains of the same species, and even the same bacterial strain, may have different effects on the immune system depending on their growth environment. Therefore, studying the functionality of strains under different conditions is crucial. We analyzed functional alterations in the gut symbiont Bacteroides thetaiotaomicron (B. theta) under different dietary components consumption in humans, upon white sugar consumption in mice, and in response to 190 different carbon sources in vitro. Dietary alterations affected the orientation of phase variable regions in B. theta in humans, in vivo, and in vitro, and altered B. theta's proteome and immune-modulatory functionality. Studying the effects of dietary components on the immune-modulatory functionalities of key members of the gut microbiota will allow for personalized dietary recommendations.
Collapse
Grants
- The Technion Institute of Technology, “Keren haNasi,” Cathedra, the Rappaport Technion Integrated Cancer Center, the Alon Fellowship for Outstanding Young Researchers, the Israeli Science Foundation (3165/20), the D. Dan and Betty Kahn Foundation’s gift to the University of Michigan, the Weizmann Institute, the Technion–Israel Institute of Technology Collaboration for Research, the Seerave Foundation, CIFAR (grant FL-000969/FL-001245/FL-001381), and the European Union (ERC, ExtractABact, 101078712).
Collapse
Affiliation(s)
- Noa Gal-Mandelbaum
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, Israel
| | - Shaqed Carasso
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, Israel
| | - Alon Kedem
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Roni Keshet-David
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, Israel
| | - Roberto Abboud
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, Israel
| | - Rawan Zaatry
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, Israel
| | - Tal Gefen
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, Israel
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, Israel.
- CIFAR Humans & the Microbiome program, CIFAR, Toronto, Canada.
| |
Collapse
|
2
|
Ji LL. Nuclear factor κB signaling revisited: Its role in skeletal muscle and exercise. Free Radic Biol Med 2025; 232:158-170. [PMID: 40010515 DOI: 10.1016/j.freeradbiomed.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
Nuclear factor (NF) κB as a redox sensitive, anti-apoptotic and pro-inflammatory signaling molecule has been studied extensively for more than three decades. Its role in inducing antioxidant enzymes, defending against extracellular and intracellular stress and maintaining redox homeostasis in skeletal muscle has also been recognized. New research continues to explore the polytropic nature of NFκB in cellular function, especially its crosstalk with other important signaling pathways. Understanding of the broad impact of these functions has significant implications in health and disease of skeletal muscle as an organ designed for contraction and mobility. Two important aspects of muscle wellbeing, i.e., disease and aging, are not discussed in this review. This review will provide an update on the new findings related to NFκB involvement in multiple signaling pathways and refresh our knowledge of its activation in skeletal muscle with a special reference to physical exercise.
Collapse
Affiliation(s)
- Li Li Ji
- The Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota Twin Cities, USA.
| |
Collapse
|
3
|
Ma N, Liang XN, Chen QF, Li MH, Pei GS, Yi XF, Guo LY, Chen FG, He ZY. Proteogenomic verifies targets underlying erythromycin alleviate neutrophil extracellular traps-induced inflammation. Respir Res 2025; 26:155. [PMID: 40253327 PMCID: PMC12009532 DOI: 10.1186/s12931-025-03226-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/07/2025] [Indexed: 04/21/2025] Open
Abstract
BACKGROUND Neutrophil Extracellular Traps (NETs) are closely related to the progression of inflammation in Chronic Obstructive Pulmonary Disease (COPD). Erythromycin (EM) has been shown to inhibit inflammation in COPD, but its molecular mechanisms is still unclear. The aim of our study is investigate the molecular mechanisms of EM's anti-inflammatory effects in NETs-induced inflammation. METHODS Transcriptomics and proteomics data were obtained from U937 cells treated with NETs and EM. Differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were identified using R software. Pathway enrichment analyses, were employed to identify inflammation-related pathways. Cytoscape were utilized to construct network of hub targets regulated by EM which related with oxidative stress and inflammation. Additionally, Cytoscape and STRING were used to construct protein-protein interaction (PPI) network of key targets regulated by EM. The expression levels of key targets were further confirmed through WB and PCR experiments. RESULTS Both transcriptomics and proteomics indicate that EM decrease NETs -induced AKT1 expression. Enrichment analysis of DEGs and DEPs reveal multiple common pathways involved in EM's regulation inflammation, including the PI3K/AKT pathway, response to oxidative stress, IKK/NF-κB signaling and PTEN signaling pathway. Nine key targets in PI3K/AKT-related inflammatory pathways regulated by EM and ten targets of EM-regulated oxidative stress were identified. WB and PCR results confirmed that EM reversing the NETs-induced inflammation by modulating the activity of these targets. Furthermore, clinical samples and vitro experiments confirm that EM alleviates NETs-induced glucocorticoid resistance via inhibiting PI3K/AKT, thereby repressing inflammation. CONCLUSIONS Our study provides a comprehensive proteogenomic characterization of how EM alleviates NET-related inflammation, and identify PI3K/AKT play a critical role in the mechanism by which EM inhibits inflammation.
Collapse
Affiliation(s)
- Nan Ma
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiao Na Liang
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Quan Fang Chen
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Mei Hua Li
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Guang Sheng Pei
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiao Fei Yi
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Li Yan Guo
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Fu Gang Chen
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhi Yi He
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
4
|
Kume M, Din J, Zegarra-Ruiz DF. Dysregulated Intestinal Host-Microbe Interactions in Systemic Lupus Erythematosus: Insights from Patients and Mouse Models. Microorganisms 2025; 13:556. [PMID: 40142449 PMCID: PMC11944652 DOI: 10.3390/microorganisms13030556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by chronic inflammation that affects multiple organs, with its prevalence varying by ethnicity. Intestinal dysbiosis has been observed in both SLE patients and murine models. Additionally, intestinal barrier impairment is thought to contribute to the ability of pathobionts to evade and breach immune defenses, resulting in antigen cross-reactivity, microbial translocation, subsequent immune activation, and, ultimately, multiple organ failure. Since the detailed mechanisms underlying these processes are difficult to examine using human samples, murine models are crucial. Various SLE murine models, including genetically modified spontaneous and inducible murine models, offer insights into pathobionts and how they dysregulate systemic immune systems. Furthermore, since microbial metabolites modulate systemic immune responses, bacteria and their metabolites can be targeted for treatment. Based on human and mouse research insights, this review examines how lupus pathobionts trigger intestinal and systemic immune dysregulation. Therapeutic approaches, such as fecal microbiota transplantation and dietary adjustments, show potential as cost-effective and safe methods for preventing and treating SLE. Understanding the complex interactions between the microbiota, host factors, and immune dysregulation is essential for developing novel, personalized therapies to tackle this multifaceted disease.
Collapse
Affiliation(s)
| | | | - Daniel F. Zegarra-Ruiz
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA; (M.K.); (J.D.)
| |
Collapse
|
5
|
Wang H, Zhang H, Miao L, Wang C, Teng H, Li X, Zhang X, Yang G, Wang S, Zeng X. α-amanitin induces hepatotoxicity via PPAR-γ inhibition and NLRP3 inflammasome activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117749. [PMID: 39862693 DOI: 10.1016/j.ecoenv.2025.117749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Mushroom poisoning, predominantly caused by α-amanitin, is a critical food safety concern in worldwide, with severe cases leading to hepatotoxicity and fatalities. This study delves into the hepatotoxic effects of α-amanitin, focusing on the NLRP3 inflammasome and PPAR-γ's regulatory role in inflammation. In vitro studies with L-02 cells showed that α-amanitin reduces cell viability and triggers NLRP3 inflammasome activation, increasing NF-κB phosphorylation and pro-inflammatory cytokines IL-18 and IL-1β. The NLRP3 inhibitor MCC950 mitigated these effects without impacting NF-κB. Conversely, PPAR-γ knockdown intensified the inflammatory response. In vivo, α-amanitin induced dose-dependent liver injury in mice, evident by elevated serum ALT and AST, and histological liver damage. MCC950 pretreatment offered protection against hepatotoxicity, while PPAR-γ inhibition with GW9662 worsened the condition. The study highlights the interplay between α-amanitin, NLRP3, and PPAR-γ in hepatotoxicity, proposing potential therapeutic targets for mushroom poisoning-induced liver diseases.
Collapse
Affiliation(s)
- Haowei Wang
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Huijie Zhang
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Lin Miao
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Chan Wang
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Hanxin Teng
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Xiaodong Li
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Xiaoxing Zhang
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Genmeng Yang
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China.
| | - Shangwen Wang
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China.
| | - Xiaofeng Zeng
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China.
| |
Collapse
|
6
|
Liu F, Zhang H, Fan L, Yu Q, Wang S. Hotspots and development trends of gut microbiota in atopic dermatitis: A bibliometric analysis from 1988 to 2024. Medicine (Baltimore) 2024; 103:e40931. [PMID: 39686442 PMCID: PMC11651439 DOI: 10.1097/md.0000000000040931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a prevalent inflammatory skin condition that commonly occurs in children. More and more scientific evidence suggests that gut microbiota plays an important role in the pathogenesis of AD, whereas there is no article providing a comprehensive summary and analysis. We aimed to analyze documents on AD and gut microbiota and identify hotspots and development trends in this field. METHODS Articles and reviews in the field of AD and gut microbiota from January 1, 1988 to October 20, 2024 were obtained from the Web of Science Core Collection database. Biblioshiny was utilized for evaluating and visualizing the core authors, journals, countries, documents, trend topics, and hotspots in this field. RESULTS Among 1672 documents, it indicated that the number of annual publications generally increased. The United States had the highest production, impact, and international collaboration. Journal of Allergy and Clinical Immunology was the journal of the maximum publications. Based on keyword co-occurrence and clustering analysis, "stratum-corneum lipids," "probiotics," "prebiotics," "fecal microbiota transplantation," "phage therapy," "short chain fatty-acids," "biologic therapy," and "skin inflammation" represented current trend topics. The pathological and molecular mechanisms and associated therapeutic methods for AD and gut microbiota were the research hotspots. The incorporation of microbiota-based therapies alongside conventional treatments can contribute to better clinical outcomes. CONCLUSION We highlighted that gut microbiota may exacerbate symptoms of AD through various aspects, including immunity, metabolites, and neuroendocrine pathways. More efforts are required to investigate the safety and efficacy of gut microbial management methods for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Fang Liu
- Hangzhou Linping District Maternal and Child Health Care Hospital, Hangzhou, China
| | - Haipeng Zhang
- Hangzhou Linping District Maternal and Child Health Care Hospital, Hangzhou, China
| | - Lina Fan
- Hangzhou Linping District Maternal and Child Health Care Hospital, Hangzhou, China
| | - Qi Yu
- Chengdong College, Northeast Agricultural University, Harbin, China
| | - Siqiao Wang
- Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Li S, Fan S, Ma Y, Xia C, Yan Q. Influence of gender, age, and body mass index on the gut microbiota of individuals from South China. Front Cell Infect Microbiol 2024; 14:1419884. [PMID: 39544283 PMCID: PMC11560914 DOI: 10.3389/fcimb.2024.1419884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024] Open
Abstract
Background The symbiotic gut microbiota is pivotal for human health, with its composition linked to various diseases and metabolic disorders. Despite its significance, there remains a gap in systematically evaluating how host phenotypes, such as gender, age, and body mass index (BMI), influence gut microbiota. Methodology/principal findings We conducted an analysis of the gut microbiota of 185 Chinese adults based on whole-metagenome shotgun sequencing of fecal samples. Our investigation focused on assessing the effects of gender, age, and BMI on gut microbiota across three levels: diversity, gene/phylogenetic composition, and functional composition. Our findings suggest that these phenotypes have a minor impact on shaping the gut microbiome compared to enterotypes, they do not correlate significantly within- or between-sample diversity. We identified a substantial number of phenotype-associated genes and metagenomic linkage groups (MLGs), indicating variations in gut microflora composition. Specifically, we observed a decline in beneficial Firmicutes microbes, such as Eubacterium, Roseburia, Faecalibacterium and Ruminococcus spp., in both older individuals and those with higher BMI, while potentially harmful microbes like Erysipelotrichaceae, Subdoligranulum and Streptococcus spp. increased with age. Additionally, Blautia and Dorea spp. were found to increase with BMI, aligning with prior research. Surprisingly, individuals who were older or overweight exhibited a lack of Bacteroidetes, a dominant phylum in the human gut microbiota that includes opportunistic pathogens, while certain species of the well-known probiotics Bifidobacterium were enriched in these groups, suggesting a complex interplay of these bacteria warranting further investigation. Regarding gender, several gender-associated MLGs from Bacteroides, Parabacteroides, Clostridium and Akkermansia were enriched in females. Functional analysis revealed a multitude of phenotype-associated KEGG orthologs (KOs). Conclusions/significance Our study underscores the influence of gender, age, and BMI on gut metagenomes, affecting both phylogenetic and functional composition. However, further investigation is needed to elucidate the precise roles of these bacteria, including both pathogens and probiotics.
Collapse
Affiliation(s)
- Shenghui Li
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Puensum Genetech Institute, Wuhan, China
| | - Shao Fan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yufang Ma
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chuan Xia
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Caruso R, Lo BC, Chen GY, Núñez G. Host-pathobiont interactions in Crohn's disease. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-00997-y. [PMID: 39448837 DOI: 10.1038/s41575-024-00997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
The mammalian intestine is colonized by trillions of microorganisms that are collectively referred to as the gut microbiota. The majority of symbionts have co-evolved with their host in a mutualistic relationship that benefits both. Under certain conditions, such as in Crohn's disease, a subtype of inflammatory bowel disease, some symbionts bloom to cause disease in genetically susceptible hosts. Although the identity and function of disease-causing microorganisms or pathobionts in Crohn's disease remain largely unknown, mounting evidence from animal models suggests that pathobionts triggering Crohn's disease-like colitis inhabit certain niches and penetrate the intestinal tissue to trigger inflammation. In this Review, we discuss the distinct niches occupied by intestinal symbionts and the evidence that pathobionts triggering Crohn's disease live in the mucus layer or near the intestinal epithelium. We also discuss how Crohn's disease-associated mutations in the host disrupt intestinal homeostasis by promoting the penetration and accumulation of pathobionts in the intestinal tissue. Finally, we discuss the potential role of microbiome-based interventions in precision therapeutic strategies for the treatment of Crohn's disease.
Collapse
Affiliation(s)
- Roberta Caruso
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Bernard C Lo
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Grace Y Chen
- Department of Internal Medicine and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Xu Y, Yan Z, Liu L. Identification of novel proteins in inflammatory bowel disease based on the gut-brain axis: a multi-omics integrated analysis. Clin Proteomics 2024; 21:59. [PMID: 39407121 PMCID: PMC11481439 DOI: 10.1186/s12014-024-09511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The gut-brain axis has garnered increasing attention, with observational studies suggesting its involvement in the disease activity and progression of inflammatory bowel disease (IBD), but the precise mechanisms remain unclear. MATERIALS AND METHODS In this study, we aimed to investigate "novel proteins" underlying IBD in the brain using a comprehensive multi-omics analysis approach. We performed integrated analyses of proteomics and transcriptomics in the human prefrontal cortex (PFC) tissue, coupled with genome-wide association studies (GWAS) of IBD, crohn's disease (CD), and ulcerative colitis (UC). This included performing protein-wide association studies (PWAS), transcriptome-wide association studies (TWAS), Mendelian randomization (MR), and colocalization analysis to identify brain proteins associated with IBD and its subtypes. RESULTS PWAS analyses identified and confirmation 9, 9, and 6 brain proteins strongly associated with IBD, CD, and UC, respectively. Subsequent MR analyses revealed that increased abundance of GPSM1, AUH, TYK2, SULT1A1, and FDPS, along with corresponding gene expression, led to decreased risk of IBD. For CD, increased abundance of FDPS, SULT1A1, and PDLIM4, along with corresponding gene expression, also decreased CD risk. Regarding UC, only increased abundance of AUH, along with corresponding gene expression, was significantly associated with decreased UC risk. Further TWAS and colocalization analyses at the transcriptome level supported strong associations of SULT1A1 and FDPS proteins with reduced risk of IBD and CD. CONCLUSION The two "novel proteins," SULT1A1 and FDPS, are strongly associated with IBD and CD, elucidating their causal relationship in reducing the risk of IBD and CD. This provides new clues for identifying the pathogenesis and potential therapeutic targets for IBD and CD.
Collapse
Affiliation(s)
- Yifeng Xu
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhaoqi Yan
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Liangji Liu
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
| |
Collapse
|
10
|
Wu Y, Li G, Tang H. Antibiotics Trigger Host Innate Immune Response via Microbiota-Brain Communication in C. elegans. Int J Mol Sci 2024; 25:8866. [PMID: 39201552 PMCID: PMC11354627 DOI: 10.3390/ijms25168866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Besides their direct bactericidal effect, antibiotics have also been suggested to stimulate the host immune response to defend against pathogens. However, it remains unclear whether any antibiotics may stimulate the host immune response by affecting bacterial activity. In this study, reasoning that genetic mutations inhibit bacterial activities and, thereby, may mimic the effects of antibiotics, we performed genome-wide screening and identified 77 E. coli genes whose inactivation induces C. elegans cyp-14A4, representing an innate immune and detoxification response. Further analyses reveal that this host immune response can clearly be induced through either inactivating the E. coli respiratory chain via the bacterial cyoB mutation or using the antibiotic Q203, which is able to enhance host survival when encountering the pathogen Pseudomonas aeruginosa. Mechanistically, the innate immune response triggered by both the cyoB mutation and Q203 is found to depend on the host brain response, as evidenced by their reliance on the host neural gene unc-13, which is required for neurotransmitter release in head neurons. Therefore, our findings elucidate the critical involvement of the microbiota-brain axis in modulating the host immune response, providing mechanistic insights into the role of antibiotics in triggering the host immune response and, thus, facilitating host defense against pathogens.
Collapse
Affiliation(s)
- Yangyang Wu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Guanqun Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Hongyun Tang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
11
|
Fernandes C, Miranda MCC, Roque CR, Paguada ALP, Mota CAR, Florêncio KGD, Pereira AF, Wong DVT, Oriá RB, Lima-Júnior RCP. Is There an Interplay between Environmental Factors, Microbiota Imbalance, and Cancer Chemotherapy-Associated Intestinal Mucositis? Pharmaceuticals (Basel) 2024; 17:1020. [PMID: 39204125 PMCID: PMC11357004 DOI: 10.3390/ph17081020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Interindividual variation in drug efficacy and toxicity is a significant problem, potentially leading to adverse clinical and economic public health outcomes. While pharmacogenetics and pharmacogenomics have long been considered the primary causes of such heterogeneous responses, pharmacomicrobiomics has recently gained attention. The microbiome, a community of microorganisms living in or on the human body, is a critical determinant of drug response and toxicity. Factors such as diet, lifestyle, exposure to xenobiotics, antibiotics use, illness, and genetics can influence the composition of the microbiota. Changes in the intestinal microbiota are particularly influential in drug responsiveness, especially in cancer chemotherapy. The microbiota can modulate an individual's response to a drug, affecting its bioavailability, clinical effect, and toxicity, affecting treatment outcomes and patient quality of life. For instance, the microbiota can convert drugs into active or toxic metabolites, influencing their efficacy and side effects. Alternatively, chemotherapy can also alter the microbiota, creating a bidirectional interplay. Probiotics have shown promise in modulating the microbiome and ameliorating chemotherapy side effects, highlighting the potential for microbiota-targeted interventions in improving cancer treatment outcomes. This opinion paper addresses how environmental factors and chemotherapy-induced dysbiosis impact cancer chemotherapy gastrointestinal toxicity.
Collapse
Affiliation(s)
- Camila Fernandes
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| | | | - Cássia Rodrigues Roque
- Laboratory of Tissue Healing, Ontogeny, and Nutrition, Department of Morphology, and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza 60430-170, Brazil; (C.R.R.); (R.B.O.)
| | - Ana Lizeth Padilla Paguada
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| | - Carlos Adrian Rodrigues Mota
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| | - Katharine Gurgel Dias Florêncio
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| | - Anamaria Falcão Pereira
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| | - Deysi Viviana Tenazoa Wong
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| | - Reinaldo Barreto Oriá
- Laboratory of Tissue Healing, Ontogeny, and Nutrition, Department of Morphology, and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza 60430-170, Brazil; (C.R.R.); (R.B.O.)
| | - Roberto César Pereira Lima-Júnior
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| |
Collapse
|
12
|
Yarahmadi A, Zare M, Aghayari M, Afkhami H, Jafari GA. Therapeutic bacteria and viruses to combat cancer: double-edged sword in cancer therapy: new insights for future. Cell Commun Signal 2024; 22:239. [PMID: 38654309 PMCID: PMC11040964 DOI: 10.1186/s12964-024-01622-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Cancer, ranked as the second leading cause of mortality worldwide, leads to the death of approximately seven million people annually, establishing itself as one of the most significant health challenges globally. The discovery and identification of new anti-cancer drugs that kill or inactivate cancer cells without harming normal and healthy cells and reduce adverse effects on the immune system is a potential challenge in medicine and a fundamental goal in Many studies. Therapeutic bacteria and viruses have become a dual-faceted instrument in cancer therapy. They provide a promising avenue for cancer treatment, but at the same time, they also create significant obstacles and complications that contribute to cancer growth and development. This review article explores the role of bacteria and viruses in cancer treatment, examining their potential benefits and drawbacks. By amalgamating established knowledge and perspectives, this review offers an in-depth examination of the present research landscape within this domain and identifies avenues for future investigation.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Mitra Zare
- Department of Microbiology, Faculty of Sciences, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Masoomeh Aghayari
- Department of Microbiology, Faculty of Sciences, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Gholam Ali Jafari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
13
|
Sun DY, Wu WB, Wu JJ, Shi Y, Xu JJ, Ouyang SX, Chi C, Shi Y, Ji QX, Miao JH, Fu JT, Tong J, Zhang PP, Zhang JB, Li ZY, Qu LF, Shen FM, Li DJ, Wang P. Pro-ferroptotic signaling promotes arterial aging via vascular smooth muscle cell senescence. Nat Commun 2024; 15:1429. [PMID: 38365899 PMCID: PMC10873425 DOI: 10.1038/s41467-024-45823-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
Senescence of vascular smooth muscle cells (VSMCs) contributes to aging-related cardiovascular diseases by promoting arterial remodelling and stiffness. Ferroptosis is a novel type of regulated cell death associated with lipid oxidation. Here, we show that pro-ferroptosis signaling drives VSMCs senescence to accelerate vascular NAD+ loss, remodelling and aging. Pro-ferroptotic signaling is triggered in senescent VSMCs and arteries of aged mice. Furthermore, the activation of pro-ferroptotic signaling in VSMCs not only induces NAD+ loss and senescence but also promotes the release of a pro-senescent secretome. Pharmacological or genetic inhibition of pro-ferroptosis signaling, ameliorates VSMCs senescence, reduces vascular stiffness and retards the progression of abdominal aortic aneurysm in mice. Mechanistically, we revealed that inhibition of pro-ferroptotic signaling facilitates the nuclear-cytoplasmic shuttling of proliferator-activated receptor-γ and, thereby impeding nuclear receptor coactivator 4-ferrtin complex-centric ferritinophagy. Finally, the activated pro-ferroptotic signaling correlates with arterial stiffness in a human proof-of-concept study. These findings have significant implications for future therapeutic strategies aiming to eliminate vascular ferroptosis in senescence- or aging-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Di-Yang Sun
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
- Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wen-Bin Wu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Jian-Jin Wu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Yu Shi
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia-Jun Xu
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Shen-Xi Ouyang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Chi
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Shi
- Shanghai Key Laboratory of Organ Transplantation, Fudan University, Shanghai, China
- Institute of Clinical Science, Zhongshan Hospital Fudan University, Shanghai, China
| | - Qing-Xin Ji
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin-Hao Miao
- Department of Orthopedic Surgery/Spine Center, Changzheng Hospital Affiliated Hospital of Naval Medical University/Second Military Medical University, Shanghai, China
| | - Jiang-Tao Fu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Jie Tong
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ping-Ping Zhang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Jia-Bao Zhang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
- The National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Zhi-Yong Li
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China
- The National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Le-Feng Qu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Naval Medical University/Second Military Medical University, Shanghai, China.
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Pei Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai, China.
- The National Demonstration Center for Experimental Pharmaceutical Education, Naval Medical University/Second Military Medical University, Shanghai, China.
| |
Collapse
|
14
|
Liu N, Yan X, Lv B, Wu Y, Hu X, Zheng C, Tao S, Deng R, Dou J, Zeng B, Jiang G. A study on the association between gut microbiota, inflammation, and type 2 diabetes. Appl Microbiol Biotechnol 2024; 108:213. [PMID: 38358546 PMCID: PMC10869376 DOI: 10.1007/s00253-024-13041-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/28/2024] [Indexed: 02/16/2024]
Abstract
Type 2 diabetes mellitus (T2DM) was reported to be associated with impaired immune response and alterations in microbial composition and function. However, the underlying mechanism remains elusive. To investigate the association among retinoic acid-inducible gene-I-like receptors (RLRs) signaling pathway, intestinal bacterial microbiome, microbial tryptophan metabolites, inflammation, and a longer course of T2DM, 14 patients with T2DM and 7 healthy controls were enrolled. 16S rRNA amplicon sequencing and untargeted metabolomics were utilized to analyze the stool samples. RNA sequencing (RNA-seq) was carried out on the peripheral blood samples. Additionally, C57BL/6J specific pathogen-free (SPF) mice were used. It was found that the longer course of T2DM could lead to a decrease in the abundance of probiotics in the intestinal microbiome. In addition, the production of microbial tryptophan derivative skatole declined as a consequence of the reduced abundance of related intestinal microbes. Furthermore, low abundances of probiotics, such as Bacteroides and Faecalibacterium, could trigger the inflammatory response by activating the RLRs signaling pathway. The increased level of the member of TNF receptor-associated factors (TRAF) family, nuclear factor kappa-B (NF-κB) activator (TANK), in the animal colon activated nuclear factor kappa B subunit 2 (NFκB2), resulting in inflammatory damage. In summary, it was revealed that the low abundances of probiotics could activate the RLR signaling pathway, which could in turn activate its downstream signaling pathway, NF-κB, highlighting a relationship among gut microbes, inflammation, and a longer course of T2DM. KEY POINTS: Hyperglycemia may suppress tryptophanase activity. The low abundance of Bacteroides combined with the decrease of Dopa decarboxylase (DDC) activity may lead to the decrease of the production of tryptophan microbial derivative skatole, and the low abundance of Bacteroides or reduced skatole may further lead to the increase of blood glucose by downregulating the expression of glucagon-like peptide-1 (GLP1). A low abundance of anti-inflammatory bacteria may induce an inflammatory response by triggering the RLR signaling pathway and then activating its downstream NF-κB signaling pathway in prolonged T2DM.
Collapse
Affiliation(s)
- Nannan Liu
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Xuehua Yan
- College of Traditional Chinese Medicine, Xinjiang Medical University, No.393 Xin Medical Road, Urumqi, 830011, Xinjiang, China
| | - Bohan Lv
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Yanxiang Wu
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Xuehong Hu
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Chunyan Zheng
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Siyu Tao
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Ruxue Deng
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Jinfang Dou
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Binfang Zeng
- College of Traditional Chinese Medicine, Xinjiang Medical University, No.393 Xin Medical Road, Urumqi, 830011, Xinjiang, China
| | - Guangjian Jiang
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China.
| |
Collapse
|
15
|
Yinhe S, Lixiang L, Yan L, Xiang G, Yanqing L, Xiuli Z. Bacteroides thetaiotaomicron and its inactivated bacteria ameliorate colitis by inhibiting macrophage activation. Clin Res Hepatol Gastroenterol 2024; 48:102276. [PMID: 38158154 DOI: 10.1016/j.clinre.2023.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Studies have demonstrated that Bacteroides thetaiotaomicron (BT) has protective effect against colon inflammation in murine models. Macrophages play an important role in gut immunity. However, the specific mechanisms of BT on macrophage are still unelucidated. Thus, our study investigates the anti-inflammatory effect of BT and its heat-treated inactivated bacteria on experimental colitis and macrophages. METHODS A dextran sulfate sodium (DSS)-induced acute colitis model with male C57BL/6 mice, BT (ATCC29148) strain, THP1 cell lines were used in this study. Live and heat-treated inactivated BT (IBT) solution (1 × 10^9cfu/ml) were intragastrically gavaged daily for 14 days. Colonic inflammation was determined by the disease activity index (DAI) score, colon length, histological score, and inflammatory factors. THP1 cells were induced towards M1, then treated with different concentrations of inactivated BT solution and p38 inhibitor. Western blotting, immunohistochemistry, immunofluorescence and qRT-PCR were performed to assess the levels of inflammatory cytokines and molecules of MAPK pathway including IL-6, TNF-α, IL-1β, IL-22, p38 and phosphor-p38 expressions. Moreover, 16S rRNA sequencing of colitis murine fecal samples was applied to investigate the influence of supplementation of BT to the gut microbiota homeostasis. RESULTS Both live and heat-treated inactivated BT decreased the DAI and histological scores as well as levels of inflammatory factors, particularly IL-6 while increasing IL-22 of DSS-induced colitis murine models. The cell experiments showed that inactivated BT downregulates IL-6 expression in THP1 via inhibiting p38 phosphorylation and affecting M1 polarization. Moreover, the 16S rRNA sequencing results showed that BT and IBT gavage could increase beta-diversity of gut flora in DSS-induced colitis mice. Furthermore, the significance test for differences between the groups showed that BT could increase Faecalebaculum, Lactobacillus and Bacteroides, while decreasing Akkermansia. CONCLUSION In summary, our findings imply that BT and its heat-treated inactivated bacteria exert a protective effect by suppressing macrophage-induced IL-6 through the inhibition of p38 MAPK pathway and ameliorating intestinal gut dysbiosis in experimental colitis.
Collapse
Affiliation(s)
- Sikong Yinhe
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China; Department of Gastroenterology, Qilu Hospital of Shandong University Qingdao, Qingdao, Shandong, PR China
| | - Li Lixiang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Center for digestive disease, Shandong, PR China
| | - Li Yan
- Department of Gastroenterology, Qilu Hospital of Shandong University Qingdao, Qingdao, Shandong, PR China
| | - Gu Xiang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Li Yanqing
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China; Department of Gastroenterology, Qilu Hospital of Shandong University Qingdao, Qingdao, Shandong, PR China; Shandong Provincial Clinical Research Center for digestive disease, Shandong, PR China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China; Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Zuo Xiuli
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China; Department of Gastroenterology, Qilu Hospital of Shandong University Qingdao, Qingdao, Shandong, PR China; Shandong Provincial Clinical Research Center for digestive disease, Shandong, PR China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China; Robot engineering laboratory for precise diagnosis and therapy of GI tumor, Qilu Hospital of Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
16
|
Mi A, Hu Q, Liu Y, Zhao Y, Shen F, Lan J, Lv K, Wang B, Gao R, Yu X. Hepatoprotective efficacy and interventional mechanism of the panaxadiol saponin component in high-fat diet-induced NAFLD mice. Food Funct 2024; 15:794-808. [PMID: 38131276 DOI: 10.1039/d3fo03572g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Dietary administration is a promising strategy for intervention in non-alcoholic fatty liver disease (NAFLD). Our research team has identified a biologically active component, the panaxadiol saponin component (PDS-C) isolated from total saponins of panax ginseng, which has various pharmacological and therapeutic functions. However, the efficacy and mechanism of PDS-C in NAFLD were unclear. This study aimed to elucidate the hepatoprotective effects and underlying action mechanism of PDS-C in NAFLD. Mice were fed a high-fat diet (HFD) for 8 weeks to induce NAFLD and treated with PDS-C and metformin as the positive control for 12 weeks. PDS-C significantly alleviated liver function, hepatic steatosis and blood lipid levels, reduced oxidative stress and inflammation in NAFLD mice. In vitro, PDS-C has been shown to reduce lipotoxicity and ROS levels while enhancing the antioxidant and anti-inflammatory capabilities in HepG2 cells induced by palmitic acid. PDS-C induced AMPK phosphorylation, leading to upregulation of the Nrf2/HO1 pathway expression and downregulation of the NFκB protein level. Furthermore, our observations indicate that PDS-C supplementation improves insulin resistance and glucose homeostasis in NAFLD mice, although its efficacy is not as pronounced as metformin. In conclusion, these results demonstrate the hepatoprotective efficacy of PDS-C in NAFLD and provide potential opportunities for developing functional products containing PDS-C.
Collapse
Affiliation(s)
- Ai Mi
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Qinxue Hu
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Ying Liu
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Yanna Zhao
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Fenglin Shen
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jinjian Lan
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Keren Lv
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Bolin Wang
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Ruilan Gao
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Xiaoling Yu
- Institute of Hematology Research, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Wang Y, Chen C, Yan W, Fu Y. Epigenetic modification of m 6A methylation: Regulatory factors, functions and mechanism in inflammatory bowel disease. Int J Biochem Cell Biol 2024; 166:106502. [PMID: 38030117 DOI: 10.1016/j.biocel.2023.106502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Although the exact cause of inflammatory bowel disease (IBD) is still unknown, there is a lot of evidence to support the notion that it results from a combination of environmental factors, immune system issues, gut microbial changes, and genetic susceptibility. In recent years, the role of epigenetics in the pathogenesis of IBD has drawn increasing attention. The regulation of IBD-related immunity, the preservation of the intestinal epithelial barrier, and autophagy are all significantly influenced by epigenetic factors. The most extensive epigenetic methylation modification of mammalian mRNA among them is N6-methyladenosine (m6A). It summarizes the general structure and function of the m6A regulating factors, as well as their complex effects on IBD by regulating the intestinal mucous barrier, intestine mucosal immunity, epidermal cell death, and intestinal microorganisms.This paper provides key insights for the future identification of potential new targets for the diagnosis and treatment of IBD.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyue Chen
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
18
|
Bank NC, Singh V, McCourt B, Burberry A, Roberts KD, Grubb B, Rodriguez-Palacios A. Antigenic operon fragmentation and diversification mechanism in Bacteroidota impacts gut metagenomics and pathobionts in Crohn's disease microlesions. Gut Microbes 2024; 16:2350150. [PMID: 38841888 PMCID: PMC11164228 DOI: 10.1080/19490976.2024.2350150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
Comensal Bacteroidota (Bacteroidota) and Enterobacteriacea are often linked to gut inflammation. However, the causes for variability of pro-inflammatory surface antigens that affect gut commensal/opportunistic dualism in Bacteroidota remain unclear. By using the classical lipopolysaccharide/O-antigen 'rfb operon' in Enterobacteriaceae as a surface antigen model (5-rfb-gene-cluster rfbABCDX), and a recent rfbA-typing strategy for strain classification, we characterized the integrity and conservancy of the entire rfb operon in Bacteroidota. Through exploratory analysis of complete genomes and metagenomes, we discovered that most Bacteroidota have the rfb operon fragmented into nonrandom patterns of gene-singlets and doublets/triplets, termed 'rfb-gene-clusters', or rfb-'minioperons' if predicted as transcriptional. To reflect global operon integrity, contiguity, duplication, and fragmentation principles, we propose a six-category (infra/supra-numerary) cataloging system and a Global Operon Profiling System for bacteria. Mechanistically, genomic sequence analyses revealed that operon fragmentation is driven by intra-operon insertions of predominantly Bacteroides-DNA (thetaiotaomicron/fragilis) and likely natural selection in gut-wall specific micro-niches or micropathologies. Bacteroides-insertions, also detected in other antigenic operons (fimbriae), but not in operons deemed essential (ribosomal), could explain why Bacteroidota have fewer KEGG-pathways despite large genomes. DNA insertions, overrepresenting DNA-exchange-avid (Bacteroides) species, impact our interpretation of functional metagenomics data by inflating by inflating gene-based pathway inference and by overestimating 'extra-species' abundance. Of disease relevance, Bacteroidota species isolated from cavitating/cavernous fistulous tract (CavFT) microlesions in Crohn's Disease have supra-numerary fragmented operons, stimulate TNF-alpha from macrophages with low potency, and do not induce hyperacute peritonitis in mice compared to CavFT Enterobacteriaceae. The impact of 'foreign-DNA' insertions on pro-inflammatory operons, metagenomics, and commensalism/opportunism requires further studies to elucidate their potential for novel diagnostics and therapeutics, and to elucidate the role of co-existing pathobionts in Crohn's disease microlesions.
Collapse
Affiliation(s)
- Nicholas C. Bank
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Vaidhvi Singh
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Blake McCourt
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Aaron Burberry
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kyle D. Roberts
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Germ-Free and Gut Microbiome Core, Case Western Reserve University, Cleveland, OH, USA
| | - Brandon Grubb
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Germ-Free and Gut Microbiome Core, Case Western Reserve University, Cleveland, OH, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
19
|
Ma H, Yang L, Liang Y, Liu F, Hu J, Zhang R, Li Y, Yuan L, Feng F. B. thetaiotaomicron-derived acetic acid modulate immune microenvironment and tumor growth in hepatocellular carcinoma. Gut Microbes 2024; 16:2297846. [PMID: 38270111 PMCID: PMC10813637 DOI: 10.1080/19490976.2023.2297846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, and emerging evidence suggests that the gut microbiota may play a role in its development and progression. In this study, the association between B. thetaiotaomicron, a gut microbiota species, and HCC recurrence, as well as patient clinical outcomes, was investigated. It was observed that B. thetaiotaomicron-derived acetic acid has the potential to modulate the polarization of pro-pro-inflammatory macrophagess, which promotes the function of cytotoxic CD8+ T cells. The increased biosynthesis of fatty acids was implicated in the modulation of pro-inflammatory macrophages polarization by B. thetaiotaomicron-derived acetic acid. Furthermore, B. thetaiotaomicron-derived acetic acid was found to facilitate the transcription of ACC1, a key enzyme involved in fatty acid biosynthesis, through histone acetylation modification in the ACC1 promoter region. Curcumin, an acetylation modification inhibitor, significantly blocked the inhibitory effects of B. thetaiotaomicron and acetic acid on HCC tumor growth. These findings highlight the potential role of gut microbiota-derived acetic acid in HCC recurrence and patient clinical outcomes, and suggest a complex interplay between gut microbiota, immune modulation, fatty acid metabolism, and epigenetic regulation in the context of HCC development. Further research in this area may provide insights into novel strategies for HCC prevention and treatment by targeting the gut microbiota and its metabolites.
Collapse
Affiliation(s)
- Hongbin Ma
- Department of Radiotherapy, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Liang Yang
- Department of Radiation Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingchao Liang
- Department of Radiation Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fenghua Liu
- Department of Radiotherapy, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Jinxiang Hu
- Shanghai KR Pharmtech, Inc. Ltd, Shanghai, China
| | - Rui Zhang
- Shanghai KR Pharmtech, Inc. Ltd, Shanghai, China
| | - Yong Li
- Department of Radiotherapy, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Lei Yuan
- Department of Hepatobiliary Surgery, Quzhou People’s Hospital, Quzhou, Zhejiang, China
| | - Feiling Feng
- Department of Biliary Tract Surgery I, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
20
|
Han YZ, Zheng HJ, Du BX, Zhang Y, Zhu XY, Li J, Wang YX, Liu WJ. Role of Gut Microbiota, Immune Imbalance, and Allostatic Load in the Occurrence and Development of Diabetic Kidney Disease. J Diabetes Res 2023; 2023:8871677. [PMID: 38094870 PMCID: PMC10719010 DOI: 10.1155/2023/8871677] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic kidney disease (DKD) is a prevailing complication arising from diabetes mellitus. Unfortunately, there are no trustworthy and efficacious treatment modalities currently available. In recent times, compelling evidence has emerged regarding the intricate correlation between the kidney and the gut microbiota, which is considered the largest immune organ within the human physique. Various investigations have demonstrated that the perturbation of the gut microbiota and its associated metabolites potentially underlie the etiology and progression of DKD. This phenomenon may transpire through perturbation of both the innate and the adaptive immunity, leading to a burdensome allostatic load on the body and ultimately culminating in the development of DKD. Within this literature review, we aim to delve into the intricate interplay between the gut microbiota, its metabolites, and the immune system in the context of DKD. Furthermore, we strive to explore and elucidate potential chemical interventions that could hold promise for the treatment of DKD, thereby offering invaluable insights and directions for future research endeavors.
Collapse
Affiliation(s)
- Yi Zhen Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Juan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Xuan Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Yu Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Li
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yao Xian Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Wei Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
21
|
Sabino J, Tarassishin L, Eisele C, Hawkins K, Barré A, Nair N, Rendon A, Debebe A, Picker M, Agrawal M, Stone J, George J, Legnani P, Maser E, Chen CL, Thjømøe A, Mørk E, Dubinsky M, Hu J, Colombel JF, Peter I, Torres J. Influence of Early Life Factors, including breast milk Composition, on the Microbiome of Infants Born to Mothers with and without Inflammatory Bowel Disease. J Crohns Colitis 2023; 17:1723-1732. [PMID: 37279927 PMCID: PMC10673817 DOI: 10.1093/ecco-jcc/jjad096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND AIMS Herein we analysed the influence of early life factors, including breast milk composition, on the development of the intestinal microbiota of infants born to mothers with and without IBD. METHODS The MECONIUM [Exploring MEChanisms Of disease traNsmission In Utero through the Microbiome] study is a prospective cohort study consisting of pregnant women with or without IBD and their infants. Longitudinal stool samples were collected from babies and analysed using 16s rRNA sequencing and faecal calprotectin. Breast milk proteomics was profiled using Olink inflammation panel. RESULTS We analysed gut microbiota of 1034 faecal samples from 294 infants [80 born to mothers with and 214 to mothers without IBD]. Alpha diversity was driven by maternal IBD status and time point. The major influencers of the overall composition of the microbiota were mode of delivery, feeding, and maternal IBD status. Specific taxa were associated with these exposures, and maternal IBD was associated with a reduction in Bifidobacterium. In 312 breast milk samples [91 from mothers with IBD], mothers with IBD displayed lower abundance of proteins involved in immune regulation, such as thymic stromal lymphopoietin, interleukin-12 subunit beta, tumour necrosis factor-beta, and C-C motif chemokine 20, as compared with control mothers [adjusted p = 0.0016, 0.049, 0.049, and 0.049, respectively], with negative correlations with baby´s calprotectin, and microbiome at different time points. CONCLUSION Maternal IBD diagnosis influences microbiota in their offspring during early life. The proteomic profile of breast milk of women with IBD differs from that of women without IBD, with distinct time-dependent associations with baby's gut microbiome and feacal calprotectin.
Collapse
Affiliation(s)
- João Sabino
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, Division of Gastroenterology, Department of Medicine, New York, NY, USA
- Department of Gastroenterology, University Hospitals of Leuven, Leuven, Belgium
| | - Leonid Tarassishin
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Caroline Eisele
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
- College of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Kelly Hawkins
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Amelie Barré
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Nile Nair
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Alexa Rendon
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Anketse Debebe
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Mellissa Picker
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Manasi Agrawal
- Icahn School of Medicine at Mount Sinai, Division of Gastroenterology, Department of Medicine, New York, NY, USA
- Center for Molecular Prediction of IBD [PREDICT], Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Joanne Stone
- Gastroenterology Division, Icahn School of Medicine at Mount Sinai, Department of Obstetrics, Gynecology and Reproductive Sciences, New York, NY, USA
| | - James George
- Icahn School of Medicine at Mount Sinai, Division of Gastroenterology, Department of Medicine, New York, NY, USA
| | - Peter Legnani
- Icahn School of Medicine at Mount Sinai, Division of Gastroenterology, Department of Medicine, New York, NY, USA
| | - Elana Maser
- Icahn School of Medicine at Mount Sinai, Division of Gastroenterology, Department of Medicine, New York, NY, USA
| | - Ching-Lynn Chen
- Gastroenterology Division, Icahn School of Medicine at Mount Sinai, Department of Obstetrics, Gynecology and Reproductive Sciences, New York, NY, USA
| | | | | | - Marla Dubinsky
- Icahn School of Medicine at Mount Sinai, Division of Pediatric Gastroenterology and Hepatology, New York, NY, USA
| | - Jianzhong Hu
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Jean-Frederic Colombel
- Icahn School of Medicine at Mount Sinai, Division of Gastroenterology, Department of Medicine, New York, NY, USA
| | - Inga Peter
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Joanna Torres
- Icahn School of Medicine at Mount Sinai, Division of Gastroenterology, Department of Medicine, New York, NY, USA
- Gastroenterology Division, Hospital Beatriz Ângelo, Loures, Portugal
- Gastroenterology Division, Hospital da Luz, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Portugal
| |
Collapse
|
22
|
Pichichero ME. Variability of vaccine responsiveness in early life. Cell Immunol 2023; 393-394:104777. [PMID: 37866234 DOI: 10.1016/j.cellimm.2023.104777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/18/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Vaccinations in early life elicit variable antibody and cellular immune responses, sometimes leaving fully vaccinated children unprotected against life-threatening infectious diseases. Specific immune cell populations and immune networks may have a critical period of development and calibration in a window of opportunity occurring during the first 100 days of early life. Among the early life determinants of vaccine responses, this review will focus on modifiable factors involving development of the infant microbiota and metabolome: antibiotic exposure, breast versus formula feeding, and Caesarian section versus vaginal delivery of newborns. How microbiota may serve as natural adjuvants for vaccine responses and how microbiota-derived metabolites influence vaccine responses are also reviewed. Early life poor vaccine responsiveness can be linked to increased infection susceptibility because both phenotypes share similar immunity dysregulation profiles. An early life pre-vaccination endotype, when interventions have the highest potential for success, should be sought that predicts vaccine response trajectories.
Collapse
Affiliation(s)
- Michael E Pichichero
- Center for Infectious Diseases and Immunology, Research Institute, Rochester General Hospital, 1425 Portland Ave, Rochester, NY 14621, USA.
| |
Collapse
|
23
|
Kim K, Kang M, Cho BK. Systems and synthetic biology-driven engineering of live bacterial therapeutics. Front Bioeng Biotechnol 2023; 11:1267378. [PMID: 37929193 PMCID: PMC10620806 DOI: 10.3389/fbioe.2023.1267378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
The past decade has seen growing interest in bacterial engineering for therapeutically relevant applications. While early efforts focused on repurposing genetically tractable model strains, such as Escherichia coli, engineering gut commensals is gaining traction owing to their innate capacity to survive and stably propagate in the intestine for an extended duration. Although limited genetic tractability has been a major roadblock, recent advances in systems and synthetic biology have unlocked our ability to effectively harness native gut commensals for therapeutic and diagnostic purposes, ranging from the rational design of synthetic microbial consortia to the construction of synthetic cells that execute "sense-and-respond" logic operations that allow real-time detection and therapeutic payload delivery in response to specific signals in the intestine. In this review, we outline the current progress and latest updates on microbial therapeutics, with particular emphasis on gut commensal engineering driven by synthetic biology and systems understanding of their molecular phenotypes. Finally, the challenges and prospects of engineering gut commensals for therapeutic applications are discussed.
Collapse
Affiliation(s)
- Kangsan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Minjeong Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
24
|
Hegde M, Girisa S, Naliyadhara N, Kumar A, Alqahtani MS, Abbas M, Mohan CD, Warrier S, Hui KM, Rangappa KS, Sethi G, Kunnumakkara AB. Natural compounds targeting nuclear receptors for effective cancer therapy. Cancer Metastasis Rev 2023; 42:765-822. [PMID: 36482154 DOI: 10.1007/s10555-022-10068-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
Human nuclear receptors (NRs) are a family of forty-eight transcription factors that modulate gene expression both spatially and temporally. Numerous biochemical, physiological, and pathological processes including cell survival, proliferation, differentiation, metabolism, immune modulation, development, reproduction, and aging are extensively orchestrated by different NRs. The involvement of dysregulated NRs and NR-mediated signaling pathways in driving cancer cell hallmarks has been thoroughly investigated. Targeting NRs has been one of the major focuses of drug development strategies for cancer interventions. Interestingly, rapid progress in molecular biology and drug screening reveals that the naturally occurring compounds are promising modern oncology drugs which are free of potentially inevitable repercussions that are associated with synthetic compounds. Therefore, the purpose of this review is to draw our attention to the potential therapeutic effects of various classes of natural compounds that target NRs such as phytochemicals, dietary components, venom constituents, royal jelly-derived compounds, and microbial derivatives in the establishment of novel and safe medications for cancer treatment. This review also emphasizes molecular mechanisms and signaling pathways that are leveraged to promote the anti-cancer effects of these natural compounds. We have also critically reviewed and assessed the advantages and limitations of current preclinical and clinical studies on this subject for cancer prophylaxis. This might subsequently pave the way for new paradigms in the discovery of drugs that target specific cancer types.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, 35712, Gamasa, Egypt
| | | | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
- Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, 169610, Singapore
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
25
|
Bank NC, Singh V, Grubb B, McCourt B, Burberry A, Roberts KD, Rodriguez-Palacios A. The basis of antigenic operon fragmentation in Bacteroidota and commensalism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543472. [PMID: 37398285 PMCID: PMC10312583 DOI: 10.1101/2023.06.02.543472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The causes for variability of pro-inflammatory surface antigens that affect gut commensal/opportunistic dualism within the phylum Bacteroidota remain unclear (1, 2). Using the classical lipopolysaccharide/O-antigen 'rfb operon' in Enterobacteriaceae as a surface antigen model (5-gene-cluster rfbABCDX), and a recent rfbA-typing strategy for strain classification (3), we characterized the architecture/conservancy of the entire rfb operon in Bacteroidota. Analyzing complete genomes, we discovered that most Bacteroidota have the rfb operon fragmented into non-random gene-singlets and/or doublets/triplets, termed 'minioperons'. To reflect global operon integrity, duplication, and fragmentation principles, we propose a five-category (infra/supernumerary) cataloguing system and a Global Operon Profiling System for bacteria. Mechanistically, genomic sequence analyses revealed that operon fragmentation is driven by intra-operon insertions of predominantly Bacteroides-DNA (thetaiotaomicron/fragilis) and likely natural selection in specific micro-niches. Bacteroides-insertions, also detected in other antigenic operons (fimbriae), but not in operons deemed essential (ribosomal), could explain why Bacteroidota have fewer KEGG-pathways despite large genomes (4). DNA insertions overrepresenting DNA-exchange-avid species, impact functional metagenomics by inflating gene-based pathway inference and overestimating 'extra-species' abundance. Using bacteria from inflammatory gut-wall cavernous micro-tracts (CavFT) in Crohn's Disease (5), we illustrate that bacteria with supernumerary-fragmented operons cannot produce O-antigen, and that commensal/CavFT Bacteroidota stimulate macrophages with lower potency than Enterobacteriaceae, and do not induce peritonitis in mice. The impact of 'foreign-DNA' insertions on pro-inflammatory operons, metagenomics, and commensalism offers potential for novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Nicholas C Bank
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Vaidhvi Singh
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Brandon Grubb
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Blake McCourt
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Aaron Burberry
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kyle D Roberts
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Germ-Free and Gut Microbiome Core, Case Western Reserve University, Cleveland, OH, USA
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, USA
- University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Germ-Free and Gut Microbiome Core, Case Western Reserve University, Cleveland, OH, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
26
|
Pinto CJG, Ávila-Gálvez MÁ, Lian Y, Moura-Alves P, Nunes Dos Santos C. Targeting the aryl hydrocarbon receptor by gut phenolic metabolites: A strategy towards gut inflammation. Redox Biol 2023; 61:102622. [PMID: 36812782 PMCID: PMC9958510 DOI: 10.1016/j.redox.2023.102622] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The Aryl Hydrocarbon Receptor (AHR) is a ligand-dependent transcription factor able to control complex transcriptional processes in several cell types, which has been correlated with various diseases, including inflammatory bowel diseases (IBD). Numerous studies have described different compounds as ligands of this receptor, like xenobiotics, natural compounds, and several host-derived metabolites. Dietary (poly)phenols have been studied regarding their pleiotropic activities (e.g., neuroprotective and anti-inflammatory), but their AHR modulatory capabilities have also been considered. However, dietary (poly)phenols are submitted to extensive metabolism in the gut (e.g., gut microbiota). Thus, the resulting gut phenolic metabolites could be key players modulating AHR since they are the ones that reach the cells and may exert effects on the AHR throughout the gut and other organs. This review aims at a comprehensive search for the most abundant gut phenolic metabolites detected and quantified in humans to understand how many have been described as AHR modulators and what could be their impact on inflammatory gut processes. Even though several phenolic compounds have been studied regarding their anti-inflammatory capacities, only 1 gut phenolic metabolite, described as AHR modulator, has been evaluated on intestinal inflammatory models. Searching for AHR ligands could be a novel strategy against IBD.
Collapse
Affiliation(s)
- Catarina J G Pinto
- iNOVA4Health, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - María Ángeles Ávila-Gálvez
- iNOVA4Health, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal
| | - Yilong Lian
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, Oxford, United Kingdom
| | - Pedro Moura-Alves
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, Oxford, United Kingdom.
| | - Cláudia Nunes Dos Santos
- iNOVA4Health, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal.
| |
Collapse
|
27
|
Shon WJ, Song JW, Oh SH, Lee KH, Seong H, You HJ, Seong JK, Shin DM. Gut taste receptor type 1 member 3 is an intrinsic regulator of Western diet-induced intestinal inflammation. BMC Med 2023; 21:165. [PMID: 37118698 PMCID: PMC10148556 DOI: 10.1186/s12916-023-02848-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/24/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Long-term intake of a Western diet (WD), characterized by a high-fat content and sugary drinks, is hypothesized to contribute to the development of inflammatory bowel disease (IBD). Despite the identified clinical association, the molecular mechanisms by which dietary changes contribute to IBD development remain unknown. Therefore, we examined the influence of long-term intake of a WD on intestinal inflammation and the mechanisms by which WD intake affects IBD development. METHODS Mice fed normal diet or WD for 10 weeks, and bowel inflammation was evaluated through pathohistological and infiltrated inflammatory cell assessments. To understand the role of intestinal taste receptor type 1 member 3 (TAS1R3) in WD-induced intestinal inflammation, cultured enteroendocrine cells harboring TAS1R3, subjected to RNA interference or antagonist treatment, and Tas1r3-deficient mice were used. RNA-sequencing, flow cytometry, 16S metagenomic sequencing, and bioinformatics analyses were performed to examine the involved mechanisms. To demonstrate their clinical relevance, intestinal biopsies from patients with IBD and mice with dextran sulfate sodium-induced colitis were analyzed. RESULTS Our study revealed for the first time that intestinal TAS1R3 is a critical mediator of WD-induced intestinal inflammation. WD-fed mice showed marked TAS1R3 overexpression with hallmarks of serious bowel inflammation. Conversely, mice lacking TAS1R3 failed to exhibit inflammatory responses to WD. Mechanistically, intestinal transcriptome analysis revealed that Tas1r3 deficiency suppressed mTOR signaling, significantly increasing the expression of PPARγ (a major mucosal defense enhancer) and upregulating the expression of PPARγ target-gene (tight junction protein and antimicrobial peptide). The gut microbiota of Tas1r3-deficient mice showed expansion of butyrate-producing Clostridia. Moreover, an increased expression of host PPARγ-signaling pathway proteins was positively correlated with butyrate-producing microbes, suggesting that intestinal TAS1R3 regulates the relationship between host metabolism and gut microflora in response to dietary factors. In cultured intestinal cells, regulation of the TAS1R3-mTOR-PPARγ axis was critical for triggering an inflammatory response via proinflammatory cytokine production and secretion. Abnormal regulation of the axis was observed in patients with IBD. CONCLUSIONS Our findings suggest that the TAS1R3-mTOR-PPARγ axis in the gut links Western diet consumption with intestinal inflammation and is a potential therapeutic target for IBD.
Collapse
Affiliation(s)
- Woo-Jeong Shon
- Department of Food and Nutrition, Seoul National University College of Human Ecology, Gwanak-Gu, Seoul, 08826, Republic of Korea.
- Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| | - Jae Won Song
- Department of Food and Nutrition, Seoul National University College of Human Ecology, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Seung Hoon Oh
- Department of Food and Nutrition, Seoul National University College of Human Ecology, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Keon-Hee Lee
- Department of Food and Nutrition, Seoul National University College of Human Ecology, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Hobin Seong
- Department of Food and Nutrition, Seoul National University College of Human Ecology, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Hyun Ju You
- Bio-MAX/N-Bio, Seoul National University, Seoul, Republic of Korea
| | - Je Kyung Seong
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Korea Mouse Phenotyping Center, Seoul, Republic of Korea
| | - Dong-Mi Shin
- Department of Food and Nutrition, Seoul National University College of Human Ecology, Gwanak-Gu, Seoul, 08826, Republic of Korea
- Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Hutchinson RA, Costeloe KL, Wade WG, Millar MR, Ansbro K, Stacey F, Fleming PF. Intravenous antibiotics in preterm infants have a negative effect upon microbiome development throughout preterm life. Gut Pathog 2023; 15:18. [PMID: 37085896 PMCID: PMC10120188 DOI: 10.1186/s13099-023-00544-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/09/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Intestinal dysbiosis is implicated in the origins of necrotising enterocolitis and late-onset sepsis in preterm babies. However, the effect of modulators of bacterial growth (e.g. antibiotics) upon the developing microbiome is not well-characterised. In this prospectively-recruited, retrospectively-classified, case-control study, high-throughput 16S rRNA gene sequencing was combined with contemporaneous clinical data collection, to assess the within-subject relationship between antibiotic administration and microbiome development, in comparison to preterm infants with minimal antibiotic exposure. RESULTS During courses of antibiotics, diversity progression fell in comparison to that seen outside periods of antibiotic use (-0.71units/week vs. + 0.63units/week, p < 0.01); Enterobacteriaceae relative abundance progression conversely rose (+ 10.6%/week vs. -8.9%/week, p < 0.01). After antibiotic cessation, diversity progression remained suppressed (+ 0.2units/week, p = 0.02). CONCLUSIONS Antibiotic use has an acute and longer-lasting impact on the developing preterm intestinal microbiome. This has clinical implications with regard to the contribution of antibiotic use to evolving dysbiosis, and affects the interpretation of existing microbiome studies where this effect modulator is rarely accounted for.
Collapse
Affiliation(s)
- R A Hutchinson
- Queen Mary University of London, London, UK.
- Homerton University Hospital NHS Foundation Trust, London, UK.
| | | | - W G Wade
- Queen Mary University of London, London, UK
- King's College London, London, UK
- The Forsyth Institute, Cambridge, MA, USA
| | - M R Millar
- Queen Mary University of London, London, UK
| | - K Ansbro
- Queen Mary University of London, London, UK
| | - F Stacey
- Homerton University Hospital NHS Foundation Trust, London, UK
| | - P F Fleming
- Queen Mary University of London, London, UK
- Homerton University Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
29
|
Vassallo A, Amoriello R, Guri P, Casbarra L, Ramazzotti M, Zaccaroni M, Ballerini C, Cavalieri D, Marvasi M. Adaptation of Commensal Escherichia coli in Tomato Fruits: Motility, Stress, Virulence. BIOLOGY 2023; 12:biology12040633. [PMID: 37106833 PMCID: PMC10136321 DOI: 10.3390/biology12040633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
Food contamination can be a serious concern for public health because it can be related to the severe spreading of pathogens. This is a main issue, especially in the case of fresh fruits and vegetables; indeed, they have often been associated with gastrointestinal outbreak events, due to contamination with pathogenic bacteria. However, little is known about the physiological adaptation and bacterial response to stresses encountered in the host plant. Thus, this work aimed to investigate the adaptation of a commensal E. coli strain while growing in tomato pericarp. Pre-adapted and non-adapted cells were compared and used to contaminate tomatoes, demonstrating that pre-adaptation boosted cell proliferation. DNA extracted from pre-adapted and non-adapted cells was sequenced, and their methylation profiles were compared. Hence, genes involved in cell adhesion and resistance against toxic compounds were identified as genes involved in adaptation, and their expression was compared in these two experimental conditions. Finally, pre-adapted and non-adapted E. coli were tested for their ability to resist the presence of toxic compounds, demonstrating that adaptation exerted a protective effect. In conclusion, this work provides new information about the physiological adaptation of bacteria colonizing the tomato fruit pericarp.
Collapse
Affiliation(s)
- Alberto Vassallo
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Roberta Amoriello
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, 50134 Florence, Italy
| | - Prandvera Guri
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Casbarra
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Marco Zaccaroni
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Clara Ballerini
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, 50134 Florence, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | | |
Collapse
|
30
|
Shimokawa H, Sakanaka M, Fujisawa Y, Ohta H, Sugiyama Y, Kurihara S. N-Carbamoylputrescine Amidohydrolase of Bacteroides thetaiotaomicron, a Dominant Species of the Human Gut Microbiota. Biomedicines 2023; 11:biomedicines11041123. [PMID: 37189741 DOI: 10.3390/biomedicines11041123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023] Open
Abstract
Polyamines are bioactive amines that play a variety of roles, such as promoting cell proliferation and protein synthesis, and the intestinal lumen contains up to several mM polyamines derived from the gut microbiota. In the present study, we conducted genetic and biochemical analyses of the polyamine biosynthetic enzyme N-carbamoylputrescine amidohydrolase (NCPAH) that converts N-carbamoylputrescine to putrescine, a precursor of spermidine in Bacteroides thetaiotaomicron, which is one of the most dominant species in the human gut microbiota. First, ncpah gene deletion and complemented strains were generated, and the intracellular polyamines of these strains cultured in a polyamine-free minimal medium were analyzed using high-performance liquid chromatography. The results showed that spermidine detected in the parental and complemented strains was depleted in the gene deletion strain. Next, purified NCPAH-(His)6 was analyzed for enzymatic activity and found to be capable of converting N-carbamoylputrescine to putrescine, with a Michaelis constant (Km) and turnover number (kcat) of 730 µM and 0.8 s-1, respectively. Furthermore, the NCPAH activity was strongly (>80%) inhibited by agmatine and spermidine, and moderately (≈50%) inhibited by putrescine. This feedback inhibition regulates the reaction catalyzed by NCPAH and may play a role in intracellular polyamine homeostasis in B. thetaiotaomicron.
Collapse
Affiliation(s)
- Hiromi Shimokawa
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi 921-8836, Ishikawa, Japan
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Mikiyasu Sakanaka
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi 921-8836, Ishikawa, Japan
| | - Yuki Fujisawa
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi 921-8836, Ishikawa, Japan
| | - Hirokazu Ohta
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi 921-8836, Ishikawa, Japan
| | - Yuta Sugiyama
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi 921-8836, Ishikawa, Japan
| | - Shin Kurihara
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi 921-8836, Ishikawa, Japan
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| |
Collapse
|
31
|
Pang S, Chen X, Lu Z, Meng L, Huang Y, Yu X, Huang L, Ye P, Chen X, Liang J, Peng T, Luo W, Wang S. Longevity of centenarians is reflected by the gut microbiome with youth-associated signatures. NATURE AGING 2023; 3:436-449. [PMID: 37117794 DOI: 10.1038/s43587-023-00389-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/27/2023] [Indexed: 04/30/2023]
Abstract
Centenarians are an excellent model to study the relationship between the gut microbiome and longevity. To characterize the gut microbiome signatures of aging, we conducted a cross-sectional investigation of 1,575 individuals (20-117 years) from Guangxi province of China, including 297 centenarians (n = 45 with longitudinal sampling). Compared to their old adult counterparts, centenarians displayed youth-associated features in the gut microbiome characterized by an over-representation of a Bacteroides-dominated enterotype, increase in species evenness, enrichment of potentially beneficial Bacteroidetes and depletion of potential pathobionts. Health status stratification in older individuals did not alter the directional trends for these signature comparisons but revealed more apparent associations in less healthy individuals. Importantly, longitudinal analysis of centenarians across a 1.5-year period indicated that the youth-associated gut microbial signatures were enhanced with regard to increased evenness, reduction in interindividual variation and stability of Bacteroides, and that centenarians with low microbial evenness were prone to large microbiome instability during aging. These results together highlight a youth-related aging pattern of the gut microbiome for long-lived individuals.
Collapse
Affiliation(s)
- Shifu Pang
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, China
| | - Xiaodong Chen
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, China
- The Grand Health Industry Research Institute, Guangxi Academy of Sciences, Nanning, China
| | - Zhilong Lu
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| | - Lili Meng
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, China
| | - Yu Huang
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, China
| | - Xiuqi Yu
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, China
| | - Lianfei Huang
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengpeng Ye
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, China
| | - Xiaochun Chen
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, China
| | - Jian Liang
- Medical College, Guangxi University, Nanning, China
| | - Tao Peng
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weifei Luo
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, China.
- The Grand Health Industry Research Institute, Guangxi Academy of Sciences, Nanning, China.
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China.
| | - Shuai Wang
- The Grand Health Industry Research Institute, Guangxi Academy of Sciences, Nanning, China.
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
32
|
Wu B, Xu Y, Ban Y, Zhang M, Sun Z, Cai Y, Li J, Hao Y, Ouyang Q, Hu L, Tian X, Liu D. Correlation between the intestinal microflora and peripheral blood Th1/Th2 balance in hypothyroidism during the first half of pregnancy. Front Cell Infect Microbiol 2023; 13:1159238. [PMID: 37051293 PMCID: PMC10083372 DOI: 10.3389/fcimb.2023.1159238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/14/2023] [Indexed: 03/28/2023] Open
Abstract
ObjectiveThis study aimed to investigate the relationship between intestinal microflora characteristics and the peripheral blood T helper cell (Th)1/Th2 balance in patients with hypothyroidism during the first half of pregnancy.MethodsThe Th1/Th2 ratios in the peripheral blood of pregnant women in the hypothyroidism and control groups were determined using flow cytometry. The cytometric bead array assay was used to determine the serum levels of interleukin-2 (IL-2), IL-4, IL-6, IL-10, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ. Moreover, 16S rRNA amplicon sequencing was used to determine the intestinal microbial composition in the two groups. Finally, the relationships between intestinal microflora, Th1/Th2 cells, cytokines, and clinical indicators were analyzed.ResultsC-reactive protein levels were higher in the hypothyroidism group than in the control group. In contrast to the control group, the hypothyroidism group showed an increase in Th1 cells and the Th1/Th2 ratio, and a decrease in Th2 cells. The hypothyroidism group had higher serum IL-2, TNF-α, and IFN-γ levels, and lower IL-10 levels, than the control group. The richness of the intestinal microflora in the hypothyroidism group increased whereas the diversity decreased. The linear discriminant analysis effect size revealed that the hypothyroidism group had a higher abundance of Prevotella and Faecalibacterium, but a lower abundance of Bacteroides, compared to the control group. Prevotella was positively correlated with Th1 cells, the Th1/2 ratio, and TNF-α. Bacteroides was positively correlated with Th2 cells and IL-10, but negatively correlated with Th1 cells, the Th1/2 ratio, TNF-α, and IFN-γ. The thyroid peroxidase antibody level was directly proportional to TNF-α.ConclusionA Th1/Th2 imbalance occurs in patients with hypothyroidism during the first half of pregnancy. Disorders of the intestinal microflora may lead to hypothyroidism during pregnancy by affecting the Th1/Th2 balance.
Collapse
|
33
|
Chen H, Tan H, Wan J, Zeng Y, Wang J, Wang H, Lu X. PPAR-γ signaling in nonalcoholic fatty liver disease: Pathogenesis and therapeutic targets. Pharmacol Ther 2023; 245:108391. [PMID: 36963510 DOI: 10.1016/j.pharmthera.2023.108391] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), currently the leading cause of global chronic liver disease, has emerged as a major public health problem, more efficient therapeutics of which are thus urgently needed. Peroxisome proliferator-activated receptor γ (PPAR-γ), ligand-activated transcription factors of the nuclear hormone receptor superfamily, is considered a crucial metabolic regulator of hepatic lipid metabolism and inflammation. The role of PPAR-γ in the pathogenesis of NAFLD is gradually being recognized. Here, we outline the involvement of PPAR-γ in the pathogenesis of NAFLD through adipogenesis, insulin resistance, inflammation, oxidative stress, endoplasmic reticulum stress, and fibrosis. In addition, the evidence for PPAR-γ- targeted therapy for NAFLD are summarized. Altogether, PPAR-γ is a promising therapeutic target for NAFLD, and the development of drugs that can balance the beneficial and undesirable effects of PPAR-γ will bring new light to NAFLD patients.
Collapse
Affiliation(s)
- Hao Chen
- Department of Liver Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Huabing Tan
- Department of Infectious Diseases, Liver Disease Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Juan Wan
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine / West China School of Nursing, Sichuan University, Chengdu, China
| | - Yong Zeng
- Department of Liver Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jincheng Wang
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haichuan Wang
- Department of Liver Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China; Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA.
| | - Xiaojie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
34
|
Jawad I, Bin Tawseen H, Irfan M, Ahmad W, Hassan M, Sattar F, Awan FR, Khaliq S, Akhtar N, Akhtar K, Anwar MA, Munawar N. Dietary Supplementation of Microbial Dextran and Inulin Exerts Hypocholesterolemic Effects and Modulates Gut Microbiota in BALB/c Mice Models. Int J Mol Sci 2023; 24:ijms24065314. [PMID: 36982388 PMCID: PMC10049499 DOI: 10.3390/ijms24065314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
Microbial exopolysaccharides (EPSs), having great structural diversity, have gained tremendous interest for their prebiotic effects. In the present study, mice models were used to investigate if microbial dextran and inulin-type EPSs could also play role in the modulation of microbiomics and metabolomics by improving certain biochemical parameters, such as blood cholesterol and glucose levels and weight gain. Feeding the mice for 21 days on EPS-supplemented feed resulted in only 7.6 ± 0.8% weight gain in the inulin-fed mice group, while the dextran-fed group also showed a low weight gain trend as compared to the control group. Blood glucose levels of the dextran- and inulin-fed groups did not change significantly in comparison with the control where it increased by 22 ± 5%. Moreover, the dextran and inulin exerted pronounced hypocholesterolemic effects by reducing the serum cholesterol levels by 23% and 13%, respectively. The control group was found to be mainly populated with Enterococcus faecalis, Staphylococcus gallinarum, Mammaliicoccus lentus and Klebsiella aerogenes. The colonization of E. faecalis was inhibited by 59–65% while the intestinal release of Escherichia fergusonii was increased by 85–95% in the EPS-supplemented groups, respectively, along with the complete inhibition of growth of other enteropathogens. Additionally, higher populations of lactic acid bacteria were detected in the intestine of EPS-fed mice as compared to controls.
Collapse
Affiliation(s)
- Iqra Jawad
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Husam Bin Tawseen
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Muhammad Irfan
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Waqar Ahmad
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad 22020, Pakistan
| | - Mujtaba Hassan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Fazal Sattar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Fazli Rabbi Awan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Shazia Khaliq
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Nasrin Akhtar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Kalsoom Akhtar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Munir Ahmad Anwar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
- Correspondence: or (M.A.A.); (N.M.); Tel.: +92-41-920-1316 (M.A.A.); +971-3-713-6168 (N.M.); Fax: +92-41-920-1322 (M.A.A.)
| | - Nayla Munawar
- Department of Chemistry, College of Science, United Arab Emirates University (UAEU), Al Ain 15551, United Arab Emirates
- Correspondence: or (M.A.A.); (N.M.); Tel.: +92-41-920-1316 (M.A.A.); +971-3-713-6168 (N.M.); Fax: +92-41-920-1322 (M.A.A.)
| |
Collapse
|
35
|
Zhang Z, Xu W, Xu L, Li G, Aobulikasimu N, Gao J, Hu Y, Guan P, Mu Y, Huang X, Han L. Discovery, Preliminary Structure-Activity Relationship, and Evaluation of Oleanane-Type Saponins from Pulsatilla chinensis for the Treatment of Ulcerative Colitis. J Med Chem 2023; 66:3635-3647. [PMID: 36843292 DOI: 10.1021/acs.jmedchem.3c00112] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
To discover ulcerative colitis (UC) treatment agents, 28 oleanane-type triterpenoid saponins (1-28) including three new saponins, pulsatillosides P-R (1-3), were isolated from Pulsatilla chinensis. The isolated saponins could observably ameliorate UC by improving the intestinal epithelial cell barrier and intestinal flora in vivo. The structure-activity relationship indicated that the oligosaccharide chain at C-28 was essential for their anti-UC activities; the methyl group at the C-23 site of triterpene saponins showed important effects on anti-UC efficacy; the chain length of oligosaccharides at position C-28 had little effect on their anti-UC activities. In vivo investigation of representative saponins 1 and 13 further confirmed that 23-methyl-3,28-bisdesmosidic oleanane-type saponins inhibited the TNFα-NFκB-MLCK axis to improve the intestinal epithelial cell barrier of the colon in UC mice. These findings revealed the potential of 23-methyl-3,28-bisdesmosidic oleanane-type saponins from P. chinensis as promising candidates for the treatment of UC.
Collapse
Affiliation(s)
- Zengguang Zhang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Wenfei Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Lixiao Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Guiding Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Nuerbiye Aobulikasimu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Jingyi Gao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yixuan Hu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Peipei Guan
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yu Mu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Xueshi Huang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Li Han
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
36
|
Wang Q, Thiam M, Barreto Sánchez AL, Wang Z, Zhang J, Li Q, Wen J, Zhao G. Gene Co-Expression Network Analysis Reveals the Hub Genes and Key Pathways Associated with Resistance to Salmonella Enteritidis Colonization in Chicken. Int J Mol Sci 2023; 24:ijms24054824. [PMID: 36902251 PMCID: PMC10003191 DOI: 10.3390/ijms24054824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/16/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Salmonella negatively impacts the poultry industry and threatens animals' and humans' health. The gastrointestinal microbiota and its metabolites can modulate the host's physiology and immune system. Recent research demonstrated the role of commensal bacteria and short-chain fatty acids (SCFAs) in developing resistance to Salmonella infection and colonization. However, the complex interactions among chicken, Salmonella, host-microbiome, and microbial metabolites remain unelucidated. Therefore, this study aimed to explore these complex interactions by identifying the driver and hub genes highly correlated with factors that confer resistance to Salmonella. Differential gene expression (DEGs) and dynamic developmental genes (DDGs) analyses and weighted gene co-expression network analysis (WGCNA) were performed using transcriptome data from the cecum of Salmonella Enteritidis-infected chicken at 7 and 21 days after infection. Furthermore, we identified the driver and hub genes associated with important traits such as the heterophil/lymphocyte (H/L) ratio, body weight post-infection, bacterial load, propionate and valerate cecal contents, and Firmicutes, Bacteroidetes, and Proteobacteria cecal relative abundance. Among the multiple genes detected in this study, EXFABP, S100A9/12, CEMIP, FKBP5, MAVS, FAM168B, HESX1, EMC6, and others were found as potential candidate gene and transcript (co-) factors for resistance to Salmonella infection. In addition, we found that the PPAR and oxidative phosphorylation (OXPHOS) metabolic pathways were also involved in the host's immune response/defense against Salmonella colonization at the earlier and later stage post-infection, respectively. This study provides a valuable resource of transcriptome profiles from chicken cecum at the earlier and later stage post-infection and mechanistic understanding of the complex interactions among chicken, Salmonella, host-microbiome, and associated metabolites.
Collapse
|
37
|
Yu F, Guo J, Ren HL, Lu S, He Z, Chang J, Hu X, Shi R, Jin Y, Li Y, Liu Z, Wang X, Hu P. Tyrosol inhibits NF-κB pathway in the treatment of enterotoxigenic Escherichia coli-induced diarrhea in mice. Microb Pathog 2023; 176:105944. [PMID: 36526033 DOI: 10.1016/j.micpath.2022.105944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Tyrosol is one of the main polyphenol compounds in white wine and extra virgin olive oil (EVOO), which plays an antioxidant and anti-inflammatory role in vitro. In the present study, we investigated the possible anti-inflammatory mechanism of tyrosol in Escherichia coli (ETEC)-induced diarrhea in mice. ICR mice were randomly divided into control group, ETEC group, and ETEC + Tyrosol group with 10 mice in each group. In addition to the control group, a bacterial diarrhea model was induced in mice by continuous administration of 0.2 ml × 109 CFU/ml ETEC. After 7 days, the ETEC + Tyrosol group was given tyrosol (20 mg/kg) once a day by gavage, during which the body weight of mice and the degree of diarrhea were measured daily. On the 15th day, all animals in this experiment were sacrificed, colon tissue was collected, and colon length was recorded. Our results indicate that tyrosol significantly attenuated the extent of ETEC-induced diarrhea, including inhibition of pro-inflammatory cytokine, repair of the intestinal epithelial mechanical barrier, and significant inhibition of NF-κB activation. This finding is helpful for the development and further application of tyrosol in the treatment of diarrhea.
Collapse
Affiliation(s)
- Fazheng Yu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jian Guo
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Hong Lin Ren
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Shiying Lu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zhaoqi He
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jiang Chang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xueyu Hu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ruoran Shi
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yuanyuan Jin
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yansong Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zengshan Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiaoxu Wang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, 130112, Jilin, China.
| | - Pan Hu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
38
|
Appraisal of the Possible Role of PPAR γ Upregulation by CLA of Probiotic Pediococcus pentosaceus GS4 in Colon Cancer Mitigation. PPAR Res 2023; 2023:9458308. [PMID: 36875279 PMCID: PMC9984262 DOI: 10.1155/2023/9458308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 03/07/2023] Open
Abstract
The prevalence of colon cancer (CC) is increasing at the endemic scale, which is accompanied by subsequent morbidity and mortality. Although there have been noteworthy achievements in the therapeutic strategies in recent years, the treatment of patients with CC remains a formidable task. The current study focused on to study role of biohydrogenation-derived conjugated linoleic acid (CLA) of probiotic Pediococcus pentosaceus GS4 (CLAGS4) against CC, which induced peroxisome proliferator-activated receptor gamma (PPARγ) expression in human CC HCT-116 cells. Pre-treatment with PPARγ antagonist bisphenol A diglycidyl ether has significantly reduced the inhibitory efficacy of enhanced cell viability of HCT-116 cells, suggesting the PPARγ-dependent cell death. The cancer cells treated with CLA/CLAGS4 demonstrated the reduced level of Prostaglandin E2 PGE2 in association with reduced COX-2 and 5-LOX expressions. Moreover, these consequences were found to be associated with PPARγ-dependent. Furthermore, delineation of mitochondrial dependent apoptosis with the help of molecular docking LigPlot analysis showed that CLA can bind with hexokinase-II (hHK-II) (highly expressed in cancer cells) and that this association underlies voltage dependent anionic channel to open, thereby causing mitochondrial membrane depolarization, a condition that initiates intrinsic apoptotic events. Apoptosis was further confirmed by annexin V staining and elevation of caspase 1p10 expression. Taken all together, it is deduced that, mechanistically, the upregulation of PPARγ by CLAGS4 of P. pentosaceus GS4 can alter cancer cell metabolism in association with triggering apoptosis in CC.
Collapse
|
39
|
Chen PC, Hsieh MH, Kuo WS, Wu LSH, Kao HF, Liu LF, Liu ZG, Jeng WY, Wang JY. Moonlighting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) protein of Lactobacillus gasseri attenuates allergic asthma via immunometabolic change in macrophages. J Biomed Sci 2022; 29:75. [PMID: 36175886 PMCID: PMC9520948 DOI: 10.1186/s12929-022-00861-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The extra-intestinal effects of probiotics for preventing allergic diseases are well known. However, the probiotic components that interact with host target molecules and have a beneficial effect on allergic asthma remain unknown. Lactobacillus gasseri attenuates allergic airway inflammation through the activation of peroxisome proliferator- activated receptor γ (PPARγ) in dendritic cells. Therefore, we aimed to isolate and investigate the immunomodulatory effect of the PPARγ activation component from L. gasseri. METHODS Culture supernatants of L. gasseri were fractionated and screened for the active component for allergic asthma. The isolated component was subjected to in vitro functional assays and then cloned. The crystal structure of this component protein was determined using X-ray crystallography. Intrarectal inoculation of the active component-overexpressing Clear coli (lipopolysaccharide-free Escherichia coli) and intraperitoneal injection of recombinant component protein were used in a house dust mite (HDM)-induced allergic asthma mouse model to investigate the protective effect. Recombinant mutant component proteins were assayed, and their structures were superimposed to identify the detailed mechanism of alleviating allergic inflammation. RESULTS A moonlighting protein, glycolytic glyceraldehyde 3-phosphate dehydrogenase (GAPDH), LGp40, that has multifunctional effects was purified from cultured L. gasseri, and the crystal structure was determined. Both intrarectal inoculation of LGp40-overexpressing Clear coli and intraperitoneal administration of recombinant LGp40 protein attenuated allergic inflammation in a mouse model of allergic asthma. However, CDp40, GAPDH isolated from Clostridium difficile did not possess this anti-asthma effect. LGp40 redirected allergic M2 macrophages toward the M1 phenotype and impeded M2-prompted Th2 cell activation through glycolytic activity that induced immunometabolic changes. Recombinant mutant LGp40, without enzyme activity, showed no protective effect against HDM-induced airway inflammation. CONCLUSIONS We found a novel mechanism of moonlighting LGp40 in the reversal of M2-prompted Th2 cell activation through glycolytic activity, which has an important immunoregulatory role in preventing allergic asthma. Our results provide a new strategy for probiotics application in alleviating allergic asthma.
Collapse
Affiliation(s)
- Pei-Chi Chen
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, No. 2, Yuh-Der Road, Taichung City, 404, Taiwan.,Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan
| | - Miao-Hsi Hsieh
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, No. 2, Yuh-Der Road, Taichung City, 404, Taiwan
| | - Wen-Shuo Kuo
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, No. 2, Yuh-Der Road, Taichung City, 404, Taiwan.,School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, China
| | - Lawrence Shih-Hsin Wu
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, No. 2, Yuh-Der Road, Taichung City, 404, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hui-Fang Kao
- Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan
| | - Li-Fan Liu
- Institute of Gerontology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Zhi-Gang Liu
- Department of Respirology and Allergy, Third Affiliated Hospital of Shengzhen University, Shengzhen, China
| | - Wen-Yih Jeng
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan. .,Department of Biochemistry and Molecular Biology, National Cheng Kung University, No. 1, University Road, Tainan City, 701, Taiwan.
| | - Jiu-Yao Wang
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, No. 2, Yuh-Der Road, Taichung City, 404, Taiwan. .,Children's Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
40
|
Gut Microbiota Dynamics in Relation to Long-COVID-19 Syndrome: Role of Probiotics to Combat Psychiatric Complications. Metabolites 2022; 12:metabo12100912. [PMID: 36295814 PMCID: PMC9611210 DOI: 10.3390/metabo12100912] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Increasing numbers of patients who recover from COVID-19 report lasting symptoms, such as fatigue, muscle weakness, dementia, and insomnia, known collectively as post-acute COVID syndrome or long COVID. These lasting symptoms have been examined in different studies and found to influence multiple organs, sometimes resulting in life-threating conditions. In this review, these symptoms are discussed in connection to the COVID-19 and long-COVID-19 immune changes, highlighting oral and psychiatric health, as this work focuses on the gut microbiota’s link to long-COVID-19 manifestations in the liver, heart, kidney, brain, and spleen. A model of this is presented to show the biological and clinical implications of gut microbiota in SARS-CoV-2 infection and how they could possibly affect the therapeutic aspects of the disease. Probiotics can support the body’s systems in fighting viral infections. This review focuses on current knowledge about the use of probiotics as adjuvant therapies for COVID-19 patients that might help to prevent long-COVID-19 complications.
Collapse
|
41
|
El-Banna AA, Darwish RS, Ghareeb DA, Yassin AM, Abdulmalek SA, Dawood HM. Metabolic profiling of Lantana camara L. using UPLC-MS/MS and revealing its inflammation-related targets using network pharmacology-based and molecular docking analyses. Sci Rep 2022; 12:14828. [PMID: 36050423 PMCID: PMC9436993 DOI: 10.1038/s41598-022-19137-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Lantana camara L. is widely used in folk medicine for alleviation of inflammatory disorders, but studies that proved this folk use and that revealed the molecular mechanism of action in inflammation mitigation are not enough. Therefore, this study aimed to identify L. camara phytoconstituents using UPLC-MS/MS and explain their multi-level mechanism of action in inflammation alleviation using network pharmacology analysis together with molecular docking and in vitro testing. Fifty-seven phytoconstituents were identified in L. camara extract, from which the top hit compounds related to inflammation were ferulic acid, catechin gallate, myricetin and iso-ferulic acid. Whereas the most enriched inflammation related genes were PRKCA, RELA, IL2, MAPK 14 and FOS. Furthermore, the most enriched inflammation-related pathways were PI3K-Akt and MAPK signaling pathways. Molecular docking revealed that catechin gallate possessed the lowest binding energy against PRKCA, RELA and IL2, while myricetin had the most stabilized interaction against MAPK14 and FOS. In vitro cytotoxicity and anti-inflammatory testing indicated that L. camara extract is safer than piroxicam and has a strong anti-inflammatory activity comparable to it. This study is a first step in proving the folk uses of L. camara in palliating inflammatory ailments and institutes the groundwork for future clinical studies.
Collapse
Affiliation(s)
- Alaa A El-Banna
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Reham S Darwish
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Doaa A Ghareeb
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications, New Borg El Arab, Alexandria, Egypt.,Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.,Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Abdelrahman M Yassin
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications, New Borg El Arab, Alexandria, Egypt
| | - Shaymaa A Abdulmalek
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications, New Borg El Arab, Alexandria, Egypt.,Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.,Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hend M Dawood
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
42
|
The Role of Transcription Factor PPAR-γ in the Pathogenesis of Psoriasis, Skin Cells, and Immune Cells. Int J Mol Sci 2022; 23:ijms23179708. [PMID: 36077103 PMCID: PMC9456565 DOI: 10.3390/ijms23179708] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
The peroxisome proliferator-activated receptor PPAR-γ is one of three PPAR nuclear receptors that act as ligand-activated transcription factors. In immune cells, the skin, and other organs, PPAR-γ regulates lipid, glucose, and amino acid metabolism. The receptor translates nutritional, pharmacological, and metabolic stimuli into the changes in gene expression. The activation of PPAR-γ promotes cell differentiation, reduces the proliferation rate, and modulates the immune response. In the skin, PPARs also contribute to the functioning of the skin barrier. Since we know that the route from identification to the registration of drugs is long and expensive, PPAR-γ agonists already approved for other diseases may also represent a high interest for psoriasis. In this review, we discuss the role of PPAR-γ in the activation, differentiation, and proliferation of skin and immune cells affected by psoriasis and in contributing to the pathogenesis of the disease. We also evaluate whether the agonists of PPAR-γ may become one of the therapeutic options to suppress the inflammatory response in lesional psoriatic skin and decrease the influence of comorbidities associated with psoriasis.
Collapse
|
43
|
Pivrncova E, Kotaskova I, Thon V. Neonatal Diet and Gut Microbiome Development After C-Section During the First Three Months After Birth: A Systematic Review. Front Nutr 2022; 9:941549. [PMID: 35967823 PMCID: PMC9364824 DOI: 10.3389/fnut.2022.941549] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022] Open
Abstract
Background Cesarean section (C-section) delivery imprints fundamentally on the gut microbiota composition with potential health consequences. With the increasing incidence of C-sections worldwide, there is a need for precise characterization of neonatal gut microbiota to understand how to restore microbial imbalance after C-section. After birth, gut microbiota development is shaped by various factors, especially the infant’s diet and antibiotic exposure. Concerning diet, current research has proposed that breastfeeding can restore the characteristic gut microbiome after C-section. Objectives In this systematic review, we provide a comprehensive summary of the current literature on the effect of breastfeeding on gut microbiota development after C-section delivery in the first 3 months of life. Methods The retrieved data from PubMed, Scopus, and Web of Science were evaluated according to the PICO/PECO strategy. Quality assessment was conducted by the Newcastle–Ottawa Scale. Results After critical selection, we identified 14 out of 4,628 studies for the evaluation of the impact of the diet after C-section delivery. The results demonstrate consistent evidence that C-section and affiliated intrapartum antibiotic exposure affect Bacteroidetes abundance and the incapacity of breastfeeding to reverse their reduction. Furthermore, exclusive breastfeeding shows a positive effect on Actinobacteria and Bifidobacteria restoration over the 3 months after birth. None of the included studies detected any significant changes in Lactobacillus abundance in breastfed infants after C-section. Conclusion C-section and intrapartum antibiotic exposure influence an infant’s gut microbiota by depletion of Bacteroides, regardless of the infant’s diet in the first 3 months of life. Even though breastfeeding increases the presence of Bifidobacteria, further research with proper feeding classification is needed to prove the restoration effect on some taxa in infants after C-section. Systematic Review Registration: [www.crd.york.ac.uk/prospero/], identifier [CRD42021287672].
Collapse
Affiliation(s)
- Eliska Pivrncova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Iva Kotaskova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vojtech Thon
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
44
|
Bacteroides thetaiotaomicron rough-type lipopolysaccharide: The chemical structure and the immunological activity. Carbohydr Polym 2022; 297:120040. [DOI: 10.1016/j.carbpol.2022.120040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
|
45
|
Zhang X, Song M, Lv P, Hao G, Sun S. Effects of Clostridium butyricum on intestinal environment and gut microbiome under Salmonella infection. Poult Sci 2022; 101:102077. [PMID: 36067578 PMCID: PMC9468503 DOI: 10.1016/j.psj.2022.102077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
Salmonellosis causes massive economic losses globally every year. Especially in poultry, numerous drug-resistant bacteria have emerged; thus, it is imperative to find alternatives to antibiotics. As a probiotic, Clostridium butyricum (C. butyricum) provides the latest strategy for inhibiting the proliferation of Salmonella. This study aimed to evaluate the effects of C. butyricum on intestinal environment and gut microbiome under Salmonella infection. In this study, we modeled the infection of Salmonella using specific pathogen-free (SPF) chicks and found that the use of C. butyricum directly reduced the number of Salmonella colonizations in the spleen and liver. It also alleviated the histopathological changes of the liver, spleen, and cecum caused by Salmonella Enteritidis (S. Enteritidis). In addition, S. Enteritidis increased the expression of pro-inflammatory IL-6 in the cecum on day 6 postinfection. Interestingly, we found that C. butyricum changed PPAR-γ transcript levels in the cecum on day 6 postinfection. Analysis of the chick gastrointestinal microbiome showed that Salmonella infection increased the relative abundance of Subdoligranulum variabile. Further analysis found that Salmonella challenge significantly reduced the relative abundance of Faecalibacterium prausnitzii and C. butyricum increased the relative abundance of anaerobic bacteria in the gut on day 6 postinfection. Moreover, early supplementation of C. butyricum restored the epithelial hypoxia in S. Enteritidis infection in chicks. The results suggest that C. butyricum restores epithelial hypoxia caused by S. Enteritidis, improves the stability of intestinal flora, and inhibits the proliferation of Salmonella.
Collapse
|
46
|
Chen X, Zhu X, Dong J, Chen F, Gao Q, Zhang L, Cai D, Dong H, Ruan B, Wang Y, Jiang Q, Cao W. Reversal of Epigenetic Peroxisome Proliferator-Activated Receptor-γ Suppression by Diacerein Alleviates Oxidative Stress and Osteoarthritis in Mice. Antioxid Redox Signal 2022; 37:40-53. [PMID: 35196878 DOI: 10.1089/ars.2021.0219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aims: The pathogenesis of osteoarthritis (OA) is characterized by oxidative stress (OS) and sustained inflammation that are substantially associated with epigenetic DNA methylation alterations of osteogenic gene expression. Diacerein as an anthraquinone anti-OA drug exhibits multiple chondroprotective properties, but less clarified pharmacological actions. Since anthraquinone contain an epigenetic modulating property, in this study we investigate whether the anti-OA functions of diacerein involve DNA methylation modulation and antioxidant signaling. Results: The OA mice incurred by destabilization of medial meniscus exhibited marked suppression of peroxisome proliferator-activated receptor-gamma (PPARγ), a chondroprotective transcription factor with anti-inflammation and OS-balancing properties, aberrant upregulations of DNA methyltransferase (DNMT)1/3a, and PPARγ promoter hypermethylation in knee joint cartilage. Diacerein treatment mitigated the cartilage damage and significantly inhibited the DNMT1/3a upregulation, the PPARγ promoter hypermethylation, and the PPARγ loss, and it effectively corrected the adverse expression of antioxidant enzymes and inflammatory cytokines. In cultured chondrocytes, diacerein reduced the interleukin-1β-induced PPARγ suppression and the abnormal expression of its downstream antioxidant enzymes in a gain of DNMT and PPARγ inhibition-sensitive manner, and in PPARγ knockout mice, the anti-OA effects of diacerein were significantly reduced. Innovation: Our work reveals a novel anti-OA pharmacological property of diacerein and identifies the aberrant DNMT elevation and the resultant PPARγ suppression as an important epigenetic pathway that mediates diacerein's anti-OA activities. Conclusion: DNA methylation aberration and the resultant PPARγ suppression contribute significantly to epigenetic OA pathogenesis, and targeting PPARγ suppression via DNA demethylation is an important component of diacerein's anti-OA functions. Antioxid. Redox Signal. 37, 40-53.
Collapse
Affiliation(s)
- Xingren Chen
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedics, State Key Lab of Pharmaceutical Biotechnology, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Xiaobo Zhu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedics, State Key Lab of Pharmaceutical Biotechnology, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Jian Dong
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedics, State Key Lab of Pharmaceutical Biotechnology, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Fang Chen
- Nanjing University School of Medicine, Department of Basic Medical Science, Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Qi Gao
- Nanjing University School of Medicine, Department of Basic Medical Science, Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Lijun Zhang
- Nanjing University School of Medicine, Department of Basic Medical Science, Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Dawei Cai
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedics, State Key Lab of Pharmaceutical Biotechnology, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Hui Dong
- Department of Orthopedics, Northern Jiangsu People's Hospital, The Affiliated Hospital of Nanjing University Medical School, Yangzhou, China
| | - Binjia Ruan
- Department of Orthopedics, Northern Jiangsu People's Hospital, The Affiliated Hospital of Nanjing University Medical School, Yangzhou, China
| | - Yongxiang Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital, The Affiliated Hospital of Nanjing University Medical School, Yangzhou, China
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedics, State Key Lab of Pharmaceutical Biotechnology, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Wangsen Cao
- Nanjing University School of Medicine, Department of Basic Medical Science, Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| |
Collapse
|
47
|
Zhang S, Paul S, Kundu P. NF-κB Regulation by Gut Microbiota Decides Homeostasis or Disease Outcome During Ageing. Front Cell Dev Biol 2022; 10:874940. [PMID: 35846362 PMCID: PMC9285657 DOI: 10.3389/fcell.2022.874940] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022] Open
Abstract
Human beings and their indigenous microbial communities have coexisted for centuries, which led to the development of co-evolutionary mechanisms of communication and cooperation. Such communication machineries are governed by sophisticated multi-step feedback loops, which typically begin with the recognition of microbes by pattern recognition receptors (PRRs), followed by a host transcriptional response leading to the release of effector molecules. Our gastrointestinal tract being the main platform for this interaction, a variety of host intestinal cells tightly regulate these loops to establish tolerance towards the microbial communities of the gut and maintain homeostasis. The transcription factor, nuclear factor kappa B (NF-κB) is an integral component of such a communication apparatus, which plays a critical role in determining the state of homeostasis or inflammation associated with dysbiosis in the host. Here we outline the crucial role of NF-κB in host response to microbial cues in the context of ageing and associated diseases.
Collapse
Affiliation(s)
- Shuning Zhang
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Soumyajeet Paul
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Parag Kundu
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Parag Kundu,
| |
Collapse
|
48
|
Lai Y, Hayashi N, Lu TK. Engineering the human gut commensal Bacteroides thetaiotaomicron with synthetic biology. Curr Opin Chem Biol 2022; 70:102178. [PMID: 35759819 DOI: 10.1016/j.cbpa.2022.102178] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 11/29/2022]
Abstract
The role of the microbiome in health and disease is attracting the attention of researchers seeking to engineer microorganisms for diagnostic and therapeutic applications. Recent progress in synthetic biology may enable the dissection of host-microbiota interactions. Sophisticated genetic circuits that can sense, compute, memorize, and respond to signals have been developed for the stable commensal bacterium Bacteroides thetaiotaomicron, dominant in the human gut. In this review, we highlight recent advances in expanding the genetic toolkit for B. thetaiotaomicron and foresee several applications of this species for microbiome engineering. We provide our perspective on the challenges and future opportunities for the engineering of human gut-associated bacteria as living therapeutic agents.
Collapse
Affiliation(s)
- Yong Lai
- Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA
| | - Naoki Hayashi
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corp., 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Timothy K Lu
- Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Senti Biosciences, 2 Corporate Drive South San Francisco, CA 94080, USA.
| |
Collapse
|
49
|
Li P, Gao M, Song B, Liu Y, Yan S, Lei J, Zhao Y, Li G, Mahmood T, Lv Z, Hu Y, Guo Y. Fecal Microbiota Transplantation Reshapes the Physiological Function of the Intestine in Antibiotic-Treated Specific Pathogen-Free Birds. Front Immunol 2022; 13:884615. [PMID: 35812374 PMCID: PMC9261465 DOI: 10.3389/fimmu.2022.884615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
The topic about the interactions between host and intestinal microbiota has already caught the attention of many scholars. However, there is still a lack of systematic reports on the relationship between the intestinal flora and intestinal physiology of birds. Thus, this study was designed to investigate it. Antibiotic-treated specific pathogen-free (SPF) bird were used to construct an intestinal bacteria-free bird (IBF) model, and then, the differences in intestinal absorption, barrier, immune, antioxidant and metabolic functions between IBF and bacteria-bearing birds were studied. To gain further insight, the whole intestinal flora of bacteria-bearing birds was transplanted into the intestines of IBF birds to study the remodeling effect of fecal microbiota transplantation (FMT) on the intestinal physiology of IBF birds. The results showed that compared with bacteria-bearing birds, IBF birds had a lighter body weight and weaker intestinal absorption, antioxidant, barrier, immune and metabolic functions. Interestingly, FMT contributed to reshaping the abovementioned physiological functions of the intestines of IBF birds. In conclusion, the intestinal flora plays an important role in regulating the physiological functions of the intestine.
Collapse
|
50
|
Wernroth ML, Peura S, Hedman AM, Hetty S, Vicenzi S, Kennedy B, Fall K, Svennblad B, Andolf E, Pershagen G, Theorell-Haglöw J, Nguyen D, Sayols-Baixeras S, Dekkers KF, Bertilsson S, Almqvist C, Dicksved J, Fall T. Development of gut microbiota during the first 2 years of life. Sci Rep 2022; 12:9080. [PMID: 35641542 PMCID: PMC9156670 DOI: 10.1038/s41598-022-13009-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Although development of microbiota in childhood has been linked to chronic immune-related conditions, early childhood determinants of microbiota development have not been fully elucidated. We used 16S rRNA sequencing to analyse faecal and saliva samples from 83 children at four time-points during their first 2 years of life and from their mothers. Our findings confirm that gut microbiota in infants have low diversity and highlight that some properties are shared with the oral microbiota, although inter-individual differences are present. A considerable convergence in gut microbiota composition was noted across the first 2 years of life, towards a more diverse adult-like microbiota. Mode of delivery accounted for some of the inter-individual variation in early childhood, but with a pronounced attenuation over time. Our study extends previous research with further characterization of the major shift in gut microbiota composition during the first 2 years of life.
Collapse
Affiliation(s)
- Mona-Lisa Wernroth
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, EpiHubben, MTC-huset, 751 85, Uppsala, Sweden.,Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Sari Peura
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, EpiHubben, MTC-huset, 751 85, Uppsala, Sweden.,Department of Forest Mycology and Plant Pathology, and Science for Life Laboratory, Swedish University of Agricultural Science, Uppsala, Sweden.,Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Swedish Nuclear Fuel and Waste Management Co., (SKB), Stockholm, Sweden
| | - Anna M Hedman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Hetty
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, Uppsala, Sweden
| | - Silvia Vicenzi
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, EpiHubben, MTC-huset, 751 85, Uppsala, Sweden.,School of Medicine, University of Tasmania, Hobart, Australia.,Division of Biological Sciences, University of California, San Diego, USA
| | - Beatrice Kennedy
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, EpiHubben, MTC-huset, 751 85, Uppsala, Sweden
| | - Katja Fall
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden.,Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bodil Svennblad
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Ellika Andolf
- Department of Clinical Sciences, Division of Obstetrics and Gynaecology, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Theorell-Haglöw
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, EpiHubben, MTC-huset, 751 85, Uppsala, Sweden.,Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Diem Nguyen
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, EpiHubben, MTC-huset, 751 85, Uppsala, Sweden
| | - Sergi Sayols-Baixeras
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, EpiHubben, MTC-huset, 751 85, Uppsala, Sweden
| | - Koen F Dekkers
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, EpiHubben, MTC-huset, 751 85, Uppsala, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tove Fall
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, EpiHubben, MTC-huset, 751 85, Uppsala, Sweden.
| |
Collapse
|