1
|
Gerasimidis K. Nutrition and dietary therapy in paediatric inflammatory bowel disease. Clin Nutr ESPEN 2025; 67:233-241. [PMID: 40064235 DOI: 10.1016/j.clnesp.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Affiliation(s)
- Konstantinos Gerasimidis
- Human Nutrition, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, G31 2ER, Glasgow, UK.
| |
Collapse
|
2
|
Bruqi K, Strappazzon F. NDP52 and its emerging role in pathogenesis. Cell Death Dis 2025; 16:359. [PMID: 40319017 PMCID: PMC12049512 DOI: 10.1038/s41419-025-07668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
Autophagy is a pro-survival process that regulates the degradation and renewal of cellular components, making it a crucial mechanism for cellular homeostasis. There are selective forms of autophagy that are specific to a number of substrates, such as pathogens (bacteria or viruses), protein aggregates or excess/damaged organelles. These processes involve as key players autophagy receptors, that link the cargo to be degraded to the autophagic machinery. Among them, NDP52 (also known as CALCOCO2) has been described to act as a "bridge" between the autophagy machinery and (1) damaged mitochondria in the mitophagy process; (2) pathogens during xenophagy or (3) proteins in the process of aggrephagy. The aim of this review is to summarize the major functions of NDP52, and to highlight the existence of two human NDP52 variants that have been described as risk or protective factors for Crohn's disease or Multiple Sclerosis and Alzheimer's disease patients, respectively. As these three diseases share common pathological features that lead to inflammation, such as mitochondria or gut microbiota dysfunctions, but also pathogenic infections, it seems clear that NDP52 could be a key player at the crossroad by acting indirectly on inflammation, and therefore a potential target for clinical applications and benefits.
Collapse
Affiliation(s)
- Krenare Bruqi
- Univ Lyon, Univ Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du muscle, UMR5261, U1315, Institut Neuromyogène, Lyon, France
| | - Flavie Strappazzon
- Univ Lyon, Univ Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du muscle, UMR5261, U1315, Institut Neuromyogène, Lyon, France.
| |
Collapse
|
3
|
Zhai J, Li Y, Liu J, Dai C. Neuroimmune interactions: The bridge between inflammatory bowel disease and the gut microbiota. Clin Transl Med 2025; 15:e70329. [PMID: 40400119 PMCID: PMC12095209 DOI: 10.1002/ctm2.70329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 04/16/2025] [Accepted: 04/21/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND The multidimensional regulatory mechanism of the gut-brain-immune axis in the context of inflammatory bowel disease (IBD) has garnered significant attention, particularly regarding how intestinal microbiota finely regulates immune responses through immune cells and sensory neurons. MAIN BODY Metabolites produced by intestinal microbiota influence the phenotype switching of immune cells via complex signalling pathways, thereby modulating their anti-inflammatory and pro-inflammatory functions during intestinal inflammation. Furthermore, sensory neurons exhibit heightened sensitivity to microbial-derived signals, which is essential for preserving intestinal balance and controlling pathological inflammation by integrating peripheral environmental signals with local immune responses. The dynamic equilibrium between immune cells and the neuroimmunoregulation mediated by sensory neurons collectively sustains immune homeostasis within the intestine. However, this coordination mechanism is markedly disrupted under the pathological conditions associated with IBD. CONCLUSION An in-depth exploration of the interactions among immune cells, gut microbiota and sensory neurons may yield significant insights into the pathological mechanisms underlying IBD and guide the creation of new treatment approaches. KEY POINTS The gut microbiota regulates the gut-brain-immune axis, modulating neuroimmune interactions in IBD. Microbiota-derived metabolites influence immune cells, thereby affecting neurons. Neurons secrete mediators, enabling bidirectional neuroimmune communication essential for intestinal homeostasis. Disruptions contribute to IBD, offering therapeutic targets.
Collapse
Affiliation(s)
- Jinxia Zhai
- Department of GastroenterologyFirst Affiliated Hospital, China Medical UniversityShenyang CityLiaoning ProvinceChina
| | - Yingjie Li
- Department of GastroenterologyFirst Affiliated Hospital, Jinzhou Medical UniversityJinzhou CityLiaoning ProvinceChina
| | - Jiameng Liu
- Department of GastroenterologyFirst Affiliated Hospital, China Medical UniversityShenyang CityLiaoning ProvinceChina
| | - Cong Dai
- Department of GastroenterologyFirst Affiliated Hospital, China Medical UniversityShenyang CityLiaoning ProvinceChina
| |
Collapse
|
4
|
Arakawa M, Uriu K, Saito K, Hirose M, Katoh K, Asano K, Nakane A, Saitoh T, Yoshimori T, Morita E. HEATR3 recognizes membrane rupture and facilitates xenophagy in response to Salmonella invasion. Proc Natl Acad Sci U S A 2025; 122:e2420544122. [PMID: 40178893 PMCID: PMC12002282 DOI: 10.1073/pnas.2420544122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/12/2025] [Indexed: 04/05/2025] Open
Abstract
Bacterial invasion into the cytoplasm of epithelial cells triggers the activation of the cellular autophagic machinery as a defense mechanism, a process known as xenophagy. In this study, we identified HEATR3, an LC3-interacting region (LIR)-containing protein, as a factor involved in this defense mechanism using quantitative mass spectrometry analysis. HEATR3 localizes intracellularly invading Salmonella, and HEATR3 deficiency promotes Salmonella proliferation in the cytoplasm. HEATR3 also localizes to lysosomes damaged by chemical treatment, suggesting that Salmonella recognition is facilitated by damage to the host cell membrane. HEATR3 deficiency impairs LC3 recruitment to damaged membranes and blocks the delivery of the target to the lysosome. These phenotypes were rescued by exogenous expression of wild-type HEATR3 but not by the LIR mutant, indicating the crucial role of the HEATR3-LC3 interaction in the receptor for selective autophagy. HEATR3 is delivered to lysosomes in an autophagy-dependent manner. Although HEATR3 recruitment to the damaged membrane was unaffected by ATG5 or FIP200 deficiency, it was markedly impaired by treatment with a calcium chelator, suggesting involvement upstream of the autophagic pathway. These findings suggest that HEATR3 serves as a receptor for selective autophagy and is able to identify damaged membranes, facilitate the removal of damaged lysosomes, and target invading bacteria within cells.
Collapse
Affiliation(s)
- Masashi Arakawa
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| | - Keiya Uriu
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| | - Koki Saito
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| | - Mai Hirose
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| | - Kaoru Katoh
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba305-8566, Japan
| | - Krisana Asano
- Department of Microbiology and Immunology, Graduate School of Medicine, Hirosaki University, Hirosaki036-8562, Japan
| | - Akio Nakane
- Department of Microbiology and Immunology, Graduate School of Medicine, Hirosaki University, Hirosaki036-8562, Japan
| | - Tatsuya Saitoh
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Suita565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan
- Center for Infectious Diseases for Education and Research, Suita, Osaka565-0871, Japan
| | - Tamotsu Yoshimori
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita565-0871, Japan
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita565-0871, Japan
| | - Eiji Morita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki036-8561, Japan
| |
Collapse
|
5
|
Wang M, Wang Z, Li Z, Qu Y, Zhao J, Wang L, Zhou X, Xu Z, Zhang D, Jiang P, Fan B, Liu Y. Targeting programmed cell death in inflammatory bowel disease through natural products: New insights from molecular mechanisms to targeted therapies. Phytother Res 2025; 39:1776-1807. [PMID: 38706097 DOI: 10.1002/ptr.8216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/14/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disorder primarily characterized by intestinal inflammation and recurrent ulceration, leading to a compromised intestinal barrier and inflammatory infiltration. This disorder's pathogenesis is mainly attributed to extensive damage or death of intestinal epithelial cells, along with abnormal activation or impaired death regulation of immune cells and the release of various inflammatory factors, which contribute to the inflammatory environment in the intestines. Thus, maintaining intestinal homeostasis hinges on balancing the survival and functionality of various cell types. Programmed cell death (PCD) pathways, including apoptosis, pyroptosis, autophagy, ferroptosis, necroptosis, and neutrophil extracellular traps, are integral in the pathogenesis of IBD by mediating the death of intestinal epithelial and immune cells. Natural products derived from plants, fruits, and vegetables have shown potential in regulating PCD, offering preventive and therapeutic avenues for IBD. This article reviews the role of natural products in IBD treatment by focusing on targeting PCD pathways, opening new avenues for clinical IBD management.
Collapse
Affiliation(s)
- Mengjie Wang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhiyuan Wang
- People's Hospital of Zhengzhou, Zhengzhou, China
| | - Zhichao Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Qu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiting Zhao
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Wang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinpeng Zhou
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ziqi Xu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Zhang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Fan
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Liu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Saab O, Al-Obaidi H, Algodi M, Algodi A, Rashid Y, Al-Sagban A, Alamily H, Merza N, Alzubaidy L, DuPont A. Interlukin-23 inhibitors as an induction and maintenance therapy for moderate to severe ulcerative colitis: a systematic review and meta‑analysis of randomized controlled trials. Inflamm Res 2025; 74:50. [PMID: 40057620 DOI: 10.1007/s00011-025-02017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Targeting the interleukin (IL)-23 axis is an emerging treatment target for ulcerative colitis (UC), with several positive randomized controlled trials (RCTs). We aim to investigate the safety and efficacy of IL-23 inhibitors for the induction and maintenance treatment of moderate to severe UC. METHODS A systematic review and meta-analysis synthesizing evidence from RCTs obtained from PubMed, Cochrane, Scopus, and Web of Science from inception to August 2024. We used the fixed-effects model to report dichotomous outcomes using the risk ratio (RR) with a 95% confidence interval (CI). PROSPERO ID CRD42024589935. RESULTS Four records, reporting four induction trials and three maintenance trials, with 2,699 patients in the induction phase and 1,015 in the maintenance phase, were included. IL-23 inhibitors significantly increased the rate of clinical remission in the induction phase (RR: 2.19, 95%CI [1.72, 2.78]) and maintenance phase (RR: 1.55, 95%CI [1.26, 1.90]); endoscopic remission in induction phase (RR: 1.76, 95%CI [1.41, 2.18]) and maintenance phase (RR: 1.63, 95%CI [1.21, 1.85]); histo-endoscopic mucosal healing in induction phase (RR: 2.06, 95%CI [1.60, 2.64]) and maintenance phase (RR: 1.48, 95%CI [1.14, 1.90]). Also, IL-23 inhibitors significantly decreased the incidence of serious adverse events in the induction phase (RR: 0.37, 95%CI [0.26, 0.55]) and maintenance phase (RR: 0.53, 95%CI [0.33, 0.83]). CONCLUSION IL-23 inhibitors are effective as an induction and maintenance therapy for moderate to severe UC based on the significantly increased rates of clinical, endoscopic, and histological remission. Also, the safety profile of IL-23 inhibitors is favorable, with a significantly decreased incidence of serious adverse events compared to placebo.
Collapse
Affiliation(s)
- Omar Saab
- University of Texas at Houston, Houston, USA.
| | | | - Marwah Algodi
- University of Baghdad College of Medicine, Baghdad, Iraq
| | - Asma Algodi
- University of Baghdad College of Medicine, Baghdad, Iraq
| | - Yasir Rashid
- Al-Mustansiriyah University College of Medicine, Baghdad, Iraq
| | | | | | | | | | | |
Collapse
|
7
|
Long Y, Zhang Q, Ling L, Zhuang Y, Wei X, Huang H, Lu Z, Huang Y, Chen X, Ye Y, Feng X, Zhang H, Huang B, Huang Y, Liang Y, Fang M, Nakamura Y, Lin B, Zhang X, Lu D, Jin X, Xu X. Mutations in AMBRA1 aggravate β-thalassemia by impairing autophagy-mediated clearance of free α-globin. Blood 2025; 145:1074-1088. [PMID: 39693613 DOI: 10.1182/blood.2023022688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024] Open
Abstract
ABSTRACT Accumulation of free α-globin is a critical factor in the pathogenesis of β-thalassemia. Autophagy plays a crucial role in clearing toxic free α-globin, thereby reducing disease severity. However, the impact of natural mutations in autophagy-related genes (ATGs) on the phenotypic variability of β-thalassemia remains unclear. In this study, we systematically investigated the relationship between variants in ATGs and disease phenotypes in a cohort of 1022 patients with β-thalassemia, identifying 4 missense mutations in the autophagy and beclin 1 regulator 1 (AMBRA1) gene. Disruption of the Ambra1 gene in β-thalassemic mice was found to reduce autophagic clearance of α-globin in red blood cell precursors, exacerbating disease phenotypes. Functional characterization of the AMBRA1 gene and these mutations in patient-derived CD34+ cells, edited human umbilical cord blood-derived erythroid progenitor 2 (HUDEP-2) cells, and engineered HUDEP-2 β-thalassemic cells confirmed that AMBRA1 facilitates the autophagic clearance of free α-globin in human erythroid cells. Functional studies demonstrated that AMBRA1 missense mutants destabilize Unc-51-like kinase 1 protein, inhibit light chain 3 protein lipidation, and subsequently hinder autophagic flux, leading to increased α-globin deposition. Additionally, these mutations were associated with erythrotoxic effects in vitro, including increased intracellular reactive oxygen species levels, higher apoptosis rates, and impaired erythroid differentiation and maturation. This study sheds light on the molecular association between mutations in ATGs and the exacerbation of β-thalassemia, highlighting the potential role of the AMBRA1 gene as a promising diagnostic and therapeutic target for β-hemoglobinopathies.
Collapse
Affiliation(s)
- Yong Long
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qianqian Zhang
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, China
| | - Ling Ling
- Yangzhou University, Yangzhou, China
| | - Yuan Zhuang
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaolei Wei
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haoyang Huang
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhanping Lu
- Central Laboratory, Chongqing University Fuling Hospital, Chongqing University, Chongqing, China
| | - Yushan Huang
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xianming Chen
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuhua Ye
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoqin Feng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haokun Zhang
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Binbin Huang
- Department 1 of Internal Medicine, Sixth People's Hospital of Nanning, Nanning, China
| | - Yueyan Huang
- Department of Pediatric, Affiliated Hospital of Youjiang Medical University for Nationalities Baise, Baise, China
| | - Yidan Liang
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Mingyan Fang
- Central Laboratory, Chongqing University Fuling Hospital, Chongqing University, Chongqing, China
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Japan
- Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Bin Lin
- Genetics Laboratory, Guangzhou Huayin Healthcare Group Co, Ltd, Guangzhou, China
- Genetics Laboratory, Guangzhou Jiexu Gene Technology Co, Ltd, Guangzhou, China
| | - Xinhua Zhang
- Department of Hematology, 923rd Hospital of the People's Liberation Army, Nanning, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xin Jin
- Central Laboratory, Chongqing University Fuling Hospital, Chongqing University, Chongqing, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiangmin Xu
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Dixon CL, Martin NR, Niphakis MJ, Cravatt BF, Fairn GD. Attenuating ABHD17 Isoforms Augments the S-acylation and Function of NOD2 and a Subset of Crohn's Disease-associated NOD2 Variants. Cell Mol Gastroenterol Hepatol 2025; 19:101491. [PMID: 40054525 PMCID: PMC12005342 DOI: 10.1016/j.jcmgh.2025.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/12/2025]
Abstract
BACKGROUND & AIMS NOD2 is an intracellular innate immune receptor that detects bacterial peptidoglycan fragments. Although nominally soluble, some NOD2 is associated with the plasma membrane and endosomal compartments for microbial surveillance. This membrane targeting is achieved through post-translational S-acylation of NOD2 by the protein acyltransferase ZDHHC5. Membrane attachment is necessary to initiate a signaling cascade in response to cytosolic peptidoglycan fragments. Ultimately, this signaling results in the production of antimicrobial peptides and proinflammatory cytokines. In most cases, S-acylation is a reversible post-translational modification with removal of the fatty acyl chain catalyzed by one of several acyl protein thioesterases. Deacylation of NOD2 by such an enzyme will displace it from the plasma membrane and endosomes, thus preventing signaling. METHODS To identify the enzymes responsible for NOD2 deacylation, we used engineered cell lines with RNA interference and small-molecule inhibitors. These approaches were combined with confocal microscopy, acyl-resin-assisted capture, immunoblotting, and cytokine multiplex assays. RESULTS We identified α/β-hydrolase domain-containing protein 17 isoforms (ABHD17A, ABHD17B, and ABHD17C) as the acyl protein thioesterases responsible for NOD2 deacylation. Inhibiting ABHD17 increased the plasma membrane localization of wild-type NOD2 and a subset of poorly acylated Crohn's disease-associated variants. This enhanced NOD2 activity, increasing NF-κB activation and pro-inflammatory cytokine production in epithelial cells. CONCLUSIONS These findings demonstrate that ABHD17 isoforms are negative regulators of NOD2. The results also suggest that targeting ABHD17 isoforms could restore functionality to specific Crohn's disease-associated NOD2 variants, offering a potential therapeutic strategy.
Collapse
Affiliation(s)
- Charneal L Dixon
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Keenan Research Centre for Biomedical Science, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Noah R Martin
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, California
| | - Gregory D Fairn
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Keenan Research Centre for Biomedical Science, St Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
9
|
Kayali S, Fantasia S, Gaiani F, Cavallaro LG, de’Angelis GL, Laghi L. NOD2 and Crohn's Disease Clinical Practice: From Epidemiology to Diagnosis and Therapy, Rewired. Inflamm Bowel Dis 2025; 31:552-562. [PMID: 38582044 PMCID: PMC11808579 DOI: 10.1093/ibd/izae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Indexed: 04/08/2024]
Abstract
Crohn's disease (CD) is a chronic inflammatory bowel disease with a multifactorial pathogenesis involving environmental and genetic factors. Since the late 20th century, the discovery of the first susceptibility gene (NOD2, previously referred to as CARD15) for CD has paved the way for further investigations into the correlations between clinical features and genetics, and its potential impact on clinical practice has fueled the research in the last 2 decades. Recent therapeutic advancements involving novel biologic drugs and small molecules have shifted inflammatory bowel disease management from a disease-centered to a patient-centric approach. To date, the role of NOD2 has not been fully understood yet. Recent data suggest that its clinical impact may be greater than currently recognized. This review overviews the most common NOD2 variants' role in real-life clinical practice. These genetic variants increase the risk of developing the disease and can aid in tailoring diagnosis and treatment. They are associated with the stricturing phenotype and ileal involvement and increase the risk of steroid refractoriness. In the meantime, limited and inconclusive evidence exists regarding their predictive role in response to azathioprine, biologic drugs, and small molecules. Eventually, their role in increasing the risk for surgery is evident, especially in those with the L1007fs variant. If further trials will support the initial evidence reported so far, NOD2 genetic variants will emerge as possible candidates for developing precision medicine in CD.
Collapse
Affiliation(s)
- Stefano Kayali
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefano Fantasia
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Federica Gaiani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Gastroenterology and Endoscopy Unit, University Hospital of Parma, Parma, Italy
| | | | | | - Luigi Laghi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Centre, Rozzano, Italy
| |
Collapse
|
10
|
Bentley-DeSousa A, Roczniak-Ferguson A, Ferguson SM. A STING-CASM-GABARAP pathway activates LRRK2 at lysosomes. J Cell Biol 2025; 224:e202310150. [PMID: 39812709 PMCID: PMC11734622 DOI: 10.1083/jcb.202310150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 09/28/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025] Open
Abstract
Mutations that increase LRRK2 kinase activity have been linked to Parkinson's disease and Crohn's disease. LRRK2 is also activated by lysosome damage. However, the endogenous cellular mechanisms that control LRRK2 kinase activity are not well understood. In this study, we identify signaling through stimulator of interferon genes (STING) as an activator of LRRK2 via the conjugation of ATG8 to single membranes (CASM) pathway. We furthermore establish that multiple chemical stimuli that perturb lysosomal homeostasis also converge on CASM to activate LRRK2. Although CASM results in the lipidation of multiple ATG8 protein family members, we establish that LRRK2 lysosome recruitment and kinase activation are highly dependent on interactions with the GABARAP member of this family. Collectively, these results define a pathway that integrates multiple stimuli at lysosomes to control the kinase activity of LRRK2. Aberrant activation of LRRK2 via this pathway may be of relevance in both Parkinson's and Crohn's diseases.
Collapse
Affiliation(s)
- Amanda Bentley-DeSousa
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD, USA
| | - Agnes Roczniak-Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD, USA
| | - Shawn M. Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, USA
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
11
|
Dixon CL, Martin NR, Niphakis MJ, Cravatt BF, Fairn GD. Attenuating ABHD17 isoforms augments the S-acylation and function of NOD2 and a subset of Crohn's disease-associated NOD2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.20.572362. [PMID: 38187608 PMCID: PMC10769251 DOI: 10.1101/2023.12.20.572362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
BACKGROUND AND AIMS NOD2 is an intracellular innate immune receptor that detects bacterial peptidoglycan fragments. Although nominally soluble, some NOD2 is associated with the plasma membrane and endosomal compartments for microbial surveillance. This membrane targeting is achieved through post-translational S-acylation of NOD2 by the protein acyltransferase ZDHHC5. Membrane attachment is necessary to initiate a signaling cascade in response to cytosolic peptidoglycan fragments. Ultimately, this signaling results in the production of antimicrobial peptides and pro-inflammatory cytokines. In most cases, S-acylation is a reversible post-translational modification with removal of the fatty acyl chain catalyzed by one of several acyl protein thioesterases. Deacylation of NOD2 by such an enzyme will displace it from the plasma membrane and endosomes, thus preventing signaling. METHODS To identify the enzymes responsible for NOD2 deacylation, we used engineered cell lines with RNA interference and small-molecule inhibitors. These approaches were combined with confocal microscopy, acyl-resin-assisted capture, immunoblotting, and cytokine multiplex assays. RESULTS We identified α/β-hydrolase domain-containing protein 17 isoforms (ABHD17A, ABHD17B, and ABHD17C) as the acyl protein thioesterases responsible for NOD2 deacylation. Inhibiting ABHD17 increased the plasma membrane localization of wild-type NOD2 and a subset of poorly acylated Crohn's disease-associated variants. This enhanced NOD2 activity, increasing NF-κB activation and pro-inflammatory cytokine production in epithelial cells. CONCLUSIONS These findings demonstrate that ABHD17 isoforms are negative regulators of NOD2. The results also suggest that targeting ABHD17 isoforms could restore functionality to specific Crohn's disease-associated NOD2 variants, offering a potential therapeutic strategy.
Collapse
Affiliation(s)
- Charneal L. Dixon
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Noah R. Martin
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | | | | | - Gregory D. Fairn
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
12
|
Gibson G, Rioux JD, Cho JH, Haritunians T, Thoutam A, Abreu MT, Brant SR, Kugathasan S, McCauley JL, Silverberg M, McGovern D. Eleven Grand Challenges for Inflammatory Bowel Disease Genetics and Genomics. Inflamm Bowel Dis 2025; 31:272-284. [PMID: 39700476 PMCID: PMC11700891 DOI: 10.1093/ibd/izae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Indexed: 12/21/2024]
Abstract
The past 2 decades have witnessed extraordinary advances in our understanding of the genetic factors influencing inflammatory bowel disease (IBD), providing a foundation for the approaching era of genomic medicine. On behalf of the NIDDK IBD Genetics Consortium, we herein survey 11 grand challenges for the field as it embarks on the next 2 decades of research utilizing integrative genomic and systems biology approaches. These involve elucidation of the genetic architecture of IBD (how it compares across populations, the role of rare variants, and prospects of polygenic risk scores), in-depth cellular and molecular characterization (fine-mapping causal variants, cellular contributions to pathology, molecular pathways, interactions with environmental exposures, and advanced organoid models), and applications in personalized medicine (unmet medical needs, working toward molecular nosology, and precision therapeutics). We review recent advances in each of the 11 areas and pose challenges for the genetics and genomics communities of IBD researchers.
Collapse
Affiliation(s)
- Greg Gibson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - John D Rioux
- Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - Judy H Cho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Talin Haritunians
- Widjaja Foundation IBD Research Institute, Cedars Sinai Health Center, Los Angeles, CA, USA
| | - Akshaya Thoutam
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Maria T Abreu
- Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Steven R Brant
- Robert Wood Johnson School of Medicine, Rutgers University, Piscataway, NJ, USA
| | - Subra Kugathasan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jacob L McCauley
- Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Mark Silverberg
- Lunenfeld-Tanenbaum Research Institute IBD, University of Toronto, Toronto, ON, Canada
| | - Dermot McGovern
- Widjaja Foundation IBD Research Institute, Cedars Sinai Health Center, Los Angeles, CA, USA
| |
Collapse
|
13
|
Arumugam P, Saha K, Nighot P. Intestinal Epithelial Tight Junction Barrier Regulation by Novel Pathways. Inflamm Bowel Dis 2025; 31:259-271. [PMID: 39321109 DOI: 10.1093/ibd/izae232] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Indexed: 09/27/2024]
Abstract
Intestinal epithelial tight junctions (TJs), a dynamically regulated barrier structure composed of occludin and claudin family of proteins, mediate the interaction between the host and the external environment by allowing selective paracellular permeability between the luminal and serosal compartments of the intestine. TJs are highly dynamic structures and can undergo constant architectural remodeling in response to various external stimuli. This is mediated by an array of intracellular signaling pathways that alters TJ protein expression and localization. Dysfunctional regulation of TJ components compromising the barrier homeostasis is an important pathogenic factor for pathological conditions including inflammatory bowel disease (IBD). Previous studies have elucidated the significance of TJ barrier integrity and key regulatory mechanisms through various in vitro and in vivo models. In recent years, considerable efforts have been made to understand the crosstalk between various signaling pathways that regulate formation and disassembly of TJs. This review provides a comprehensive view on the novel mechanisms that regulate the TJ barrier and permeability. We discuss the latest evidence on how ion transport, cytoskeleton and extracellular matrix proteins, signaling pathways, and cell survival mechanism of autophagy regulate intestinal TJ barrier function. We also provide a perspective on the context-specific outcomes of the TJ barrier modulation. The knowledge on the diverse TJ barrier regulatory mechanisms will provide further insights on the relevance of the TJ barrier defects and potential target molecules/pathways for IBD.
Collapse
Affiliation(s)
- Priya Arumugam
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Kushal Saha
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA, USA
| |
Collapse
|
14
|
Tang W, Zhang Y, Lu S, Xue C. Association between ATG16L1 rs2241880(T300A) and rs4663421 and ANCA‑associated vasculitis in the Guangxi population of China: Propensity score matching analysis. Biomed Rep 2025; 22:3. [PMID: 39483332 PMCID: PMC11522951 DOI: 10.3892/br.2024.1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/19/2024] [Indexed: 11/03/2024] Open
Abstract
Antineutrophil cytoplasmic antibody-associated vasculitis (AAV) is a rare autoimmune disease with an unclear pathogenesis. The present study investigated the associations between autophagy-related protein 16-like 1 (ATG16L1) rs2241880(T300A) and rs4663421 and AAV. A total of 177 patients with AAV and 216 healthy controls were included. Propensity score matching was used to match the two groups of subjects in terms of sex, age and ethnicity. Analyses of the relationships between these genetic polymorphisms and AAV susceptibility, including comparisons of allele and genotype frequency distribution, linkage disequilibrium analysis and analysis of single nucleotide polymorphism (SNP) interactions between two loci were performed. The association between the loci and laboratory test results and renal pathology were also analysed. A total of 154 pairs of patients with AAV and healthy controls was successfully matched. Neither polymorphism was associated with AAV susceptibility. However, SNP interaction in the model constructed with the two loci was statistically significant (P=0.018), and the combination of the AA genotype of rs2241880(T300A) and GG genotype of rs4663421 was associated the highest disease risk. The differences in the Birmingham Vasculitis Activity Score (BVAS), C-reactive protein (CRP) levels and 24-h urine protein level between patients with the rs2241880(T300A) AA + AG genotypes and the GG genotype were statistically significant (P<0.05). Furthermore, significant differences in the severity of glomerulosclerosis and global sclerosis were detected between individuals with the AA + AG genotype and those with the GG genotype at the rs2241880(T300A) locus (P<0.05). Similarly, there were statistically significant differences in degree of segmental sclerosis between individuals with CC + CG genotypes and those with GG genotypes at the rs2243421 locus (P<0.05). In summary, the single gene polymorphisms of these loci were not associated with genetic susceptibility to AAV. However, SNP interactions may serve a role in the risk of AAV. The rs2241880(T300A) polymorphism may be associated with BVAS, CRP levels and 24-h urine protein level in AAV. These SNPs may be associated with glomerulosclerosis and segmental sclerosis.
Collapse
Affiliation(s)
- Wenlv Tang
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Yurong Zhang
- Department of Electrocardiographic Diagnosis, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530000, P.R. China
| | - Shurong Lu
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Chao Xue
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| |
Collapse
|
15
|
Nicolò S, Faggiani I, Errico C, D'Amico F, Parigi TL, Danese S, Ungaro F. Translational characterization of immune pathways in inflammatory bowel disease: insights for targeted treatments. Expert Rev Clin Immunol 2025; 21:55-72. [PMID: 39313992 DOI: 10.1080/1744666x.2024.2400300] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION The pathogenesis of inflammatory bowel disease (IBD) involves the dysregulation of multiple inflammatory pathways. The understanding of these mechanisms allows their selective targeting for therapeutic purposes. The discovery of Tumor Necrosis Factor-alpha's (TNF-α) role in mucosal inflammation ushered an exciting new era of drug development which now comprises agents targeting multiple pro-inflammatory signaling pathways, integrins, and leukocyte trafficking regulators. AREA COVERED This review provides an overview of the main molecular players of IBD, their translation into therapeutic targets and the successful development of the advanced agents modulating them. We combine basic science with clinical trials data to present a critical review of both the successful and failed drug development programs. A PubMed literature search was conducted to delve into the available literature and clinical trials. EXPERT OPINION The treatment landscape for IBD has rapidly expanded, particularly with the development of biologics targeting TNF-α, integrins, and S1P modulators, as well as newer agents such as IL-12/IL-23 inhibitors and JAK inhibitors, offering robust efficacy and safety profiles. However, challenges persist in understanding and effectively treating difficult-to-treat IBD, highlighting the need for continued research to uncover novel therapeutic targets and optimize patient outcomes.
Collapse
Affiliation(s)
- Sabrina Nicolò
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Ilaria Faggiani
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Carmela Errico
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Ferdinando D'Amico
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Tommaso Lorenzo Parigi
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Silvio Danese
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Federica Ungaro
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
16
|
Layunta E, Jäverfelt S, van de Koolwijk FC, Sivertsson M, Dolan B, Arike L, Thulin SI, Vallance BA, Pelaseyed T. MUC17 is an essential small intestinal glycocalyx component that is disrupted in Crohn's disease. JCI Insight 2024; 10:e181481. [PMID: 39699961 PMCID: PMC11948581 DOI: 10.1172/jci.insight.181481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
Crohn's disease (CD) is the chronic inflammation of the terminal ileum and colon triggered by a dysregulated immune response to bacteria, but insights into specific molecular perturbations at the critical bacteria-epithelium interface are limited. Here, we report that the membrane mucin MUC17 protected small intestinal enterocytes against commensal and pathogenic bacteria. In noninflamed CD ileum, reduced MUC17 levels and a compromised glycocalyx barrier allowed recurrent bacterial contact with enterocytes. Muc17 deletion in mice rendered the small intestine particularly prone to atypical bacterial infection while maintaining resistance to colitis. The loss of Muc17 resulted in spontaneous deterioration of epithelial homeostasis and in the extraintestinal translocation of bacteria. Finally, Muc17-deficient mice harbored specific small intestinal bacterial taxa observed in patients with CD. Our findings highlight MUC17 as an essential region-specific line of defense in the small intestine with relevance for early epithelial defects in CD.
Collapse
Affiliation(s)
- Elena Layunta
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sofia Jäverfelt
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Fleur C. van de Koolwijk
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Molly Sivertsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Brendan Dolan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Liisa Arike
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sara I.M. Thulin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Bruce A. Vallance
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Thaher Pelaseyed
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Subramanian A, J A, T T, Kumarasamy V, Begum MY, Sekar M, Subramaniyan V, Wong LS, Al Fatease A. Exploring the Connections: Autophagy, Gut Microbiota, and Inflammatory Bowel Disease Pathogenesis. J Inflamm Res 2024; 17:10453-10470. [PMID: 39654856 PMCID: PMC11626960 DOI: 10.2147/jir.s483958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 12/12/2024] Open
Abstract
Inflammatory Bowel Disease (IBD), which includes Crohn's disease and ulcerative colitis, represents a complex and growing global health issue with a multifaceted origin. This review delves into the intricate relationship between gut microbiota, autophagy, and the development of IBD. The gut microbiota, a diverse community of microorganisms, plays a vital role in maintaining gut health, while imbalances in this microbial community, known as dysbiosis, are linked to IBD. Autophagy, a process by which cells recycle their components, is essential for gut homeostasis and the regulation of immune responses. When autophagy is impaired and dysbiosis occurs, they individually contribute to IBD, with their combined impact intensifying inflammation. The interconnectedness of gut microbiota, autophagy, and the host's immune system is central to the onset of IBD. The review also examines how diet influences gut microbiota and its subsequent effects on IBD. It highlights the therapeutic potential of targeting the microbiota and modulating autophagic pathways as treatment strategies for IBD. Understanding these interactions could lead to personalized therapies within the rapidly advancing fields of microbiome research and immunology.
Collapse
Affiliation(s)
- Arunkumar Subramanian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Afrarahamed J
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Tamilanban T
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology & Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya, Selangor, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
18
|
Chen C, Quan J, Chen X, Yang T, Yu C, Ye S, Yang Y, Wu X, Jiang D, Weng Y. Explore key genes of Crohn's disease based on glycerophospholipid metabolism: A comprehensive analysis Utilizing Mendelian Randomization, Multi-Omics integration, Machine Learning, and SHAP methodology. Int Immunopharmacol 2024; 141:112905. [PMID: 39173401 DOI: 10.1016/j.intimp.2024.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND AND AIMS Crohn's disease (CD) is a chronic, complex inflammatory condition with increasing incidence and prevalence worldwide. However, the causes of CD remain incompletely understood. We identified CD-related metabolites, inflammatory factors, and key genes by Mendelian randomization (MR), multi-omics integration, machine learning (ML), and SHAP. METHODS We first performed a mediation MR analysis on 1400 serum metabolites, 91 inflammatory factors, and CD. We found that certain phospholipids are causally related to CD. In the scRNA-seq data, monocytes were categorized into high and low metabolism groups based on their glycerophospholipid metabolism scores. The differentially expressed genes of these two groups of cells were extracted, and transcription factor prediction, cell communication analysis, and GSEA analysis were performed. After further screening of differentially expressed genes (FDR<0.05, log2FC>1), least absolute shrinkage and selection operator (LASSO) regression was performed to obtain hub genes. Models for hub genes were built using the Catboost, XGboost, and NGboost methods. Further, we used the SHAP method to interpret the models and obtain the gene with the highest contribution to each model. Finally, qRT-PCR was used to verify the expression of these genes in the peripheral blood mononuclear cells (PBMC) of CD patients and healthy subjects. RESULT MR results showed 1-palmitoyl-2-stearoyl-gpc (16:0/18:0) levels, 1-stearoyl-2-arachidonoyl-GPI (18:0/20:4) levels, 1-arachidonoyl-gpc (20:4n6) levels, 1-palmitoyl-2-arachidonoyl-gpc (16:0/20:4n6) levels, and 1-arachidonoyl-GPE (20:4n6) levels were significantly associated with CD risk reduction (FDR<0.05), with CXCL9 acting as a mediation between these phospholipids and CD. The analysis identified 19 hub genes, with Catboost, XGboost, and NGboost achieving AUC of 0.91, 0.88, and 0.85, respectively. The SHAP methodology obtained the three genes with the highest model contribution: G0S2, S100A8, and PLAUR. The qRT-PCR results showed that the expression levels of S100A8 (p = 0.0003), G0S2 (p < 0.0001), and PLAUR (p = 0.0141) in the PBMC of CD patients were higher than healthy subjects. CONCLUSION MR findings suggest that certain phospholipids may lower CD risk. G0S2, S100A8, and PLAUR may be potential pathogenic genes in CD. These phospholipids and genes could serve as novel diagnostic and therapeutic targets for CD.
Collapse
Affiliation(s)
- Changan Chen
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Juanhua Quan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Xintian Chen
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Tingmei Yang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Caiyuan Yu
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Shicai Ye
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Yuping Yang
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Xiu Wu
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
| | - Danxian Jiang
- Department of Medical Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China.
| | - Yijie Weng
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China.
| |
Collapse
|
19
|
Fischman M, Godny L, Friedenberg A, Barkan R, White I, Wasserberg N, Rabinowitz K, Avni-Biron I, Banai H, Snir Y, Broitman Y, Yanai H, Dotan I, Ollech JE. Factors Associated With Biologic Therapy After Ileal Pouch-Anal Anastomosis in Patients With Ulcerative Colitis. Inflamm Bowel Dis 2024:izae272. [PMID: 39540419 DOI: 10.1093/ibd/izae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Patients with ulcerative colitis (UC) undergoing proctocolectomy and ileal pouch-anal anastomosis (IPAA) may eventually require biologic therapy. Factors associated with biologic therapy after IPAA have not been previously studied. METHODS All patients with UC after total proctocolectomy and IPAA who were followed at Rabin Medical Center comprehensive pouch clinic and who consented to prospective observational follow-up were included. The primary outcome was the initiation of biologic therapy after IPAA. Cox proportional hazard models were used to evaluate potential associations. RESULTS Out of 400 patients receiving their care at the pouch clinic, 148 patients consented to prospective observational follow-up and constituted the study cohort. The median age at diagnosis was 21 years and the age at IPAA was 30 years. Median time-to-biologic therapy initiation post-IPAA was 9.2 years, with 34 patients (23%) initiating biologic therapy: Associated factors for initiating biologic therapy post-IPAA were preoperative treatment with biologic therapy and immunomodulatory therapy (hazard ratio [HR] 6.1 and 3.6, respectively, P < .001); Arab descent (HR 5.3, P < .001); heterozygosity of NOD2 variant rs2066845 (HR 5.1, P = .03); past smoking status (HR 2.3, P = .03); 3-stage IPAA (HR 2.3, P = .02); immediate postoperative complications (HR 2.1, P = .033); and pediatric-onset UC (HR 2.1, P = .03). None of the patients undergoing IPAA due to dysplasia (n = 27) required biologic therapy. CONCLUSIONS Several demographic, disease-related, surgery-related, and genetic factors associated with post-IPAA biologic therapy were identified. Physicians treating patients with UC undergoing colectomy should incorporate these factors into their decision-making process. These patients may benefit from closer postoperative follow-up, and earlier initiation of biologic therapy should be considered.
Collapse
Affiliation(s)
- Maya Fischman
- Department of Military Medicine, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lihi Godny
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adi Friedenberg
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Revital Barkan
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ian White
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Division of Surgery, Rabin Medical Center, Petah-Tikva, Israel
| | - Nir Wasserberg
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Division of Surgery, Rabin Medical Center, Petah-Tikva, Israel
| | - Keren Rabinowitz
- Felsenstein Medical Research Center, Rabin Medical Center, Tel Aviv University, Petah-Tikva, Israel
| | - Irit Avni-Biron
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel
| | - Hagar Banai
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel
| | - Yifat Snir
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel
| | - Yelena Broitman
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel
| | - Henit Yanai
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Iris Dotan
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jacob E Ollech
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
Camino-Mera A, Pardo-Seco J, Bello X, Argiz L, Boyle RJ, Custovic A, Herberg J, Kaforou M, Arasi S, Fiocchi A, Pecora V, Barni S, Mori F, Bracamonte T, Echeverria L, O'Valle-Aísa V, Hernández-Martínez NL, Carballeira I, García E, Garcia-Magan C, Moure-González JD, Gonzalez-Delgado P, Garriga-Baraut T, Infante S, Zambrano-Ibarra G, Tomás-Pérez M, Machinena A, Pascal M, Prieto A, Vázquez-Cortes S, Fernández-Rivas M, Vila L, Alsina L, Torres MJ, Mangone G, Quirce S, Martinón-Torres F, Vázquez-Ortiz M, Gómez-Carballa A, Salas A. Whole Exome Sequencing Identifies Epithelial and Immune Dysfunction-Related Biomarkers in Food Protein-Induced Enterocolitis Syndrome. Clin Exp Allergy 2024; 54:919-929. [PMID: 39348862 DOI: 10.1111/cea.14564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/01/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND Food protein-induced enterocolitis syndrome (FPIES) is a food allergy primarily affecting infants, often leading to vomiting and shock. Due to its poorly understood pathophysiology and lack of specific biomarkers, diagnosis is frequently delayed. Understanding FPIES genetics can shed light on disease susceptibility and pathophysiology-key to developing diagnostic, prognostic, preventive and therapeutic strategies. Using a well-characterised cohort of patients we explored the potential genome-wide susceptibility factors underlying FPIES. METHODS Blood samples from 41 patients with oral food challenge-proven FPIES were collected for a comprehensive whole exome sequencing association study. RESULTS Notable genetic variants, including rs872786 (RBM8A), rs2241880 (ATG16L1) and rs2289477 (ATG16L1), were identified as significant findings in FPIES. A weighted SKAT model identified six other associated genes including DGKZ and SIRPA. DGKZ induces TGF-β signalling, crucial for epithelial barrier integrity and IgA production; RBM8A is associated with thrombocytopenia absent radius syndrome, frequently associated with cow's milk allergy; SIRPA is associated with increased neutrophils/monocytes in inflamed tissues as often observed in FPIES; ATG16L1 is associated with inflammatory bowel disease. Coexpression correlation analysis revealed a functional correlation between RBM8A and filaggrin gene (FLG) in stomach and intestine tissue, with filaggrin being a known key pathogenic and risk factor for IgE-mediated food allergy. A transcriptome-wide association study suggested genetic variability in patients impacted gene expression of RBM8A (stomach and pancreas) and ATG16L1 (transverse colon). CONCLUSIONS This study represents the first case-control exome association study of FPIES patients and marks a crucial step towards unravelling genetic susceptibility factors underpinning the syndrome. Our findings highlight potential factors and pathways contributing to FPIES, including epithelial barrier dysfunction and immune dysregulation. While these results are novel, they are preliminary and need further validation in a second cohort of patients.
Collapse
Affiliation(s)
- Alba Camino-Mera
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and Genética de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Jacobo Pardo-Seco
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and Genética de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Xabier Bello
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and Genética de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Laura Argiz
- Allergy Section, Clinica Universidad de Navarra, Madrid, Spain
| | - Robert J Boyle
- Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK
| | - Adnan Custovic
- Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK
| | - Jethro Herberg
- Department of Infectious Disease, Imperial College London, London, UK
| | - Myrsini Kaforou
- Department of Infectious Disease, Imperial College London, London, UK
| | - Stefania Arasi
- Allergy Diseases Research Area, Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Alessandro Fiocchi
- Allergy Diseases Research Area, Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Valentina Pecora
- Allergy Diseases Research Area, Pediatric Allergology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Simona Barni
- Allergy Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Francesca Mori
- Allergy Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Teresa Bracamonte
- Paediatric Allergy Section, Severo Ochoa University Hospital, Madrid, Spain
| | - Luis Echeverria
- Paediatric Allergy Section, Severo Ochoa University Hospital, Madrid, Spain
| | - Virginia O'Valle-Aísa
- Clinical Analysis and Clinical Biochemistry Service, Severo Ochoa University Hospital, Madrid, Spain
| | | | - Iria Carballeira
- Paediatric Allergy Section, Arquitecto Marcide Hospital, Ferrol, A Coruña in Galicia, Spain
| | - Emilio García
- Paediatric Allergy Section, Arquitecto Marcide Hospital, Ferrol, A Coruña in Galicia, Spain
| | - Carlos Garcia-Magan
- Paediatrics Department, Hospital Clínico Universitario de Santiago de Compostela, Coruña, Galicia, Spain
| | | | | | - Teresa Garriga-Baraut
- Paediatric Allergy Section, Vall D'Hebron University Hospital, Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Sonsoles Infante
- Pediatric Allergy Unit, Hospital General Universitario Gregorio Marañón, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Gabriela Zambrano-Ibarra
- Pediatric Allergy Unit, Hospital General Universitario Gregorio Marañón, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Margarita Tomás-Pérez
- Pediatric Allergy Unit, Hospital General Universitario Gregorio Marañón, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Adrianna Machinena
- Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Mariona Pascal
- Immunology Department, CDB, Hospital Clínic de Barcelona, Barcelona, Spain
- IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Ana Prieto
- Paediatric Allergy Section, General University Hospital, Malaga, Spain
| | - Sonia Vázquez-Cortes
- Allergy Department, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Montserrat Fernández-Rivas
- Allergy Department, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Universidad Complutense, Madrid, Spain
| | - Leticia Vila
- Paediatric Allergy Section, Teresa Herrera Hospital, Coruna, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu and Universitat de Barcelona, Barcelona, Spain
| | - María José Torres
- Allergy Department, General University Hospital, Málaga, Spain
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, Málaga, Spain
- Universidad de Málaga (UMA), Málaga, Spain
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Giusi Mangone
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Santiago Quirce
- Department of Allergy, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Federico Martinón-Torres
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Marta Vázquez-Ortiz
- Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, UK
| | - Alberto Gómez-Carballa
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and Genética de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Antonio Salas
- Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and Genética de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| |
Collapse
|
21
|
Walraven T, Busch M, Wang J, Donkers JM, Duijvestein M, van de Steeg E, Kramer NI, Bouwmeester H. Elevated risk of adverse effects from foodborne contaminants and drugs in inflammatory bowel disease: a review. Arch Toxicol 2024; 98:3519-3541. [PMID: 39249550 PMCID: PMC11489187 DOI: 10.1007/s00204-024-03844-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
The global burden of Inflammatory bowel disease (IBD) has been rising over the last decades. IBD is an intestinal disorder with a complex and largely unknown etiology. The disease is characterized by a chronically inflamed gastrointestinal tract, with intermittent phases of exacerbation and remission. This compromised intestinal barrier can contribute to, enhance, or even enable the toxicity of drugs, food-borne chemicals and particulate matter. This review discusses whether the rising prevalence of IBD in our society warrants the consideration of IBD patients as a specific population group in toxicological safety assessment. Various in vivo, ex vivo and in vitro models are discussed that can simulate hallmarks of IBD and may be used to study the effects of prevalent intestinal inflammation on the hazards of these various toxicants. In conclusion, risk assessments based on healthy individuals may not sufficiently cover IBD patient safety and it is suggested to consider this susceptible subgroup of the population in future toxicological assessments.
Collapse
Affiliation(s)
- Tom Walraven
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands.
| | - Mathias Busch
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Jingxuan Wang
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Joanne M Donkers
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Marjolijn Duijvestein
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evita van de Steeg
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Nynke I Kramer
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
22
|
Wang C, Luo H. Crosstalk Between Innate Immunity and Autophagy in Viral Myocarditis Leading to Dilated Cardiomyopathy. Rev Med Virol 2024; 34:e2586. [PMID: 39349889 DOI: 10.1002/rmv.2586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 11/08/2024]
Abstract
Viral myocarditis, characterised by inflammation of the heart muscle, presents a significant challenge to global public health, particularly affecting younger individuals and often progressing to dilated cardiomyopathy (DCM), a leading cause of heart failure. Despite ongoing research efforts, viable treatments for this condition remain elusive. Recent studies have shed light on the complex interplay between the innate immune response and autophagy mechanisms, revealing their pivotal roles in the pathogenesis of viral myocarditis and subsequent DCM development. This review aims to delve into the recent advancements in understanding the molecular mechanisms and pathways that intersect innate immunity and autophagy in the context of viral myocarditis. Furthermore, it explores the potential therapeutic implications of these findings, offering insights into promising avenues for the management and treatment of this debilitating condition.
Collapse
Affiliation(s)
- Chen Wang
- Centre for Heart Lung Innovation, St. Paul's Hospital-University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul's Hospital-University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
23
|
Caruso R, Lo BC, Chen GY, Núñez G. Host-pathobiont interactions in Crohn's disease. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-00997-y. [PMID: 39448837 DOI: 10.1038/s41575-024-00997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
The mammalian intestine is colonized by trillions of microorganisms that are collectively referred to as the gut microbiota. The majority of symbionts have co-evolved with their host in a mutualistic relationship that benefits both. Under certain conditions, such as in Crohn's disease, a subtype of inflammatory bowel disease, some symbionts bloom to cause disease in genetically susceptible hosts. Although the identity and function of disease-causing microorganisms or pathobionts in Crohn's disease remain largely unknown, mounting evidence from animal models suggests that pathobionts triggering Crohn's disease-like colitis inhabit certain niches and penetrate the intestinal tissue to trigger inflammation. In this Review, we discuss the distinct niches occupied by intestinal symbionts and the evidence that pathobionts triggering Crohn's disease live in the mucus layer or near the intestinal epithelium. We also discuss how Crohn's disease-associated mutations in the host disrupt intestinal homeostasis by promoting the penetration and accumulation of pathobionts in the intestinal tissue. Finally, we discuss the potential role of microbiome-based interventions in precision therapeutic strategies for the treatment of Crohn's disease.
Collapse
Affiliation(s)
- Roberta Caruso
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Bernard C Lo
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Grace Y Chen
- Department of Internal Medicine and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
24
|
Weber-Stiehl S, Taubenheim J, Järke L, Röcken C, Schreiber S, Aden K, Kaleta C, Rosenstiel P, Sommer F. Hexokinase 2 expression in apical enterocytes correlates with inflammation severity in patients with inflammatory bowel disease. BMC Med 2024; 22:490. [PMID: 39444028 PMCID: PMC11515617 DOI: 10.1186/s12916-024-03710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Inflammation is characterized by a metabolic switch promoting glycolysis and lactate production. Hexokinases (HK) catalyze the first reaction of glycolysis and inhibition of epithelial HK2 protected from colitis in mice. HK2 expression has been described as elevated in patients with intestinal inflammation; however, there is conflicting data from few cohorts especially with severely inflamed individuals; thus, systematic studies linking disease activity with HK2 levels are needed. METHODS We examined the relationship between HK2 expression and inflammation severity using bulk transcriptome data derived from the mucosa of thoroughly phenotyped inflammatory bowel disease (IBD) patients of two independent cohorts including both subtypes Crohn's disease (CD) and ulcerative colitis (UC). Publicly available single-cell RNA sequencing data were analyzed, and immunofluorescence staining on colonic biopsies of unrelated patients with intestinal inflammation was performed to confirm the RNA-based findings on cellular and protein level. RESULTS HK2 expression gradually increased from mild to intermediate inflammation, yet strongly declined at high inflammation scores. Expression of epithelial marker genes also declined at high inflammation scores, whereas that of candidate immune marker genes increased, indicating a cellular remodeling of the mucosa during inflammation with an infiltration of HK2-negative immune cells and a loss of terminal differentiated epithelial cells in the apical epithelium-the main site of HK2 expression. Normalizing for the enterocyte loss clearly identified epithelial HK2 expression as gradually increasing with disease activity and remaining elevated at high inflammation scores. HK2 protein expression was mostly restricted to brush border enterocytes, and these cells along with HK2 levels vanished with increasing disease severity. CONCLUSIONS Our findings clearly define dysregulated epithelial HK2 expression as an indicator of disease activity in intestinal inflammation and suggest targeted HK2-inhibition as a potential therapeutic avenue.
Collapse
Affiliation(s)
- Saskia Weber-Stiehl
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, Kiel, 24105, Germany
| | - Jan Taubenheim
- Institute of Experimental Medicine, University of Kiel & University Hospital Schleswig-Holstein, Michaelisstr. 5, Kiel, 24105, Germany
| | - Lea Järke
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, Kiel, 24105, Germany
| | - Christoph Röcken
- Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3/House U33, Kiel, 24105, Germany
| | - Stefan Schreiber
- Department of Internal Medicine I, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, 24105, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, Kiel, 24105, Germany
- Department of Internal Medicine I, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, 24105, Germany
| | - Christoph Kaleta
- Institute of Experimental Medicine, University of Kiel & University Hospital Schleswig-Holstein, Michaelisstr. 5, Kiel, 24105, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, Kiel, 24105, Germany
| | - Felix Sommer
- Institute of Clinical Molecular Biology, University of Kiel, Rosalind-Franklin-Straße 12, Kiel, 24105, Germany.
| |
Collapse
|
25
|
Hamade H, Tsuda M, Oshima N, Stamps DT, Wong MH, Stamps JT, Thomas LS, Salumbides BC, Jin C, Nunnelee JS, Dhall D, Targan SR, Michelsen KS. Toll-like receptor 7 protects against intestinal inflammation and restricts the development of colonic tissue-resident memory CD8 + T cells. Front Immunol 2024; 15:1465175. [PMID: 39464882 PMCID: PMC11502343 DOI: 10.3389/fimmu.2024.1465175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction The maintenance of intestinal homeostasis depends on a complex interaction between the immune system, intestinal epithelial barrier, and microbiota. Alteration in one of these components could lead to the development of inflammatory bowel diseases (IBD). Variants within the autophagy gene ATG16L1 have been implicated in susceptibility and severity of Crohn's disease (CD). Individuals carrying the risk ATG16L1 T300A variant have higher caspase 3-dependent degradation of ATG16L1 resulting in impaired autophagy and increased cellular stress. ATG16L1-deficiency induces enhanced IL-1β secretion in dendritic cells in response to bacterial infection. Infection of ATG16L1-deficient mice with a persistent strain of murine norovirus renders these mice highly susceptible to dextran sulfate sodium colitis. Moreover, persistent norovirus infection leads to intestinal virus specific CD8+ T cells responses. Both Toll-like receptor 7 (TLR7), which recognizes single-stranded RNA viruses, and ATG16L1, which facilitates the delivery of viral nucleic acids to the autolysosome endosome, are required for anti-viral immune responses. Results and discussion However, the role of the enteric virome in IBD is still poorly understood. Here, we investigate the role of TLR7 and ATG16L1 in intestinal homeostasis and inflammation. At steady state, Tlr7-/- mice have a significant increase in large intestinal lamina propria (LP) granzyme B+ tissue-resident memory CD8+ T (TRM) cells compared to WT mice, reminiscent of persistent norovirus infection. Deletion of Atg16l1 in myeloid (Atg16l1ΔLyz2 ) or dendritic cells (Atg16l1ΔCd11c ) leads to a similar increase of LP TRM. Furthermore, Tlr7-/- and Atg16l1ΔCd11c mice were more susceptible to dextran sulfate sodium colitis with an increase in disease activity index, histoscore, and increased secretion of IFN-γ and TNF-α. Treatment of Atg16l1ΔCd11c mice with the TLR7 agonist Imiquimod attenuated colonic inflammation in these mice. Our data demonstrate that ATG16L1-deficiency in myeloid and dendritic cells leads to an increase in LP TRM and consequently to increased susceptibility to colitis by impairing the recognition of enteric viruses by TLR7. Conclusion In conclusion, the convergence of ATG16L1 and TLR7 signaling pathways plays an important role in the immune response to intestinal viruses. Our data suggest that activation of the TLR7 signaling pathway could be an attractive therapeutic target for CD patients with ATG16L1 risk variants.
Collapse
Affiliation(s)
- Hussein Hamade
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Masato Tsuda
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Naoki Oshima
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dalton T. Stamps
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Michelle H. Wong
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jasmine T. Stamps
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Lisa S. Thomas
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Brenda C. Salumbides
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Caroline Jin
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jordan S. Nunnelee
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Deepti Dhall
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Stephan R. Targan
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Kathrin S. Michelsen
- F. Widjaja Inflammatory Bowel Disease Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
26
|
Shao BZ, Zhang WG, Liu ZY, Linghu EQ. Autophagy and its role in gastrointestinal diseases. World J Gastroenterol 2024; 30:4014-4020. [PMID: 39351250 PMCID: PMC11439115 DOI: 10.3748/wjg.v30.i36.4014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
Gastrointestinal disorders encompass a spectrum of conditions affecting various organs within the digestive system, such as the esophagus, stomach, colon, rectum, pancreas, liver, small intestine, and bile ducts. The role of autophagy in the etiology and progression of gastrointestinal diseases has garnered significant attention. This paper seeks to evaluate the impact and mechanisms of autophagy in gastrointestinal disorders by synthesizing recent research findings. Specifically, we delve into inflammation-related gastrointestinal conditions, including ul-cerative colitis, Crohn's disease, and pancreatitis, as well as gastrointestinal cancers such as esophageal, gastric, and colorectal cancers. Additionally, we provide commentary on a recent publication by Chang et al in the World Journal of Gastroenterology. Our objective is to offer fresh perspectives on the mechanisms and therapeutic approaches for these gastrointestinal ailments. This review aims to offer new perspectives on the mechanisms and therapeutic strategies for gastrointestinal disorders by critically analyzing relevant publications. As discussed, the role of autophagy in gastrointestinal diseases is complex and, at times, contentious. To harness the full therapeutic potential of autophagy in treating these conditions, more in-depth research is imperative.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Gastroenterology, First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Wen-Gang Zhang
- Department of Gastroenterology, First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Zhen-Yu Liu
- Department of Gastroenterology, First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - En-Qiang Linghu
- Department of Gastroenterology, First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
27
|
Alamri AM, Alkhilaiwi FA, Khan NU, Mashat RM, Tasleem M. Exploring pathogenic SNPs and estrogen receptor alpha interactions in breast cancer: An in silico approach. Heliyon 2024; 10:e37297. [PMID: 39286133 PMCID: PMC11403482 DOI: 10.1016/j.heliyon.2024.e37297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
The estrogen receptor 1 gene (ESR1) plays a crucial role in breast and mammary development in humans. Alterations such as gene amplification, genomic rearrangements, and missense mutations in the ESR1 gene are reported to increase the risk of breast cancer in humans. The purpose of this study is to analyze the missense mutations and molecular modeling of ESR1, focusing on the pathogenic SNP H516N, for a better understanding of disease risk and future benefits for therapeutic benefits. This SNP was selected based on its location in the binding pocket of ESR1 and its predicted impact on drug binding. The in silico analysis was performed by applying various computational approaches to identify highly pathogenic SNPs in the binding pocket of ESR1. The effect of the SNP was explored through docking and intra-molecular interaction studies. All SNPs in ESR1 were identified followed by the identification of the highly pathogenic variant located in the binding pocket of ESR1. The mutant model of the pathogenic SNP H516N was generated, and hydroxytamoxifen was docked with the wild-type and the mutant model. The mutant model lost the formation of stable hydrogen bonds with the active site residues and hydroxytamoxifen, which may result in reduced binding affinity and therefore, will predict the patient's response to estrogenic inhibitors.
Collapse
Affiliation(s)
- Ahmad M Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61413, Saudi Arabia
- Cancer Research Unit, King Khalid University, Abha, 61413, Saudi Arabia
| | - Faris A Alkhilaiwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture Peshawar, 25130, Pakistan
| | - Reham Mahmoud Mashat
- College of Science, Department of Biology, King Khalid University, Abha, 61413, Saudi Arabia
| | - Munazzah Tasleem
- Center for Global Health and Research, Saveetha Medical College and Hospital, Chennai, 602105, India
| |
Collapse
|
28
|
Lee YM, Vucic D. The role of autophagy in RIP1 mediated cell death and intestinal inflammation. Adv Immunol 2024; 163:1-20. [PMID: 39271257 DOI: 10.1016/bs.ai.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Autophagy, a highly conserved catabolic process that targets various types of cellular cargoes to lysosomal degradation, is one of the most important biological mechanisms critical for cellular homeostasis. Components of these cellular cargoes can range from individual proteins to invading pathogens, and degrading these materials is important for maintaining organismal health and survival. The process of autophagy is carried out by complex molecular mechanisms, and a growing body of evidence indicates that these mechanisms intersect with those involved in the cell death pathways. In this review, we examine several emerging studies elucidating the role of autophagy in RIP1-mediated cell death signaling, with particular emphasis on impaired autophagy caused by ATG16L1 deficiency. We also discuss how autophagy in RIP1-mediated cell death affects intestinal homeostasis in preclinical models, and the implications of the intersection between RIP1 and autophagy for understanding the intestinal pathologies associated with inflammatory bowel disease (IBD). Finally, we highlight the potential benefits of therapeutic targeting of RIP1 and autophagy proteins, while also proposing areas of research that will likely elucidate new links between autophagy and cell death signaling.
Collapse
Affiliation(s)
| | - Domagoj Vucic
- Immunology Discovery, Genentech, South San Francisco, CA, United States.
| |
Collapse
|
29
|
Lu H, Suo Z, Lin J, Cong Y, Liu Z. Monocyte-macrophages modulate intestinal homeostasis in inflammatory bowel disease. Biomark Res 2024; 12:76. [PMID: 39095853 PMCID: PMC11295551 DOI: 10.1186/s40364-024-00612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Monocytes and macrophages play an indispensable role in maintaining intestinal homeostasis and modulating mucosal immune responses in inflammatory bowel disease (IBD). Although numerous studies have described macrophage properties in IBD, the underlying mechanisms whereby the monocyte-macrophage lineage modulates intestinal homeostasis during gut inflammation remain elusive. MAIN BODY In this review, we decipher the cellular and molecular mechanisms governing the generation of intestinal mucosal macrophages and fill the knowledge gap in understanding the origin, maturation, classification, and functions of mucosal macrophages in intestinal niches, particularly the phagocytosis and bactericidal effects involved in the elimination of cell debris and pathogens. We delineate macrophage-mediated immunoregulation in the context of producing pro-inflammatory and anti-inflammatory cytokines, chemokines, toxic mediators, and macrophage extracellular traps (METs), and participating in the modulation of epithelial cell proliferation, angiogenesis, and fibrosis in the intestine and its accessory tissues. Moreover, we emphasize that the maturation of intestinal macrophages is arrested at immature stage during IBD, and the deficiency of MCPIP1 involves in the process via ATF3-AP1S2 signature. In addition, we confirmed the origin potential of IL-1B+ macrophages and defined C1QB+ macrophages as mature macrophages. The interaction crosstalk between the intestine and the mesentery has been described in this review, and the expression of mesentery-derived SAA2 is upregulated during IBD, which contributes to immunoregulation of macrophage. Moreover, we also highlight IBD-related susceptibility genes (e.g., RUNX3, IL21R, GTF2I, and LILRB3) associated with the maturation and functions of macrophage, which provide promising therapeutic opportunities for treating human IBD. CONCLUSION In summary, this review provides a comprehensive, comprehensive, in-depth and novel description of the characteristics and functions of macrophages in IBD, and highlights the important role of macrophages in the molecular and cellular process during IBD.
Collapse
Affiliation(s)
- Huiying Lu
- Department of Gastroenterology, Huaihe Hospital of Henan University, Henan Province, Kaifeng, 475000, China
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China
| | - Zhimin Suo
- Department of Gastroenterology, Huaihe Hospital of Henan University, Henan Province, Kaifeng, 475000, China
| | - Jian Lin
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China
| | - Yingzi Cong
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Center for Human Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
30
|
Quiniou G, Andromaque L, Duclaux-Loras R, Dinet O, Cervantes O, Verdet M, Meunier C, Boschetti G, Viret C, Nancey S, Faure M, Rozières A. Impaired reprogramming of the autophagy flux in maturing dendritic cells from crohn disease patients with core autophagy gene-related polymorphisms. Autophagy 2024; 20:1837-1853. [PMID: 38615686 PMCID: PMC11262231 DOI: 10.1080/15548627.2024.2338574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/16/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
Crohn disease (CD) is an inflammatory bowel disease whose pathogenesis involves inappropriate immune responses toward gut microbiota on genetically predisposed backgrounds. Notably, CD is associated with single-nucleotide polymorphisms affecting several genes involved in macroautophagy/autophagy, the catabolic process that ensures the degradation and recycling of cytosolic components and microorganisms. In a clinical translation perspective, monitoring the autophagic activity of CD patients will require some knowledge on the intrinsic functional status of autophagy. Here, we focused on monocyte-derived dendritic cells (DCs) to characterize the intrinsic quantitative features of the autophagy flux. Starting with DCs from healthy donors, we documented a reprogramming of the steady state flux during the transition from the immature to mature status: both the autophagosome pool size and the flux were diminished at the mature stage while the autophagosome turnover remained stable. At the cohort level, DCs from CD patients were comparable to control in term of autophagy flux reprogramming capacity. However, the homozygous presence of ATG16L1 rs2241880 A>G (T300A) and ULK1 rs12303764 (G/T) polymorphisms abolished the capacity of CD patient DCs to reprogram their autophagy flux during maturation. This effect was not seen in the case of CD patients heterozygous for these polymorphisms, revealing a gene dose dependency effect. In contrast, the NOD2 rs2066844 c.2104C>T (R702W) polymorphism did not alter the flux reprogramming capacity of DCs. The data, opening new clinical translation perspectives, indicate that polymorphisms affecting autophagy-related genes can differentially influence the capacity of DCs to reprogram their steady state autophagy flux when exposed to proinflammatory challenges.Abbreviation: BAFA1: bafilomycin A1, CD: Crohn disease; DC: dendritic cells; HD: healthy donor; iDCs: immature DCs; IL: interleukin; J: autophagosome flux; LPS: lipopolysaccharide; MHC: major histocompatibility complex; nA: autophagosome pool size; SNPs: single-nucleotide polymorphisms; PCA: principal component analysis; TLR: toll like receptor; τ: transition time; TNF: tumor necrosis factor.
Collapse
Affiliation(s)
- Gaëlle Quiniou
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Leslie Andromaque
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Rémi Duclaux-Loras
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
- Department of Pediatric Hepatology, Gastroenterology and Nutrition, Femme-Mère-Enfant Hospital, Hospices Civils de Lyon, Bron, France
| | - Océane Dinet
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Ornella Cervantes
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Mallorie Verdet
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Camille Meunier
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
- Department of Gastroenterology, Lyon-Sud university hospital, Lyon, France
| | - Gilles Boschetti
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
- Department of Gastroenterology, Lyon-Sud university hospital, Lyon, France
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Stéphane Nancey
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
- Department of Gastroenterology, Lyon-Sud university hospital, Lyon, France
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM, France
| | - Aurore Rozières
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| |
Collapse
|
31
|
Figueras-Novoa C, Timimi L, Marcassa E, Ulferts R, Beale R. Conjugation of ATG8s to single membranes at a glance. J Cell Sci 2024; 137:jcs261031. [PMID: 39145464 PMCID: PMC11361636 DOI: 10.1242/jcs.261031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Autophagy refers to a set of degradative mechanisms whereby cytoplasmic contents are targeted to the lysosome. This is best described for macroautophagy, where a double-membrane compartment (autophagosome) is generated to engulf cytoplasmic contents. Autophagosomes are decorated with ubiquitin-like ATG8 molecules (ATG8s), which are recruited through covalent lipidation, catalysed by the E3-ligase-like ATG16L1 complex. LC3 proteins are ATG8 family members that are often used as a marker for autophagosomes. In contrast to canonical macroautophagy, conjugation of ATG8s to single membranes (CASM) describes a group of non-canonical autophagy processes in which ATG8s are targeted to pre-existing single-membrane compartments. CASM occurs in response to disrupted intracellular pH gradients, when the V-ATPase proton pump recruits ATG16L1 in a process called V-ATPase-ATG16L1-induced LC3 lipidation (VAIL). Recent work has demonstrated a parallel, alternative axis for CASM induction, triggered when the membrane recruitment factor TECPR1 recognises sphingomyelin exposed on the cytosolic face of a membrane and forms an alternative E3-ligase-like complex. This sphingomyelin-TECPR1-induced LC3 lipidation (STIL) is independent of the V-ATPase and ATG16L1. In light of these discoveries, this Cell Science at a Glance article summarises these two mechanisms of CASM to highlight how they differ from canonical macroautophagy, and from each other.
Collapse
Affiliation(s)
- Carmen Figueras-Novoa
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Lewis Timimi
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Division of Medicine, University College London, London NW1 1AT, UK
| | - Elena Marcassa
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Rachel Ulferts
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Division of Medicine, University College London, London NW1 1AT, UK
| |
Collapse
|
32
|
Mignini I, Blasi V, Termite F, Esposto G, Borriello R, Laterza L, Scaldaferri F, Ainora ME, Gasbarrini A, Zocco MA. Fibrostenosing Crohn's Disease: Pathogenetic Mechanisms and New Therapeutic Horizons. Int J Mol Sci 2024; 25:6326. [PMID: 38928032 PMCID: PMC11204249 DOI: 10.3390/ijms25126326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Bowel strictures are well recognized as one of the most severe complications in Crohn's disease, with variable impacts on the prognosis and often needing surgical or endoscopic treatment. Distinguishing inflammatory strictures from fibrotic ones is of primary importance due to the different therapeutic approaches required. Indeed, to better understand the pathogenesis of fibrosis, it is crucial to investigate molecular processes involving genetic factors, cytokines, alteration of the intestinal barrier, and epithelial and endothelial damage, leading to an increase in extracellular matrix synthesis, which ultimately ends in fibrosis. In such a complex mechanism, the gut microbiota also seems to play a role. A better comprehension of molecular processes underlying bowel fibrosis, in addition to radiological and histopathological findings, has led to the identification of high-risk patients for personalized follow-up and testing of new therapies, primarily in preclinical models, targeting specific pathways involving Transforming Growth Factor-β, interleukins, extracellular matrix balance, and gut microbiota. Our review aims to summarize current evidence about molecular factors involved in intestinal fibrosis' pathogenesis, paving the way for potential diagnostic biomarkers or anti-fibrotic treatments for stricturing Crohn's disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Maria Assunta Zocco
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (I.M.); (V.B.); (G.E.); (R.B.); (L.L.); (F.S.); (M.E.A.); (A.G.)
| |
Collapse
|
33
|
Zhang T, Zhang R, Liu W, Qi Y, Wang H, Zhang H, Xiao Z, Pandol SJ, Han YP, Zheng X. Transcription factor EB modulates the homeostasis of reactive oxygen species in intestinal epithelial cells to alleviate inflammatory bowel disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167065. [PMID: 38342419 DOI: 10.1016/j.bbadis.2024.167065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Transcription factor EB (TFEB), a master lysosomal biogenesis and autophagy regulator, is crucial for cellular homeostasis, and its abnormality is related to diverse inflammatory diseases. Genetic variations in autophagic genes are associated with susceptibility to inflammatory bowel disease (IBD); however, little is known about the role and mechanism of TFEB in disease pathogenesis. In this study, we found that the genetic deletion of TFEB in mouse intestinal epithelial cells (IEC) caused intestinal barrier dysfunction, leading to increased susceptibility to experimental colitis. Mechanistically, TFEB functionally protected IEC in part through peroxisome proliferator-activated receptor gamma coactivator 1alpha (TFEB-PGC1α axis) induction, which consequently suppressed reactive oxygen species. TFEB can directly regulate PGC-1α transcription to control antioxidation level. Notably, TFEB expression is impaired and downregulated in the colon tissues of IBD patients. Collectively, our results indicate that intestinal TFEB participates in oxidative stress regulation and attenuates IBD progression.
Collapse
Affiliation(s)
- Tianci Zhang
- Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu, China; The Center for Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ruofei Zhang
- The Center for Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wei Liu
- The Center for Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yucheng Qi
- The Center for Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hongyi Wang
- The Center for Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhixiong Xiao
- The Center for Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, China
| | - Stephen J Pandol
- Department of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Yuan-Ping Han
- The Center for Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Research Center for Islet Transplantation, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
34
|
Zhou RN, Ruan GC, Wu MX, Guo MY, Liang HZ, Bai XY, Yang H. Interaction of Th17 differentiations-related gene polymorphisms and environmental factors contributing to the disease classification, complications, and surgical risks of Crohn's disease in the Chinese Han population. J Dig Dis 2024; 25:368-379. [PMID: 39075019 DOI: 10.1111/1751-2980.13301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 07/31/2024]
Abstract
OBJECTIVES Few studies have been conducted on gene-environment interactions in the Chinese population with Crohn's disease (CD). We aimed to investigate the association between single nucleotide polymorphisms (SNPs) on the T helper 17 (Th17) cell and CD susceptibility/performance in Chinese individuals. METHODS We conducted a case-control and case-only study at the Peking Union Medical College Hospital. Four SNPs related to the Th17 cell pathway genes were prioritized, including rs2284553 (interferon gamma receptor 2), rs7517847 (interleukin 23 receptor), rs7773324 (interferon regulatory factor 4), and rs4263839 (tumor necrosis factor superfamily 15). SNP frequency was calculated, and gene-environment interaction was assessed by multifactor dimensionality reduction analysis. RESULTS Altogether 159 CD patients and 316 healthy controls were included. All analyzed SNPs were found in Hardy-Weinberg equilibrium (P > 0.05). The frequency of rs2284553-A allele and rs4263839-A allele were lower in CD patients compared with controls (P < 0.05). While the rs4263839-A allele was more prevalent in ileocolonic CD patients than in those with isolated small intestinal or colonic disease (P = 0.035). Gene-environment interactions revealed associations between rs2284553 and breastfeeding, sunshine exposure, and fridge-stored food, affecting age at diagnosis, intestinal involvement, and intestinal stricture. Interaction of rs4263839 and breastfeeding influenced small intestinal lesions and intestinal stricture in CD. CONCLUSIONS This study provided information on the genetic background in Chinese CD patients. Incorporating these SNPs into predictive models may improve risk assessment and outcome prediction. Gene-environment interaction contributes to the understanding of CD pathogenesis.
Collapse
Affiliation(s)
- Ru Ning Zhou
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ge Chong Ruan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Xu Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Yue Guo
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Zheng Liang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Yin Bai
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Liu ML, Wong WT, Weng YM, Ho CL, Hsu HT, Hua KF, Wu CH, Li LH. Cinnamaldehyde, A Bioactive Compound from the Leaves of Cinnamomum osmophloeum Kaneh, Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice by Inhibiting the NLRP3 Inflammasome. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:139-152. [PMID: 38902958 DOI: 10.4103/ejpi.ejpi-d-24-00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/07/2024] [Indexed: 06/22/2024]
Abstract
Inflammatory bowel disease (IBD) comprises a group of idiopathic intestinal disorders, including ulcerative colitis and Crohn's disease, significantly impacting the quality of life for affected individuals. The effective management of these conditions remains a persistent challenge. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a complex molecular structure, regulates the production of pro-inflammatory cytokines such as interleukin-1β. Abnormal activation of the NLRP3 inflammasome plays a pivotal role in the development of IBD, making it a compelling target for therapeutic intervention. Our research revealed that cinnamaldehyde (CA), a major bioactive compound found in the leaves of Cinnamomum osmophloeum kaneh, demonstrated a remarkable ability to alleviate colitis induced by dextran sulfate sodium (DSS) in a mouse model. This effect was attributed to CA's ability to downregulate the activation of the NLRP3 inflammasome and reduce the expression of pro-inflammatory mediators in the colon. In the mechanism study, we observed that CA inhibited the NLRP3 inflammasome in macrophages, at least partially, by enhancing the autophagic response, without reducing mitochondrial damage. These findings collectively suggest that CA holds significant potential as a therapeutic agent for enhancing the management of IBD, offering a promising avenue for further research and development.
Collapse
Affiliation(s)
- May-Lan Liu
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
- Department of Early Childhood Educare, WuFeng University, Chiayi, Taiwan
| | - Wei-Ting Wong
- Taiwan Autoantibody Biobank Initiative, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Yih-Ming Weng
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | - Chen-Lung Ho
- Division of Wood Cellulose, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Hsien-Ta Hsu
- Division of Neurosurgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chun-Hsien Wu
- Department of Internal Medicine, Division of Cardiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Lan-Hui Li
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan
| |
Collapse
|
36
|
Sharma A, Sharma A, Parkash J, Changotra H. An artificial-restriction fragment length polymorphism (A-RFLP) method for genotyping intronic SNP rs7587633 C/T of ATG16L1. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 44:291-301. [PMID: 38660996 DOI: 10.1080/15257770.2024.2344736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
SNPs could either cause a disorder or directly alter the efficacy of a particular treatment and act as biological markers. The SNP rs7587633 C/T present in the intronic region of the ATG16L1 gene has been studied for its role in psoriasis vulgaris and Palmoplantar pustulosis. To genotype rs7587633 C/T using PCR-RFLP no restriction site is present for any of the restriction enzymes at the SNP position. To develop an artificial-RFLP method for genotyping rs7587633 C/T, the forward primer was designed in such a way that it resulted in the creation of an EcoRI restriction site in the amplified product which could further be digested with EcoRI to find the genotype of the individual. The newly developed A-RFLP method was applied to genotype the SNP rs7587633 C/T in DNA samples of 100 healthy control individuals. The allelic and genotypic frequencies of the SNPs were 0.80(C), 0.20(T) and 65%(CC), 31%(CT) and 4%(TT), respectively. In conclusion, we developed an A-RFLP method to genotype the SNP rs7587633 C/T which is not present in any of the natural restriction sites and this method could be applied to genotype this SNP in various populations/diseases to find its role.
Collapse
Affiliation(s)
- Ambika Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| | - Arti Sharma
- Department of Computational Biology, School of Biological Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Jyoti Parkash
- Department of Zoology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Harish Changotra
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
37
|
Tang J, Fang D, Zhong J, Li M. Missing WD40 Repeats in ATG16L1 Delays Canonical Autophagy and Inhibits Noncanonical Autophagy. Int J Mol Sci 2024; 25:4493. [PMID: 38674078 PMCID: PMC11050548 DOI: 10.3390/ijms25084493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Canonical autophagy is an evolutionarily conserved process that forms double-membrane structures and mediates the degradation of long-lived proteins (LLPs). Noncanonical autophagy (NCA) is an important alternative pathway involving the formation of microtubule-associated protein 1 light chain 3 (LC3)-positive structures that are independent of partial core autophagy proteins. NCA has been defined by the conjugation of ATG8s to single membranes (CASM). During canonical autophagy and NCA/CASM, LC3 undergoes a lipidation modification, and ATG16L1 is a crucial protein in this process. Previous studies have reported that the WDR domain of ATG16L1 is not necessary for canonical autophagy. However, our study found that WDR domain deficiency significantly impaired LLP degradation in basal conditions and slowed down LC3-II accumulation in canonical autophagy. We further demonstrated that the observed effect was due to a reduced interaction between ATG16L1 and FIP200/WIPI2, without affecting lysosome function or fusion. Furthermore, we also found that the WDR domain of ATG16L1 is crucial for chemical-induced NCA/CASM. The results showed that removing the WDR domain or introducing the K490A mutation in ATG16L1 significantly inhibited the NCA/CASM, which interrupted the V-ATPase-ATG16L1 axis. In conclusion, this study highlights the significance of the WDR domain of ATG16L1 for both canonical autophagy and NCA functions, improving our understanding of its role in autophagy.
Collapse
Affiliation(s)
- Jiuge Tang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou 510006, China
| | - Dongmei Fang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou 510006, China
| | - Jialing Zhong
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou 510006, China
| | - Min Li
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangzhou 510006, China
| |
Collapse
|
38
|
Schreurs RRCE, Koulis A, Booiman T, Boeser-Nunnink B, Cloherty APM, Rader AG, Patel KS, Kootstra NA, Ribeiro CMS. Autophagy-enhancing ATG16L1 polymorphism is associated with improved clinical outcome and T-cell immunity in chronic HIV-1 infection. Nat Commun 2024; 15:2465. [PMID: 38548722 PMCID: PMC10979031 DOI: 10.1038/s41467-024-46606-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/04/2024] [Indexed: 04/01/2024] Open
Abstract
Chronic HIV-1 infection is characterized by T-cell dysregulation that is partly restored by antiretroviral therapy. Autophagy is a critical regulator of T-cell function. Here, we demonstrate a protective role for autophagy in HIV-1 disease pathogenesis. Targeted analysis of genetic variation in core autophagy gene ATG16L1 reveals the previously unidentified rs6861 polymorphism, which correlates functionally with enhanced autophagy and clinically with improved survival of untreated HIV-1-infected individuals. T-cells carrying ATG16L1 rs6861(TT) genotype display improved antiviral immunity, evidenced by increased proliferation, revamped immune responsiveness, and suppressed exhaustion/immunosenescence features. In-depth flow-cytometric and transcriptional profiling reveal T-helper-cell-signatures unique to rs6861(TT) individuals with enriched regulation of pro-inflammatory networks and skewing towards immunoregulatory phenotype. Therapeutic enhancement of autophagy recapitulates the rs6861(TT)-associated T-cell traits in non-carriers. These data underscore the in vivo relevance of autophagy for longer-lasting T-cell-mediated HIV-1 control, with implications towards development of host-directed antivirals targeting autophagy to restore immune function in chronic HIV-1 infection.
Collapse
Affiliation(s)
- Renée R C E Schreurs
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Athanasios Koulis
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Thijs Booiman
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Brigitte Boeser-Nunnink
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Alexandra P M Cloherty
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Anusca G Rader
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Kharishma S Patel
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Neeltje A Kootstra
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Carla M S Ribeiro
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Yuan Z, Ye J, Liu B, Zhang L. Unraveling the role of autophagy regulation in Crohn's disease: from genetic mechanisms to potential therapeutics. ADVANCED BIOTECHNOLOGY 2024; 2:14. [PMID: 39883213 PMCID: PMC11740883 DOI: 10.1007/s44307-024-00021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 01/31/2025]
Abstract
Autophagy serves as the primary intracellular degradation mechanism in which damaged organelles and self-cytoplasmic proteins are transported to the lysosome for degradation. Crohn's disease, an idiopathic chronic inflammatory disorder of the gastrointestinal tract, manifests in diverse regions of the digestive system. Recent research suggests that autophagy modulation may be a new avenue for treating Crohn's disease, and several promising small-molecule modulators of autophagy have been reported as therapeutic options. In this review, we discuss in detail how mutations in autophagy-related genes function in Crohn's disease and summarize the modulatory effects on autophagy of small-molecule drugs currently used for Crohn's disease treatment. Furthermore, we delve into the therapeutic potential of small-molecule autophagy inducers on Crohn's disease, emphasizing the prospects for development in this field. We aim to highlight the significance of autophagy modulation in Crohn's disease, with the aspiration of contributing to the development of more efficacious treatments that can alleviate their suffering, and improve their quality of life.
Collapse
Affiliation(s)
- Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jing Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
40
|
Schreiber F, Balas I, Robinson MJ, Bakdash G. Border Control: The Role of the Microbiome in Regulating Epithelial Barrier Function. Cells 2024; 13:477. [PMID: 38534321 PMCID: PMC10969408 DOI: 10.3390/cells13060477] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/28/2024] Open
Abstract
The gut mucosal epithelium is one of the largest organs in the body and plays a critical role in regulating the crosstalk between the resident microbiome and the host. To this effect, the tight control of what is permitted through this barrier is of high importance. There should be restricted passage of harmful microorganisms and antigens while at the same time allowing the absorption of nutrients and water. An increased gut permeability, or "leaky gut", has been associated with a variety of diseases ranging from infections, metabolic diseases, and inflammatory and autoimmune diseases to neurological conditions. Several factors can affect gut permeability, including cytokines, dietary components, and the gut microbiome. Here, we discuss how the gut microbiome impacts the permeability of the gut epithelial barrier and how this can be harnessed for therapeutic purposes.
Collapse
Affiliation(s)
| | | | | | - Ghaith Bakdash
- Microbiotica Ltd., Cambridge CB10 1XL, UK; (F.S.); (I.B.); (M.J.R.)
| |
Collapse
|
41
|
Eguchi T, Sakurai M, Wang Y, Saito C, Yoshii G, Wileman T, Mizushima N, Kuwahara T, Iwatsubo T. The V-ATPase-ATG16L1 axis recruits LRRK2 to facilitate the lysosomal stress response. J Cell Biol 2024; 223:e202302067. [PMID: 38227290 PMCID: PMC10791558 DOI: 10.1083/jcb.202302067] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 10/13/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2), a Rab kinase associated with Parkinson's disease and several inflammatory diseases, has been shown to localize to stressed lysosomes and get activated to regulate lysosomal homeostasis. However, the mechanisms of LRRK2 recruitment and activation have not been well understood. Here, we found that the ATG8 conjugation system regulates the recruitment of LRRK2 as well as LC3 onto single membranes of stressed lysosomes/phagosomes. This recruitment did not require FIP200-containing autophagy initiation complex, nor did it occur on double-membrane autophagosomes, suggesting independence from canonical autophagy. Consistently, LRRK2 recruitment was regulated by the V-ATPase-ATG16L1 axis, which requires the WD40 domain of ATG16L1 and specifically mediates ATG8 lipidation on single membranes. This mechanism was also responsible for the lysosomal stress-induced activation of LRRK2 and the resultant regulation of lysosomal secretion and enlargement. These results indicate that the V-ATPase-ATG16L1 axis serves a novel non-autophagic role in the maintenance of lysosomal homeostasis by recruiting LRRK2.
Collapse
Affiliation(s)
- Tomoya Eguchi
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Maria Sakurai
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yingxue Wang
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Chieko Saito
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Gen Yoshii
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Thomas Wileman
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
42
|
Ondrejčáková L, Gregová M, Bubová K, Šenolt L, Pavelka K. Serum biomarkers and their relationship to axial spondyloarthritis associated with inflammatory bowel diseases. Autoimmun Rev 2024; 23:103512. [PMID: 38168574 DOI: 10.1016/j.autrev.2023.103512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Spondyloarthritis (SpA) constitute a group of chronic inflammatory immune-mediated rheumatic diseases characterized by genetic, clinical, and radiological features. Recent efforts have concentrated on identifying biomarkers linked to axial SpA associated with inflammatory bowel disease (IBD), offering predictive insights into disease onset, activity, and progression. Genetically, the significance of the HLA-B27 antigen is notably diminished in ankylosing spondylitis (AS) associated with IBD, but is heightened in concurrent sacroiliitis. Similarly, certain polymorphisms of endoplasmic reticulum aminopeptidase (ERAP-1) appear to be involved. Carriage of variant NOD2/CARD15 polymorphisms has been demonstrated to correlate with the risk of subclinical intestinal inflammation in AS. Biomarkers indicative of pro-inflammatory activity, including C-reactive protein (CRP) along with erythrocyte sedimentation rate (ESR), are among the consistent predictive biomarkers of disease progression. Nevertheless, these markers are not without limitations and exhibit relatively low sensitivity. Other promising markers encompass IL-6, serum calprotectin (s-CLP), serum amyloid (SAA), as well as biomarkers regulating bone formation such as metalloproteinase-3 (MMP-3) and Dickkopf-related protein 1 (DKK-1). Additional candidate indicators of structural changes in SpA patients include matrix metalloproteinase-3 (MMP-3), vascular endothelial growth factor (VEGF), tenascin C (TNC), and CD74 IgG. Fecal caprotein (f-CLP) levels over long-term follow-up of AS patients have demonstrated predictive value in anticipating the development of IBD. Serologic antibodies characteristic of IBD (ASCA, ANCA) have also been compared; however, results exhibit variability. In this review, we will focus on biomarkers associated with both axial SpA and idiopathic intestinal inflammation, notably enteropathic spondyloarthritis.
Collapse
Affiliation(s)
- L Ondrejčáková
- Institute of Rheumatology, Prague, Czech Republic; Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M Gregová
- Institute of Rheumatology, Prague, Czech Republic; Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - K Bubová
- Institute of Rheumatology, Prague, Czech Republic; Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - L Šenolt
- Institute of Rheumatology, Prague, Czech Republic; Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - K Pavelka
- Institute of Rheumatology, Prague, Czech Republic; Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
43
|
Cui Q, Liu HC, Liu WM, Ma F, Lv Y, Ma JC, Wu RQ, Ren YF. Milk fat globule epidermal growth factor 8 alleviates liver injury in severe acute pancreatitis by restoring autophagy flux and inhibiting ferroptosis in hepatocytes. World J Gastroenterol 2024; 30:728-741. [PMID: 38515944 PMCID: PMC10950629 DOI: 10.3748/wjg.v30.i7.728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/18/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Liver injury is common in severe acute pancreatitis (SAP). Excessive autophagy often leads to an imbalance of homeostasis in hepatocytes, which induces lipid peroxidation and mitochondrial iron deposition and ultimately leads to ferroptosis. Our previous study found that milk fat globule epidermal growth factor 8 (MFG-E8) alleviates acinar cell damage during SAP via binding to αvβ3/5 integrins. MFG-E8 also seems to mitigate pancreatic fibrosis via inhibiting chaperone-mediated autophagy. AIM To speculate whether MFG-E8 could also alleviate SAP induced liver injury by restoring the abnormal autophagy flux. METHODS SAP was induced in mice by 2 hly intraperitoneal injections of 4.0 g/kg L-arginine or 7 hly injections of 50 μg/kg cerulein plus lipopolysaccharide. mfge8-knockout mice were used to study the effect of MFG-E8 deficiency on SAP-induced liver injury. Cilengitide, a specific αvβ3/5 integrin inhibitor, was used to investigate the possible mechanism of MFG-E8. RESULTS The results showed that MFG-E8 deficiency aggravated SAP-induced liver injury in mice, enhanced autophagy flux in hepatocyte, and worsened the degree of ferroptosis. Exogenous MFG-E8 reduced SAP-induced liver injury in a dose-dependent manner. Mechanistically, MFG-E8 mitigated excessive autophagy and inhibited ferroptosis in liver cells. Cilengitide abolished MFG-E8's beneficial effects in SAP-induced liver injury. CONCLUSION MFG-E8 acts as an endogenous protective mediator in SAP-induced liver injury. MFG-E8 alleviates the excessive autophagy and inhibits ferroptosis in hepatocytes by binding to integrin αVβ3/5.
Collapse
Affiliation(s)
- Qing Cui
- Department of Cardiology, Xi’an Central Hospital Affiliated to Xi’an Jiaotong University, Xi’an 710003, Shaanxi Province, China
| | - Hang-Cheng Liu
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Wu-Ming Liu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Feng Ma
- Department of Cardiology, Xi’an Central Hospital Affiliated to Xi’an Jiaotong University, Xi’an 710003, Shaanxi Province, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Jian-Cang Ma
- Department of Vascular Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Rong-Qian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Yi-Fan Ren
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
44
|
Layunta E, Jäverfelt S, van de Koolwijk FC, Sivertsson M, Dolan B, Arike L, Thulin S, Vallance BA, Pelaseyed T. MUC17 is an essential small intestinal glycocalyx component that is disrupted in Crohn's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.578867. [PMID: 38405862 PMCID: PMC10888976 DOI: 10.1101/2024.02.08.578867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Crohn's disease (CD) is the chronic inflammation of the ileum and colon triggered by bacteria, but insights into molecular perturbations at the bacteria-epithelium interface are limited. We report that membrane mucin MUC17 protects small intestinal enterocytes against commensal and pathogenic bacteria. In non-inflamed CD ileum, reduced MUC17 levels correlated with a compromised glycocalyx, allowing bacterial contact with enterocytes. Muc17 deletion in mice rendered the small intestine prone to atypical infection while maintaining resistance to colitis. The loss of Muc17 resulted in spontaneous deterioration of epithelial homeostasis and extra-intestinal translocation of bacteria. Finally, Muc17-deficient mice harbored specific small intestinal bacterial taxa observed in CD. Our findings highlight MUC17 as an essential line of defense in the small intestine with relevance for early epithelial defects in CD.
Collapse
Affiliation(s)
- Elena Layunta
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Sofia Jäverfelt
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Fleur C. van de Koolwijk
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Molly Sivertsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Brendan Dolan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Liisa Arike
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Sara Thulin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Bruce A. Vallance
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Thaher Pelaseyed
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| |
Collapse
|
45
|
Wu Q, Ouyang Y. Association of ATG16L1 and ATG5 gene polymorphisms with susceptibility to hepatitis B virus infection and progression to HCC in central China. Microbiol Immunol 2024; 68:47-55. [PMID: 37991129 DOI: 10.1111/1348-0421.13104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/23/2023]
Abstract
Hepatitis B virus (HBV) infection is a severe public health problem worldwide. The relationship between polymorphisms of autophagy-related 16-like 1 gene (ATG16L1) and autophagy-related gene 5 (ATG5) with susceptibility to the stage of HBV infection has been reported in different populations. Nevertheless, this association is not seen in the population of central China. This study recruited 452 participants, including 246 HBV-infected patients (139 chronically infected HBV without hepatocellular carcinoma [HCC] and 107 HBV-related HCC patients) and 206 healthy controls. Genotyping of ATG16L1 rs2241880 and ATG5 rs688810 were performed using Sanger sequencing and polymerase chain reaction-restriction fragment length polymorphism, respectively. Our results indicated that the G allele of ATG16L1 rs2241880 was more frequent in healthy controls than in patients with chronicHBV infection. After adjusting for age and sex, an association between the ATG16L1 rs2241880 polymorphism and HBV infection was significant under the dominant and allele models (p = 0.009 and 0.003, respectively). However, no association between the ATG5 polymorphisms and HBV infection was observed. We also did not find a significant association between ATG16L1 and ATG5 polymorphisms and the progression of HBV-related HCC. Therefore, the genetic polymorphism of ATG16L1 rs2241880 may be associated with susceptibility to HBV infection in the population of central China.
Collapse
Affiliation(s)
- Qiaoyu Wu
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Yaoling Ouyang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| |
Collapse
|
46
|
Simovic I, Hilmi I, Ng RT, Chew KS, Wong SY, Lee WS, Riordan S, Castaño-Rodríguez N. ATG16L1 rs2241880/T300A increases susceptibility to perianal Crohn's disease: An updated meta-analysis on inflammatory bowel disease risk and clinical outcomes. United European Gastroenterol J 2024; 12:103-121. [PMID: 37837511 PMCID: PMC10859713 DOI: 10.1002/ueg2.12477] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/17/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND ATG16L1 plays a fundamental role in the degradative intracellular pathway known as autophagy, being a mediator of inflammation and microbial homeostasis. The variant rs2241880 can diminish these capabilities, potentially contributing to inflammatory bowel disease (IBD) pathogenesis. OBJECTIVES To perform an updated meta-analysis on the association between ATG16L1 rs2241880 and IBD susceptibility by exploring the impact of age, ethnicity, and geography. Moreover, to investigate the association between rs2241880 and clinical features. METHODS Literature searches up until September 2022 across 7 electronic public databases were performed for all case-control studies on ATG16L1 rs2241880 and IBD. Pooled odds ratios (ORP ) and 95% CI were calculated under the random effects model. RESULTS Our analyses included a total of 30,606 IBD patients, comprising 21,270 Crohn's disease (CD) and 9336 ulcerative colitis (UC) patients, and 33,329 controls. ATG16L1 rs2241880 was significantly associated with CD susceptibility, where the A allele was protective (ORP : 0.74, 95% CI: 0.72-0.77, p-value: <0.001), while the G allele was a risk factor (ORP : 1.23, 95% CI: 1.09-1.39, p-value: 0.001), depending on the minor allele frequencies observed in this multi-ancestry study sample. rs2241880 was predominantly relevant in Caucasians from North America and Europe, and in Latin American populations. Importantly, CD patients harbouring the G allele were significantly more predisposed to perianal disease (ORP : 1.21, 95% CI: 1.07-1.38, p-value: 0.003). CONCLUSIONS ATG16L1 rs2241880 (G allele) is a consistent risk factor for IBD in Caucasian cohorts and influences clinical outcomes. As its role in non-Caucasian populations remains ambiguous, further studies in under-reported populations are necessary.
Collapse
Affiliation(s)
- Isidora Simovic
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ida Hilmi
- Department of Medicine, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Ruey Terng Ng
- Department of Paediatrics, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Kee Seang Chew
- Department of Paediatrics, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Shin Yee Wong
- Department of Paediatrics, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Way Seah Lee
- Department of Paediatrics, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Stephen Riordan
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Kuala Lumpur, Malaysia
| | | |
Collapse
|
47
|
Mukherjee T, Kumar N, Chawla M, Philpott DJ, Basak S. The NF-κB signaling system in the immunopathogenesis of inflammatory bowel disease. Sci Signal 2024; 17:eadh1641. [PMID: 38194476 DOI: 10.1126/scisignal.adh1641] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic, chronic condition characterized by episodes of inflammation in the gastrointestinal tract. The nuclear factor κB (NF-κB) system describes a family of dimeric transcription factors. Canonical NF-κB signaling is stimulated by and enhances inflammation, whereas noncanonical NF-κB signaling contributes to immune organogenesis. Dysregulation of NF-κB factors drives various inflammatory pathologies, including IBD. Signals from many immune sensors activate NF-κB subunits in the intestine, which maintain an equilibrium between local microbiota and host responses. Genetic association studies of patients with IBD and preclinical mouse models confirm the importance of the NF-κB system in host defense in the gut. Other studies have investigated the roles of these factors in intestinal barrier function and in inflammatory gut pathologies associated with IBD. NF-κB signaling modulates innate and adaptive immune responses and the production of immunoregulatory proteins, anti-inflammatory cytokines, antimicrobial peptides, and other tolerogenic factors in the intestine. Furthermore, genetic studies have revealed critical cell type-specific roles for NF-κB proteins in intestinal immune homeostasis, inflammation, and restitution that contribute to the etiopathology of IBD-associated manifestations. Here, we summarize our knowledge of the roles of these NF-κB pathways, which are activated in different intestinal cell types by specific ligands, and their cross-talk, in fueling aberrant intestinal inflammation. We argue that an in-depth understanding of aberrant immune signaling mechanisms may hold the key to identifying predictive or prognostic biomarkers and developing better therapeutics against inflammatory gut pathologies.
Collapse
Affiliation(s)
- Tapas Mukherjee
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Naveen Kumar
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Meenakshi Chawla
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
48
|
López-Agudelo VA, Falk-Paulsen M, Bharti R, Rehman A, Sommer F, Wacker EM, Ellinghaus D, Luzius A, Sievers LK, Liebeke M, Kaser A, Rosenstiel P. Defective Atg16l1 in intestinal epithelial cells links to altered fecal microbiota and metabolic shifts during pregnancy in mice. Gut Microbes 2024; 16:2429267. [PMID: 39620359 PMCID: PMC11622647 DOI: 10.1080/19490976.2024.2429267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/04/2024] [Accepted: 11/08/2024] [Indexed: 12/08/2024] Open
Abstract
Throughout gestation, the female body undergoes a series of transformations, including profound alterations in intestinal microbial communities. Changes gradually increase toward the end of pregnancy and comprise reduced α-diversity of microbial communities and an increased propensity for energy harvest. Despite the importance of the intestinal microbiota for the pathophysiology of inflammatory bowel diseases, very little is known about the relationship between these microbiota shifts and pregnancy-associated complications of the disease. Here, we explored the longitudinal dynamics of gut microbiota composition and functional potential during pregnancy and after lactation in Atg16l1∆IEC mice carrying an intestinal epithelial deletion of the Crohn's disease risk gene Atg16l1. Using 16S rRNA amplicon and shotgun metagenomic sequencing, we demonstrated divergent temporal shifts in microbial composition between Atg16l1 wildtype and Atg16l1∆IEC pregnant mice in trimester 3, which was validated in an independent experiment. Observed differences included microbial genera implicated in IBD such as Lachnospiraceae, Roseburia, Ruminococcus, and Turicibacter. Changes partially recovered after lactation. Additionally, metagenomic and metabolomic analyses suggest an increased capacity for chitin degradation, resulting in higher levels of free N-acetyl-glucosamine products in feces, alongside reduced glucose and myo-inositol levels in serum around the time of delivery. On the host side, we found that the immunological response of Atg16l1∆IEC mice is characterized by higher colonic mRNA levels of TNFα and CXCL1 in trimester 3 and a lower weight of offspring at birth. Understanding pregnancy-dependent microbiome changes in the context of IBD may constitute the first step in the identification of fecal microbial biomarkers and microbiota-directed therapies that could help improve precision care for managing pregnancies in IBD patients.
Collapse
Affiliation(s)
- Víctor A. López-Agudelo
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Richa Bharti
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
- Boehringer Ingelheim, Biberach an der Riß, Germany
| | - Ateequr Rehman
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
- DSM Nutritional Products, Kaiseraugst, Switzerland
| | - Felix Sommer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Eike Matthias Wacker
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Anne Luzius
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Laura Katharina Sievers
- Department of General Internal Medicine, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Manuel Liebeke
- Department for Metabolomics, Institute for Human Nutrition and Food Science, University of Kiel, Kiel, Germany
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, and Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, and University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
49
|
Gilliland A, Chan JJ, De Wolfe TJ, Yang H, Vallance BA. Pathobionts in Inflammatory Bowel Disease: Origins, Underlying Mechanisms, and Implications for Clinical Care. Gastroenterology 2024; 166:44-58. [PMID: 37734419 DOI: 10.1053/j.gastro.2023.09.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
The gut microbiota plays a significant role in the pathogenesis of both forms of inflammatory bowel disease (IBD), namely, Crohn's disease (CD) and ulcerative colitis (UC). Although evidence suggests dysbiosis and loss of beneficial microbial species can exacerbate IBD, many new studies have identified microbes with pathogenic qualities, termed "pathobionts," within the intestines of patients with IBD. The concept of pathobionts initiating or driving the chronicity of IBD has largely focused on the putative aggravating role that adherent invasive Escherichia coli may play in CD. However, recent studies have identified additional bacterial and fungal pathobionts in patients with CD and UC. This review will highlight the characteristics of these pathobionts and their implications for IBD treatment. Beyond exploring the origins of pathobionts, we discuss those associated with specific clinical features and the potential mechanisms involved, such as creeping fat (Clostridium innocuum) and impaired wound healing (Debaryomyces hansenii) in patients with CD as well as the increased fecal proteolytic activity (Bacteroides vulgatus) seen as a biomarker for UC severity. Finally, we examine the potential impact of pathobionts on current IBD therapies, and several new approaches to target pathobionts currently in the early stages of development. Despite recognizing that pathobionts likely contribute to the pathogenesis of IBD, more work is needed to define their modes of action. Determining whether causal relationships exist between pathobionts and specific disease characteristics could pave the way for improved care for patients, particularly for those not responding to current IBD therapies.
Collapse
Affiliation(s)
- Ashley Gilliland
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Jocelyn J Chan
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Travis J De Wolfe
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Hyungjun Yang
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce A Vallance
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
50
|
Harwansh RK, Bhati H, Deshmukh R. Recent Updates on the Therapeutics Benefits, Clinical Trials, and Novel Delivery Systems of Chlorogenic Acid for the Management of Diseases with a Special Emphasis on Ulcerative Colitis. Curr Pharm Des 2024; 30:420-439. [PMID: 38299405 DOI: 10.2174/0113816128295753240129074035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
Ulcerative colitis (UC) is a multifactorial disorder of the large intestine, especially the colon, and has become a challenge globally. Allopathic medicines are primarily available for the treatment and prevention of UC. However, their uses are limited due to several side effects. Hence, an alternative therapy is of utmost importance in this regard. Herbal medicines are considered safe and effective for managing human health problems. Chlorogenic acid (CGA), the herbal-derived bioactive, has been reported for pharmacological effects like antiinflammatory, immunomodulatory, antimicrobial, hepatoprotective, antioxidant, anticancer, etc. This review aims to understand the antiinflammatory and chemopreventive potential of CGA against UC. Apart from its excellent therapeutic potential, it has been associated with low absorption and poor oral bioavailability. In this context, colon-specific novel drug delivery systems (NDDS)are pioneering to overcome these problems. The pertinent literature was compiled from a thorough search on various databases such as ScienceDirect, PubMed, Google Scholar, etc., utilizing numerous keywords, including ulcerative colitis, herbal drugs, CGA, pharmacological activities, mechanism of actions, nanoformulations, clinical updates, and many others. Relevant publications accessed till now were chosen, whereas non-relevant papers, unpublished data, and non-original articles were excluded. The present review comprises recent studies on pharmacological activities and novel drug delivery systems of CGA for managing UC. In addition, the clinical trials of CGA against UC have been discussed.
Collapse
Affiliation(s)
- Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Hemant Bhati
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| |
Collapse
|