1
|
Soerensen A, Popovic F, Olesen CH, Mendez BL, Lohse B, Chen Z, Farci P, Purcell RH, Alter HJ, Barfod LK, Bukh J, Prentoe J. Selection and characterization of a broadly neutralizing class of HCV anti-E2 VH1-69 antibodies. PLoS Pathog 2025; 21:e1012428. [PMID: 40153382 DOI: 10.1371/journal.ppat.1012428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/10/2025] [Indexed: 03/30/2025] Open
Abstract
Identification and characterization of antibody epitope targets on the hepatitis C virus (HCV) envelope proteins remain crucial for developing an effective vaccine. Building on prior research defining E1/E2 antibody epitope clustering, we screened a phage display library derived from a chronic HCV patient against detergent-extracted full-length E1/E2 from both the patient's acute-phase isolate (H77, genotype 1a) and a heterologous isolate (S52, genotype 3a). This approach yielded a panel of VH1-69 derived antibody fragments (Fabs) with similar characteristics. Interestingly, all members of the panel exhibited blocking activity against both antigenic region 2 and 3 (AR2 and AR3) in competition ELISAs, which contrasts with the behavior of most previously identified AR3-targeting antibodies. The VH1-69 derived binders had a high affinity for soluble E2 in both Fab and IgG formats, with dissociation constants in the low picomolar range. These Fab binders were broadly neutralizing against a panel of HCV cell culture viruses of genotype 1-6 with higher potency than the well-characterized reference Fab, AR3A. However, in the IgG format the antibodies had similar potency. These findings expand our understanding of potential targets for vaccine development by characterizing a panel of antibodies targeting an AR3 epitope also involving or occluding the back layer of E2. The broad neutralization and high affinity of these antibodies suggest a benefit to targeting both the back layer and the front layer of E2 in HCV vaccine designs to expand the repertoire of broadly neutralizing antibodies, thereby offering promise for the development of more effective preventive measures against this pervasive human pathogen.
Collapse
Affiliation(s)
- Andreas Soerensen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Filip Popovic
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Christina Holmboe Olesen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Blanca Lopez Mendez
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brian Lohse
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zhaochun Chen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Patrizia Farci
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert H Purcell
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Harvey J Alter
- Department of Transfusion Medicine, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lea Klingenberg Barfod
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Thorselius CE, Wolfisberg R, Fahnøe U, Scheel TKH, Holmbeck K, Bukh J. Norway rat hepacivirus resembles hepatitis C virus in terms of intra-host evolution and escape from neutralizing antibodies. J Hepatol 2025:S0168-8278(25)00163-1. [PMID: 40096950 DOI: 10.1016/j.jhep.2025.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/05/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND AND AIMS Norway rat hepacivirus 1 (NrHV) is an attractive surrogate model for evaluating vaccine strategies against hepatitis C virus (HCV). Yet the immune response in NrHV infections remains poorly understood, particularly the role of neutralizing antibodies (nAbs). Here, we explore nAb development and viral evolution during chronic NrHV infection of inbred rats to understand neutralization and viral escape dynamics. METHODS Lewis rats inoculated with the NrHV RHV-rn1 strain were monitored for >52 weeks. Viremia was quantified by RT-qPCR, and NrHV nAbs were characterized by infectious cell culture-based neutralization assays and challenge experiments. Viral evolution was followed over time by whole open reading frame deep sequencing. RESULTS In most animals, high levels of nAbs appeared after 20 to 45 weeks of infection, coinciding with the emergence of numerous mutations in the envelope proteins. Incorporation of these E1/E2 mutations into cell-culture-adapted RHV-rn1 reduced sensitivity to neutralization by autologous contemporary serum. Five key recurrent E1/E2 substitutions (E209K, R224Q, V275I, T500K, and L569P) were identified, collectively impairing serum neutralization, with E209K in E1 alone proving sufficient to confer neutralization escape. In contrast, NrHV-infected rats devoid of nAbs displayed fewer envelope mutations. Finally, pretreatment of cells with rat serum with high-titer nAbs led to partial control of NrHV-infection, and passive immunization with such sera protected SCID mice from subsequent challenge. CONCLUSIONS This study demonstrates the correlation between nAbs and viral evolution during long-term NrHV infection. The observed humoral immunity for NrHV infection closely resembles that of chronic HCV infection, where late-emerging high-level nAbs fail to clear evolving viral populations, thereby contributing to the evasion of the adaptive immune response. Preexisting antibodies do, however, protect from infection.
Collapse
Affiliation(s)
- Caroline E Thorselius
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Raphael Wolfisberg
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Troels K H Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kenn Holmbeck
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Adewuyi O‘S, Balogun MS, Otomaru H, Abimiku A, Ahumibe AA, Ilori E, Luong QA, Mba N, Avong JC, Olaide J, Okunromade O, Ahmad A, Akinpelu A, Ochu CL, Olajumoke B, Abe H, Ihekweazu C, Ifedayo A, Toizumi M, Moriuchi H, Yanagihara K, Idris J, Yoshida LM. Molecular Epidemiology, Drug-Resistant Variants, and Therapeutic Implications of Hepatitis B Virus and Hepatitis D Virus Prevalence in Nigeria: A National Study. Pathogens 2025; 14:101. [PMID: 39861062 PMCID: PMC11768191 DOI: 10.3390/pathogens14010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Information on circulating HBV (sub-)genotype, variants, and hepatitis D virus (HDV) coinfection, which vary by geographical area, is crucial for the efficient control and management of HBV. We investigated the genomic characteristics of HBV (with a prevalence of 8.1%) and the prevalence of HDV in Nigeria. We utilised 777 HBV-positive samples and epidemiological data from the two-stage sampled population-based, nationally representative Nigeria HIV/AIDS Indicator and Impact Survey conducted in 2018. We assessed 732 HBV DNA-extracted samples with detectable viral loads (VLs) for (sub-)genotypes and variants by whole-genome pre-amplification, nested PCR of the s-and pol-gene, and BigDye Terminator sequencing. We conducted HDV serology. In total, 19 out of the 36 + 1 states in Nigeria had a high prevalence of HBV (≥8%), with the highest prevalence (10.4%) in the north-central geopolitical zone. Up to 33.2% (95% CI 30.0-36.6) of the participants had detectable VLs of ≥300 copies/mL. The predominant circulating HBV genotype was E with 98.4% (95% CI 97.1-99.1), followed by A with 1.6% (95% CI 0.9-2.9). Drug-resistant associated variants and immune escape variants were detected in 9.3% and 0.4%, respectively. The seroprevalence of HDV was 7.34% (95% CI 5.5-9.2). Nigeria has subtype E as the major genotype with many variants.
Collapse
Affiliation(s)
- Oludare ‘Sunbo Adewuyi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan (H.M.)
- Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan (M.T.)
- Nigeria Centre for Disease Control and Prevention, Abuja 240102, Nigeria (O.O.); (C.L.O.)
| | - Muhammad Shakir Balogun
- Nigeria Field Epidemiology and Laboratory Training Programme, Abuja 900231, Nigeria;
- African Field Epidemiology Network, Asokoro, Abuja 900231, Nigeria
| | - Hirono Otomaru
- Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan (M.T.)
| | - Alash’le Abimiku
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Anthony Agbakizu Ahumibe
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan (H.M.)
- Nigeria Centre for Disease Control and Prevention, Abuja 240102, Nigeria (O.O.); (C.L.O.)
| | - Elsie Ilori
- Nigeria Centre for Disease Control and Prevention, Abuja 240102, Nigeria (O.O.); (C.L.O.)
| | - Que Anh Luong
- Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan (M.T.)
| | - Nwando Mba
- Nigeria Centre for Disease Control and Prevention, Abuja 240102, Nigeria (O.O.); (C.L.O.)
| | | | - John Olaide
- Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan (M.T.)
| | - Oyeladun Okunromade
- Nigeria Centre for Disease Control and Prevention, Abuja 240102, Nigeria (O.O.); (C.L.O.)
| | - Adama Ahmad
- Nigeria Centre for Disease Control and Prevention, Abuja 240102, Nigeria (O.O.); (C.L.O.)
| | - Afolabi Akinpelu
- Nigeria Centre for Disease Control and Prevention, Abuja 240102, Nigeria (O.O.); (C.L.O.)
| | - Chinwe Lucia Ochu
- Nigeria Centre for Disease Control and Prevention, Abuja 240102, Nigeria (O.O.); (C.L.O.)
| | - Babatunde Olajumoke
- Nigeria Centre for Disease Control and Prevention, Abuja 240102, Nigeria (O.O.); (C.L.O.)
| | - Haruka Abe
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Chikwe Ihekweazu
- Nigeria Centre for Disease Control and Prevention, Abuja 240102, Nigeria (O.O.); (C.L.O.)
- WHO Hub for Pandemic and Epidemic Intelligence, Prinzessinnenstrasse 17-18, 10969 Berlin, Germany
| | - Adetifa Ifedayo
- Nigeria Centre for Disease Control and Prevention, Abuja 240102, Nigeria (O.O.); (C.L.O.)
- Foundation for Innovative New Diagnostics, 1202 Geneva, Switzerland
| | - Michiko Toizumi
- Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan (M.T.)
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hiroyuki Moriuchi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan (H.M.)
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Paediatrics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Katsunori Yanagihara
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan (H.M.)
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Laboratory Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Jide Idris
- Nigeria Centre for Disease Control and Prevention, Abuja 240102, Nigeria (O.O.); (C.L.O.)
| | - Lay-Myint Yoshida
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan (H.M.)
- Department of Paediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan (M.T.)
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
4
|
Kuang S, Han JN, Zhang J, Luo X, Nie Z. Direct Visualization of Hepatitis C Virus RNA in Living Cells and Mice. Methods Mol Biol 2025; 2875:125-143. [PMID: 39535645 DOI: 10.1007/978-1-0716-4248-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
RNA virus infection is a global health issue with a significant economic burden. Direct visualization of the viral RNA genome in living cells is crucial for virological research and early clinical diagnosis. Thus, the need to continue research to find imaging toolkits is urgent. The RNA G-quadruplex (G4), a noncanonical secondary structure with stacked planar G-quartets, has recently been demonstrated in the RNA genomes of various viruses, especially the hepatitis C virus (HCV). Recent advancements in small molecular fluorescent probes have paved the way for a novel method of visualizing RNA G4s. Herein, we describe a fluorogenic probe-based RNA G4s light-up system for visualizing the HCV genome in living host cells and HCV RNA-presenting mini-organ-bearing mice without complicated sample pretreatment. Using this approach, we achieved (i) the visualization of HCV RNA genome in living cells, (ii) the investigation of viral RNA subcellular distribution, (iii) the dynamic tracking of native HCV infection and propagation in the host cell, and (iv) the high-contrast HCV RNA imaging in living mice bearing the HCV RNA-presenting mini-organ.
Collapse
Affiliation(s)
- Shi Kuang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, China
| | - Jiao-Na Han
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, China
| | - Jiaheng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, China
| | - Xingyu Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, China.
| |
Collapse
|
5
|
Kundu J, Le HT, Logan M, Hockman D, Landi A, Crawford K, Wininger M, Johnson J, Kundu JK, Tiffney EA, Urbanowicz RA, Ball JK, Bailey JR, Bukh J, Law M, Foung S, Tyrrell DL, Houghton M, Law JL. Recombinant H77C gpE1/gpE2 heterodimer elicits superior HCV cross-neutralisation than H77C gpE2 alone. J Hepatol 2024; 81:941-948. [PMID: 38986744 PMCID: PMC11830426 DOI: 10.1016/j.jhep.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND & AIMS An optimal HCV vaccine requires the induction of antibodies that neutralise the infectivity of many heterogenous viral isolates. In this study, we have focused on determining the optimal recombinant envelope glycoprotein component to elicit cross-neutralising antibodies against global HCV genotypes. We compared the immunoreactivity and antigenicity of the HCV genotype 1a strain H77C-derived envelope glycoprotein heterodimer gpE1/gpE2 with that of recombinant gpE2 alone. METHODS Characterisation of the envelope glycoproteins was accomplished by determining their ability to bind to a panel of broadly cross-neutralising monoclonal antibodies. Immunogenicity was determined by testing the ability of vaccine antisera to neutralise the infectivity in vitro of a panel of pseudotyped HCV particles in which gpE1/gpE2 derived from representative isolates of the major global HCV genotypes were displayed. RESULTS gpE1/gpE2 binds to more diverse broadly cross-neutralising antibodies than gpE2 alone and elicits a broader profile of cross-neutralising antibodies in animals, especially against more heterologous, non-1a genotypes. While not all heterologous HCV strains can be potently inhibited in vitro by gpE1/gpE2 antisera derived from a single HCV strain, the breadth of heterologous cross-neutralisation is shown to be substantial. CONCLUSIONS Our work supports the inclusion of gpE1/gpE2 in an HCV vaccine in order to maximise the cross-neutralisation of heterogenous HCV isolates. Our data also offers future directions in formulating a cocktail of gpE1/gpE2 antigens from a small selection of HCV genotypes to further enhance cross-neutralisation of global HCV strains and hopefully advance the development of a globally effective HCV vaccine. IMPACT AND IMPLICATIONS An HCV vaccine is urgently required to prevent the high global incidence of HCV infection and disease. Since HCV is a highly heterogeneous virus, it is desirable for a vaccine to elicit antibodies that neutralise the infectivity of most global strains. To this end, we have compared the immunoreactivity and antigenicity of recombinant H77C E1E2 heterodimer with that of H77C E2 alone and show that the former exhibits more cross-neutralising epitopes and demonstrates a broader cross-neutralisation profile in vitro. In addition, our data suggests a way to further broaden cross-neutralisation using a combination of E1E2 antigens derived from a few different HCV clades. Our work is relevant for the development of an effective global HCV vaccine.
Collapse
Affiliation(s)
- Juthika Kundu
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Hoa T Le
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Logan
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Darren Hockman
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Abdolamir Landi
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Crawford
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Mark Wininger
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Janelle Johnson
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Joydeb K Kundu
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - E Alana Tiffney
- Dept of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Richard A Urbanowicz
- Dept of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jonathan K Ball
- Wolfson Centre for Global Virus Infections, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom; Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Justin R Bailey
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Steven Foung
- Department of Pathology, Stanford University, Palo Alto, California, USA
| | - D Lorne Tyrrell
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Houghton
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| | - John Lokman Law
- Li Ka Shing Applied Virology Institute, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Czarnota A, Raszplewicz A, Sławińska A, Bieńkowska-Szewczyk K, Grzyb K. Minicircle-based vaccine induces potent T-cell and antibody responses against hepatitis C virus. Sci Rep 2024; 14:26698. [PMID: 39496832 PMCID: PMC11535267 DOI: 10.1038/s41598-024-78049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/28/2024] [Indexed: 11/06/2024] Open
Abstract
An effective vaccine against hepatitis C virus (HCV) should elicit both humoral and cellular immune responses. Previously, we characterized a bivalent vaccine candidate against hepatitis B (HBV) and HCV using chimeric HBV-HCV virus-like particles (VLP), in which the highly conserved epitope of HCV E2 glycoprotein (residues 412-425) was inserted into the hydrophilic loop of HBV small surface antigen (sHBsAg). While sHBsAg_412-425 elicited cross-neutralizing antibodies, it did not trigger a T-cell response against HCV. Thus, this study aimed to develop a vaccine candidate engaging both arms of adaptive immune response, potentially offering stronger protection against HCV. We evaluated the immunogenicity of minicircle (MC) DNA vaccines encoding sHBsAg_412-425 and HCV nonstructural (NS) proteins in BALB/c mice. Co-administration of sHBsAg_412-425 and NS induced a potent T-cell response, especially against NS3 and high titers of antibodies specific to HCV E2. Additionally, these antibodies recognized native HCV envelope glycoprotein heterodimers (E1E2) across multiple HCV genotypes and showed binding profiles to E1E2 alanine mutants comparable to the broadly neutralizing AP33 antibody. Overall, the findings demonstrate that MC DNA vaccine incorporating both sHBsAg_412-425 and HCV NS protein sequences induces robust, T-cell and AP33-like antibody responses, highlighting its potential as pan-genotypic prophylactic vaccine against HCV.
Collapse
Affiliation(s)
- Anna Czarnota
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Aleksandra Raszplewicz
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Aleksandra Sławińska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Krystyna Bieńkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Katarzyna Grzyb
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland.
| |
Collapse
|
7
|
Collignon L, Holmbeck K, Just A, Verhoye L, Velázquez-Moctezuma R, Fahnøe U, Carlsen THR, Law M, Prentoe J, Scheel TKH, Gottwein JM, Meuleman P, Bukh J. JFH1-based Core-NS2 genotype variants of HCV with genetic stability in vivo and in vitro: Important tools in the evaluation of virus neutralization. Hepatology 2024; 80:1227-1238. [PMID: 38652584 DOI: 10.1097/hep.0000000000000897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND AND AIMS HCV infection continues to be a major global health burden despite effective antiviral treatments. The urgent need for a protective vaccine is hindered by the scarcity of suitable HCV-permissive animal models tractable in vaccination and challenge studies. Currently, only antibody neutralization studies in infectious cell culture systems or studies of protection by passive immunization of human liver chimeric mice offer the possibility to evaluate the effect of vaccine-induced antibodies. However, differences between culture-permissive and in vivo-permissive viruses make it a challenge to compare analyses between platforms. To address this problem, we aimed at developing genotype-specific virus variants with genetic stability both in vitro and in vivo. APPROACH AND RESULTS We demonstrated infection of human liver chimeric mice with cell culture-adapted HCV JFH1-based Core-NS2 recombinants of genotype 1-6, with a panel of 10 virus strains used extensively in neutralization and receptor studies. Clonal re-engineering of mouse-selected mutations resulted in virus variants with robust replication both in Huh7.5 cells and human liver chimeric mice, with genetic stability. Furthermore, we showed that, overall, these virus variants have similar in vitro neutralization profiles as their parent strains and demonstrated their use for in vivo neutralization studies. CONCLUSIONS These mouse-selected HCV recombinants enable the triage of new vaccine-relevant antibodies in vitro and further allow characterization of protection from infection in vivo using identical viruses in human liver chimeric mice. As such, these viruses will serve as important resources in testing novel antibodies and can thus guide strategies to develop an efficient protective vaccine against HCV infection.
Collapse
Affiliation(s)
- Laura Collignon
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Belgium
| | - Kenn Holmbeck
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Ashley Just
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lieven Verhoye
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Belgium
| | - Rodrigo Velázquez-Moctezuma
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Thomas H R Carlsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Troels K H Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Belgium
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
8
|
Yamauchi K, Maekawa S, Osawa L, Komiyama Y, Nakakuki N, Takada H, Muraoka M, Suzuki Y, Sato M, Takano S, Enomoto N. Single-molecule sequencing of the whole HCV genome revealed envelope deletions in decompensated cirrhosis associated with NS2 and NS5A mutations. J Gastroenterol 2024; 59:1021-1036. [PMID: 39225750 DOI: 10.1007/s00535-024-02146-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Defective hepatitis C virus (HCV) genomes with deletion of the envelope region have been occasionally reported by short-read sequencing analyses. However, the clinical and virological details of such deletion HCV have not been fully elucidated. METHODS We developed a highly accurate single-molecule sequencing system for full-length HCV genes by combining the third-generation nanopore sequencing with rolling circle amplification (RCA) and investigated the characteristics of deletion HCV through the analysis of 21 patients chronically infected with genotype-1b HCV. RESULT In 5 of the 21 patients, a defective HCV genome with approximately 2000 bp deletion from the E1 to NS2 region was detected, with the read frequencies of 34-77%, suggesting the trans-complementation of the co-infecting complete HCV. Deletion HCV was found exclusively in decompensated cirrhosis (5/12 patients), and no deletion HCV was observed in nine compensated patients. Comparing the amino acid substitutions between the deletion and complete HCV (DAS, deletion-associated substitutions), the deletion HCV showed higher amino acid mutations in the ISDR (interferon sensitivity-determining region) in NS5A, and also in the TMS (transmembrane segment) 3 to H (helix) 2 region of NS2. CONCLUSIONS Defective HCV genome with deletion of envelope genes is associated with decompensated cirrhosis. The deletion HCV seems susceptible to innate immunity, such as endogenous interferon with NS5A mutations, escaping from acquired immunity with deletion of envelope proteins with potential modulation of replication capabilities with NS2 mutations. The relationship between these mutations and liver damage caused by HCV deletion is worth investigating.
Collapse
Affiliation(s)
- Kozue Yamauchi
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Shinya Maekawa
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| | - Leona Osawa
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Yasuyuki Komiyama
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Natsuko Nakakuki
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Hitomi Takada
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Masaru Muraoka
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Yuichiro Suzuki
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Mitsuaki Sato
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Shinichi Takano
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Nobuyuki Enomoto
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| |
Collapse
|
9
|
Njifon AM, Modiyinji AF, Monamele CG, Mbouyap PR, Ngono L, Tagnouokam-Ngoupo PA, Lissock SF, Zekeng MR, Assam JPA, Njouom R. A decade-long retrospective study of hepatitis C virus genetic diversity in Cameroon, 2013-2023: presence of a high proportion of unsubtypable and putative recombinant HCV strains. Arch Virol 2024; 169:197. [PMID: 39256207 DOI: 10.1007/s00705-024-06124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/22/2024] [Indexed: 09/12/2024]
Abstract
While treatment options for hepatitis C virus (HCV) infection have expanded considerably over the past decade thanks to the development of pan-genotypic therapies, genotype testing remains a prerequisite for treatment in sub-Saharan African countries, including Cameroon, where multiple HCV genotypes and subtypes exist. The main objective of this study was to describe the trend in the distribution of HCV genotypes and subtypes from 2013 to 2023 in the Cameroonian population. Viral loads were determined using the Abbott real-time assay, and genotyping/subtyping was based on nested and semi-nested reverse transcription polymerase chain reaction (RT-PCR) amplification of the regions encoding the core and non-structural protein 5B (NS5B) regions, respectively, followed by sequencing and phylogenetic analysis. A total of 512 patients with NS5B and core sequencing results were included in our study. Genotyping revealed a predominance of both genotype 4 (38.48%) and genotype 1 (37.11%), followed by genotype 2, detected in 22.46% of patients. Interestingly, 10 samples (1.95%) had discordant genotypes in both regions, suggesting the presence of putative recombinant forms of HCV. Twelve different subtypes were detected during the study period, with a predominance of subtypes 4f (18.95%) and 1e (16.02%). Furthermore, phylogenetic analysis failed to assign a subtype to a relatively high proportion of sequences (38.67%) for the two genomic regions, and their classification was limited to genotype assignment. The frequency distribution of HCV genotypes did not show any statistical difference according to year or sex. These results confirm the genetic diversity of HCV in Cameroon and the potential for the generation of recombinant strains.
Collapse
Affiliation(s)
- Aristide Mounchili Njifon
- Department of Virology, Centre Pasteur of Cameroon, 451 Rue 2005, P.O. Box 1274, Yaoundé, Cameroon
- Department of Microbiology, Faculty of Sciences, University of Yaounde I, P.O. Box 337, Yaoundé, Cameroon
| | - Abdou Fatawou Modiyinji
- Department of Virology, Centre Pasteur of Cameroon, 451 Rue 2005, P.O. Box 1274, Yaoundé, Cameroon
| | - Chavely Gwladys Monamele
- Department of Virology, Centre Pasteur of Cameroon, 451 Rue 2005, P.O. Box 1274, Yaoundé, Cameroon
| | - Pretty Rose Mbouyap
- Department of Virology, Centre Pasteur of Cameroon, 451 Rue 2005, P.O. Box 1274, Yaoundé, Cameroon
| | - Laure Ngono
- Department of Virology, Centre Pasteur of Cameroon, 451 Rue 2005, P.O. Box 1274, Yaoundé, Cameroon
| | | | - Simon Frederic Lissock
- Department of Virology, Centre Pasteur of Cameroon, 451 Rue 2005, P.O. Box 1274, Yaoundé, Cameroon
| | - Martin Ridole Zekeng
- Department of Virology, Centre Pasteur of Cameroon, 451 Rue 2005, P.O. Box 1274, Yaoundé, Cameroon
| | - Jean Paul Assam Assam
- Department of Microbiology, Faculty of Sciences, University of Yaounde I, P.O. Box 337, Yaoundé, Cameroon
| | - Richard Njouom
- Department of Virology, Centre Pasteur of Cameroon, 451 Rue 2005, P.O. Box 1274, Yaoundé, Cameroon.
| |
Collapse
|
10
|
Fahnøe U, Madsen LW, Christensen PB, Sølund CS, Mollerup S, Pinholt M, Weis N, Øvrehus A, Bukh J. Effect of direct-acting antivirals on the titers of human pegivirus 1 during treatment of chronic hepatitis C patients. Microbiol Spectr 2024; 12:e0064124. [PMID: 39051781 PMCID: PMC11370240 DOI: 10.1128/spectrum.00641-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
Coinfections with human pegivirus 1 (HPgV-1) are common in chronic hepatitis C virus (HCV) patients. However, little is known about whether HPgV-1 is affected by direct-acting antivirals during HCV treatment. Metagenomic analysis and reverse transcriptase-quantitative PCR (RT-qPCR) were performed on RNA from the plasma of 88 selected chronic HCV patients undergoing medical treatment. Twenty (23%) of these HCV patients had HPgV-1 coinfections and were followed by RT-qPCR during treatment and follow-up to investigate HPgV-1 RNA titers. Recovered sequences could be assembled to complete HPgV-1 genomes, and most formed a genotype 2 subclade. All HPgV-1 viral genomic regions were under negative purifying selection. Glecaprevir/pibrentasvir treatment in five patients did not consistently lower the genome titers of HPgV-1. In contrast, a one log10 drop of HPgV-1 titers at week 2 was observed in 10 patients during treatment with sofosbuvir-containing regimens, sustained to the end of treatment (EOT) and in two cases decreasing to below the detection limit of the assay. For the five patients treated with ledipasvir/sofosbuvir with the inclusion of pegylated interferon, titers decreased to below the detection limit at week 2 and remained undetectable to EOT. Subsequently, the HPgV-1 titer rebounded to pretreatment levels for all patients. In conclusion, we found that HCV treatment regimens that included the polymerase inhibitor sofosbuvir resulted in decreases in HPgV-1 titers, and the addition of pegylated interferon increased the effect on patients with coinfections. This points to the high specificity of protease and NS5A inhibitors toward HCV and the more broad-spectrum activity of sofosbuvir and especially pegylated interferon. IMPORTANCE Human pegivirus 1 coinfections are common in hepatitis C virus (HCV) patients, persisting for years. However, little is known about how pegivirus coinfections are affected by treatment with pangenotypic direct-acting antivirals (DAAs) against HCV. We identified human pegivirus by metagenomic analysis of chronic HCV patients undergoing protease, NS5A, and polymerase inhibitor treatment, in some patients with the addition of pegylated interferon, and followed viral kinetics of both viruses to investigate treatment effects. Only during HCV DAA treatment regimens that included the more broad-spectrum drug sofosbuvir could we detect a consistent decline in pegivirus titers that, however, rebounded to pretreatment levels after treatment cessation. The addition of pegylated interferon gave the highest effect with pegivirus titers decreasing to below the assay detection limit, but without clearance. These results reveal the limited effect of frontline HCV drugs on the closest related human virus, but sofosbuvir appeared to have the potential to be repurposed for other viral diseases.
Collapse
Affiliation(s)
- Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lone Wulff Madsen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Institute for Regional Health Research, University of Southern Denmark, Research Unit for Internal Medicine Kolding Hospital, Kolding, Denmark
| | - Peer Brehm Christensen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Christina Søhoel Sølund
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Sarah Mollerup
- Department of Clinical Microbiology, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Mette Pinholt
- Department of Clinical Microbiology, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Hvidovre, Denmark
| | - Anne Øvrehus
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Valente LC, Bacil GP, Riechelmann-Casarin L, Barbosa GC, Barbisan LF, Romualdo GR. Exploring in vitro modeling in hepatocarcinogenesis research: morphological and molecular features and similarities to the corresponding human disease. Life Sci 2024; 351:122781. [PMID: 38848937 DOI: 10.1016/j.lfs.2024.122781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/04/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The hepatocellular carcinoma (HCC) features a remarkable epidemiological burden, ranking as the third most lethal cancer worldwide. As the HCC-related molecular and cellular complexity unfolds as the disease progresses, the use of a myriad of in vitro models available is mandatory in translational preclinical research setups. In this review paper, we will compile cutting-edge information on the in vitro bioassays for HCC research, (A) emphasizing their morphological and molecular parallels with human HCC; (B) delineating the advantages and limitations of their application; and (C) offering perspectives on their prospective applications. While bidimensional (2D) (co) culture setups provide a rapid low-cost strategy for metabolism and drug screening investigations, tridimensional (3D) (co) culture bioassays - including patient-derived protocols as organoids and precision cut slices - surpass some of the 2D strategies limitations, mimicking the complex microarchitecture and cellular and non-cellular microenvironment observed in human HCC. 3D models have become invaluable tools to unveil HCC pathophysiology and targeted therapy. In both setups, the recapitulation of HCC in different etiologies/backgrounds (i.e., viral, fibrosis, and fatty liver) may be considered as a fundamental guide for obtaining translational findings. Therefore, a "multimodel" approach - encompassing the advantages of different in vitro bioassays - is encouraged to circumvent "model-biased" outcomes in preclinical HCC research.
Collapse
Affiliation(s)
- Leticia Cardoso Valente
- São Paulo State University (UNESP), Medical School, Botucatu, Experimental Research Unit (UNIPEX), Brazil
| | - Gabriel Prata Bacil
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Department of Structural and Functional Biology, Brazil
| | - Luana Riechelmann-Casarin
- São Paulo State University (UNESP), Medical School, Botucatu, Experimental Research Unit (UNIPEX), Brazil
| | | | - Luís Fernando Barbisan
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Department of Structural and Functional Biology, Brazil
| | - Guilherme Ribeiro Romualdo
- São Paulo State University (UNESP), Medical School, Botucatu, Experimental Research Unit (UNIPEX), Brazil.
| |
Collapse
|
12
|
Aboalroub AA, Al Azzam KM. Protein S-Nitrosylation: A Chemical Modification with Ubiquitous Biological Activities. Protein J 2024; 43:639-655. [PMID: 39068633 DOI: 10.1007/s10930-024-10223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Nitric oxide (NO) induces protein posttranslational modification (PTM), known as S-nitrosylation, which has started to gain attention as a critical regulator of thousands of substrate proteins. However, our understanding of the biological consequences of this emerging PTM is incomplete because of the limited number of identified S-nitrosylated proteins (S-NO proteins). Recent advances in detection methods have effectively contributed to broadening the spectrum of discovered S-NO proteins. This article briefly reviews the progress in S-NO protein detection methods and discusses how these methods are involved in characterizing the biological consequences of this PTM. Additionally, we provide insight into S-NO protein-related diseases, focusing on the role of these proteins in mitigating the severity of infectious diseases.
Collapse
Affiliation(s)
- Adam A Aboalroub
- Pharmacological and Diagnostic Research Center (PDRC), Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan.
| | - Khaldun M Al Azzam
- Department of Chemistry, School of Science, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
13
|
Echeverría N, Gámbaro F, Beaucourt S, Soñora M, Hernández N, Cristina J, Moratorio G, Moreno P. Mixed Infections Unravel Novel HCV Inter-Genotypic Recombinant Forms within the Conserved IRES Region. Viruses 2024; 16:560. [PMID: 38675902 PMCID: PMC11053413 DOI: 10.3390/v16040560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatitis C virus (HCV) remains a significant global health challenge, affecting millions of people worldwide, with chronic infection a persistent threat. Despite the advent of direct-acting antivirals (DAAs), challenges in diagnosis and treatment remain, compounded by the lack of an effective vaccine. The HCV genome, characterized by high genetic variability, consists of eight distinct genotypes and over ninety subtypes, underscoring the complex dynamics of the virus within infected individuals. This study delves into the intriguing realm of HCV genetic diversity, specifically exploring the phenomenon of mixed infections and the subsequent detection of recombinant forms within the conserved internal ribosome entry site (IRES) region. Previous studies have identified recombination as a rare event in HCV. However, our findings challenge this notion by providing the first evidence of 1a/3a (and vice versa) inter-genotypic recombination within the conserved IRES region. Utilizing advanced sequencing methods, such as deep sequencing and molecular cloning, our study reveals mixed infections involving genotypes 1a and 3a. This comprehensive approach not only confirmed the presence of mixed infections, but also identified the existence of recombinant forms not previously seen in the IRES region. The recombinant sequences, although present as low-frequency variants, open new avenues for understanding HCV evolution and adaptation.
Collapse
Affiliation(s)
- Natalia Echeverría
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (N.E.); (F.G.); (M.S.); (J.C.); (G.M.)
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Fabiana Gámbaro
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (N.E.); (F.G.); (M.S.); (J.C.); (G.M.)
| | - Stéphanie Beaucourt
- Viral Populations and Pathogenesis Laboratory, Institut Pasteur, 75015 Paris, France;
| | - Martín Soñora
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (N.E.); (F.G.); (M.S.); (J.C.); (G.M.)
- Laboratorio de Simulaciones Biomoleculares, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Nelia Hernández
- Clínica de Gastroenterología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay;
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (N.E.); (F.G.); (M.S.); (J.C.); (G.M.)
| | - Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (N.E.); (F.G.); (M.S.); (J.C.); (G.M.)
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (N.E.); (F.G.); (M.S.); (J.C.); (G.M.)
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| |
Collapse
|
14
|
Frumento N, Sinnis-Bourozikas A, Paul HT, Stavrakis G, Zahid MN, Wang S, Ray SC, Flyak AI, Shaw GM, Cox AL, Bailey JR. Neutralizing antibodies evolve to exploit vulnerable sites in the HCV envelope glycoprotein E2 and mediate spontaneous clearance of infection. Immunity 2024; 57:40-51.e5. [PMID: 38171362 PMCID: PMC10874496 DOI: 10.1016/j.immuni.2023.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/28/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Individuals who clear primary hepatitis C virus (HCV) infections clear subsequent reinfections more than 80% of the time, but the mechanisms are poorly defined. Here, we used HCV variants and plasma from individuals with repeated clearance to characterize longitudinal changes in envelope glycoprotein E2 sequences, function, and neutralizing antibody (NAb) resistance. Clearance of infection was associated with early selection of viruses with NAb resistance substitutions that also reduced E2 binding to CD81, the primary HCV receptor. Later, peri-clearance plasma samples regained neutralizing capacity against these variants. We identified a subset of broadly NAbs (bNAbs) for which these loss-of-fitness substitutions conferred resistance to unmutated bNAb ancestors but increased sensitivity to mature bNAbs. These data demonstrate a mechanism by which neutralizing antibodies contribute to repeated immune-mediated HCV clearance, identifying specific bNAbs that exploit fundamental vulnerabilities in E2. The induction of bNAbs with these specificities should be a goal of HCV vaccine development.
Collapse
Affiliation(s)
- Nicole Frumento
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ariadne Sinnis-Bourozikas
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harry T Paul
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Georgia Stavrakis
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Muhammad N Zahid
- University of Bahrain, Department of Biology, College of Science, Sakhir Campus, Sakhir, Bahrain
| | - Shuyi Wang
- Department of Medicine and Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Stuart C Ray
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew I Flyak
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - George M Shaw
- Department of Medicine and Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrea L Cox
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin R Bailey
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
15
|
Kamal S, Shahzad A, Rehman K, Tariq K, Akash MSH, Imran M, Assiri MA. Therapeutic Intervention of Serine Protease Inhibitors against Hepatitis C Virus. Curr Med Chem 2024; 31:2052-2072. [PMID: 37855348 DOI: 10.2174/0109298673234823230921090431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 10/20/2023]
Abstract
Hepatitis C virus (HCV) is a globally prevalent and hazardous disorder that is responsible for inducing several persistent and potentially fatal liver diseases. Current treatment strategies offer limited efficacy, often accompanied by severe and debilitating adverse effects. Consequently, there is an urgent and compelling need to develop novel therapeutic interventions that can provide maximum efficacy in combating HCV while minimizing the burden of adverse effects on patients. One promising target against HCV is the NS3-4A serine protease, a complex composed of two HCV-encoded proteins. This non-covalent heterodimer is crucial in the viral life cycle and has become a primary focus for therapeutic interventions. Although peginterferon, combined with ribavirin, is commonly employed for HCV treatment, its efficacy is hampered by significant adverse effects that can profoundly impact patients' quality of life. In recent years, the development of direct-acting antiviral agents (DAAs) has emerged as a breakthrough in HCV therapy. These agents exhibit remarkable potency against the virus and have demonstrated fewer adverse effects when combined with other DAAs. However, it is important to note that there is a potential for developing resistance to DAAs due to alterations in the amino acid position of the NS3-4A protease. This emphasizes the need for ongoing research to identify strategies that can minimize the emergence of resistance and ensure long-term effectiveness. While the combination of DAAs holds promise for HCV treatment, it is crucial to consider the possibility of drug-drug interactions. These interactions may occur when different DAAs are used concurrently, potentially compromising their therapeutic efficacy. Therefore, carefully evaluating and monitoring potential drug interactions are vital to optimize treatment outcomes. In the pursuit of novel therapeutic interventions for HCV, the field of computational biology and bioinformatics has emerged as a valuable tool. These advanced technologies and methodologies enable the development and design of new drugs and therapeutic agents that exhibit maximum efficacy, reduced risk of resistance, and minimal adverse effects. By leveraging computational approaches, researchers can efficiently screen and optimize potential candidates, accelerating the discovery and development of highly effective treatments for HCV, treatments.
Collapse
Affiliation(s)
- Shagufta Kamal
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Asif Shahzad
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Komal Tariq
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Imran
- Research center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Ali Assiri
- Research center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
16
|
Tabll AA, Sohrab SS, Ali AA, Petrovic A, Steiner Srdarevic S, Siber S, Glasnovic M, Smolic R, Smolic M. Future Prospects, Approaches, and the Government's Role in the Development of a Hepatitis C Virus Vaccine. Pathogens 2023; 13:38. [PMID: 38251345 PMCID: PMC10820710 DOI: 10.3390/pathogens13010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Developing a safe and effective vaccine against the hepatitis C virus (HCV) remains a top priority for global health. Despite recent advances in antiviral therapies, the high cost and limited accessibility of these treatments impede their widespread application, particularly in resource-limited settings. Therefore, the development of the HCV vaccine remains a necessity. This review article analyzes the current technologies, future prospects, strategies, HCV genomic targets, and the governmental role in HCV vaccine development. We discuss the current epidemiological landscape of HCV infection and the potential of HCV structural and non-structural protein antigens as vaccine targets. In addition, the involvement of government agencies and policymakers in supporting and facilitating the development of HCV vaccines is emphasized. We explore how vaccine development regulatory channels and frameworks affect research goals, funding, and public health policy. The significance of international and public-private partnerships in accelerating the development of an HCV vaccine is examined. Finally, the future directions for developing an HCV vaccine are discussed. In conclusion, the review highlights the urgent need for a preventive vaccine to fight the global HCV disease and the significance of collaborative efforts between scientists, politicians, and public health organizations to reach this important public health goal.
Collapse
Affiliation(s)
- Ashraf A. Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt
- Egypt Centre for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
| | - Sayed S. Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed A. Ali
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt;
| | - Ana Petrovic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (S.S.S.); (S.S.); (M.G.); (R.S.)
| | - Sabina Steiner Srdarevic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (S.S.S.); (S.S.); (M.G.); (R.S.)
| | - Stjepan Siber
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (S.S.S.); (S.S.); (M.G.); (R.S.)
| | - Marija Glasnovic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (S.S.S.); (S.S.); (M.G.); (R.S.)
| | - Robert Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (S.S.S.); (S.S.); (M.G.); (R.S.)
| | - Martina Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (A.P.); (S.S.S.); (S.S.); (M.G.); (R.S.)
| |
Collapse
|
17
|
Bajpai PS, Collignon L, Sølund C, Madsen LW, Christensen PB, Øvrehus A, Weis N, Holmbeck K, Fahnøe U, Bukh J. Full-length sequence analysis of hepatitis C virus genotype 3b strains and development of an in vivo infectious 3b cDNA clone. J Virol 2023; 97:e0092523. [PMID: 38092564 PMCID: PMC10734419 DOI: 10.1128/jvi.00925-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/27/2023] [Indexed: 12/22/2023] Open
Abstract
IMPORTANCE HCV genotype 3b is a difficult-to-treat subtype, associated with accelerated progression of liver disease and resistance to antivirals. Moreover, its prevalence has significantly increased among persons who inject drugs posing a serious risk of transmission in the general population. Thus, more genetic information and antiviral testing systems are required to develop novel therapeutic options for this genotype 3 subtype. We determined the complete genomic sequence and complexity of three genotype 3b isolates, which will be beneficial to study its biology and evolution. Furthermore, we developed a full-length in vivo infectious cDNA clone of genotype 3b and showed its robustness and genetic stability in human-liver chimeric mice. This is, to our knowledge the first reported infectious cDNA clone of HCV genotype 3b and will provide a valuable tool to evaluate antivirals and neutralizing antibodies in vivo, as well as in the development of infectious cell culture systems required for further research.
Collapse
Affiliation(s)
- Priyanka Shukla Bajpai
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laura Collignon
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Sølund
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Lone Wulff Madsen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Peer Brehm Christensen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Anne Øvrehus
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kenn Holmbeck
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| |
Collapse
|
18
|
Izhari MA. Molecular Mechanisms of Resistance to Direct-Acting Antiviral (DAA) Drugs for the Treatment of Hepatitis C Virus Infections. Diagnostics (Basel) 2023; 13:3102. [PMID: 37835845 PMCID: PMC10572573 DOI: 10.3390/diagnostics13193102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Hepatitis C virus (HCV) is a hepatotropic virus that affects millions of human lives worldwide. Direct-acting antiviral (DAA) regimens are the most effective HCV treatment option. However, amino acid substitution-dependent resistance to DAAs has been a major challenge. This study aimed to determine the increasing risk of DAA resistance due to substitutions in DAA target non-structural proteins (NS3/4A, NS5A, and NS5B). Using a Sequence Retrieval System (SRS) at the virus pathogen resource (ViPR/BV-BRC), n = 32763 target protein sequences were retrieved and analyzed for resistance-associated amino acid substitutions (RAASs) by the Sequence Feature Variant Type (SFVT) antiviral-resistance assessment modeling tool. Reference target protein sequences with 100% identity were retried from UniProt following NCBI BLAST. The types and locations of RAASs were identified and visualized by AlphaFold and PyMol. Linux-r-base/R-studio was used for the data presentation. Multi-drug-resistant variants of NS3/4A in genotype 1 (n = 9) and genotype 5 (n = 5) along with DAA-specific NS3/4A, NS5A, and NS5B variants were identified pan-genotypically. A total of 27 variants (RAASs) of all the targets were identified. Fourteen genotype 1-specific substitutions: V1196A, V1158I, D1194A/T/G, R1181K, T1080S, Q1106R, V1062A, S1148G, A1182V, Y2065N, M2000T, and L2003V were identified. The most frequent substitutions were V1062L and L2003M, followed by Q2002H. L2003V, Q2002H, M2000T, Y2065N, and NL2003M of NS5A and L2003M of NS5B conferred resistance to daclatasvir. S2702T NS5B was the sofosbuvir-resistant variant. D1194A NS3/4A was triple DAA (simeprevir, faldaprevir, and asunaprevir) resistant. The double-drug resistant variants R1181K (faldaprevir and asunaprevir), A1182V and Q1106K/R (faldaprevir and simeprevir), T1080S (faldaprevir and telaprevir), and single drug-resistant variants V1062L (telaprevir), D1194E/T (simeprevir), D1194G (asunaprevir), S1148A/G (simeprevir), and Q1106L (Boceprevir) of NS3/4A were determined. The molecular phenomenon of DAA resistance is paramount in the development of HCV drug candidates. RAASs in NS3, NS5A, and NS5B reduce the susceptibility to DAAs; therefore, continuous RAAS-dependent resistance profiling in HCV is recommended to minimize the probability of DAA therapeutic failure.
Collapse
Affiliation(s)
- Mohammad Asrar Izhari
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha 65522, Saudi Arabia
| |
Collapse
|
19
|
Chen F, Ke Q, Wei W, Cui L, Wang Y. Apolipoprotein E and viral infection: Risks and Mechanisms. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:529-542. [PMID: 37588688 PMCID: PMC10425688 DOI: 10.1016/j.omtn.2023.07.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Apolipoprotein E (ApoE) is a multifunctional protein critical for lipid metabolism and cholesterol homeostasis. In addition to being a well known genetic determinant of both neurodegenerative and cardiovascular diseases, ApoE is frequently involved in various viral infection-related diseases. Human ApoE protein is functionally polymorphic with three isoforms, namely, ApoE2, ApoE3, and ApoE4, with markedly altered protein structures and functions. ApoE4 is associated with increased susceptibility to infection with herpes simplex virus type-1 and HIV. Conversely, ApoE4 protects against hepatitis C virus and hepatitis B virus infection. With the outbreak of coronavirus disease 2019, ApoE4 has been shown to determine the incidence and progression of severe acute respiratory syndrome coronavirus 2 infection. These findings clearly indicate the critical role of ApoE in viral infection. Furthermore, ApoE polymorphism has various or even opposite effects in these infection processes, which are partly related to the structural features that distinguish the different ApoE statuses. In the current review, we summarize the emerging relationship between ApoE and viral infection, discuss the potential mechanisms, and identify future directions that may help to advance our understanding of the link between ApoE and viral infection.
Collapse
Affiliation(s)
- Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Qiongwei Ke
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Wenyan Wei
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| |
Collapse
|
20
|
Binderup A, Galli A, Fossat N, Fernandez-Antunez C, Mikkelsen LS, Rivera-Rangel LR, Scheel TKH, Fahnøe U, Bukh J, Ramirez S. Differential activity of nucleotide analogs against tick-borne encephalitis and yellow fever viruses in human cell lines. Virology 2023; 585:179-185. [PMID: 37356253 DOI: 10.1016/j.virol.2023.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023]
Abstract
With no approved antiviral therapies, the continuous emergence and re-emergence of tick-borne encephalitis virus (TBEV) and yellow fever virus (YFV) is a rising concern. We performed head-to-head comparisons of the antiviral activity of available nucleos(t)ide analogs (nucs) using relevant human cell lines. Eight existing nucs inhibited TBEV and/or YFV with differential activity between cell lines and viruses. Remdesivir, uprifosbuvir and sofosbuvir were the most potent drugs against TBEV and YFV in liver cells, but they had reduced activity in neural cells, whereas galidesivir retained uniform activity across cell lines and viruses. Ribavirin, valopicitabine, molnupiravir and GS-6620 exhibited only moderate antiviral activity. We found antiviral activity for drugs previously reported as inactive, demonstrating the importance of using human cell lines and comparative experimental assays when screening the activity of nucs. The relatively high antiviral activity of remdesivir, sofosbuvir and uprifosbuvir against TBEV and YFV merits further investigation in clinical studies.
Collapse
Affiliation(s)
- Alekxander Binderup
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Galli
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolas Fossat
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carlota Fernandez-Antunez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lotte S Mikkelsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lizandro René Rivera-Rangel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Troels K H Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
21
|
Buonaguro L, Cavalluzzo B, Mauriello A, Ragone C, Tornesello AL, Buonaguro FM, Tornesello ML, Tagliamonte M. Microorganisms-derived antigens for preventive anti-cancer vaccines. Mol Aspects Med 2023; 92:101192. [PMID: 37295175 DOI: 10.1016/j.mam.2023.101192] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Cancer prevention is one of the aim with the highest priority in order to reduce the burden of cancer diagnosis and treatment on individuals as well as on healthcare systems. To this aim, vaccines represent the most efficient primary cancer prevention strategy. Indeed, anti-cancer immunological memory elicited by preventive vaccines might promptly expand and prevent tumor from progressing. Antigens derived from microorganisms (MoAs), represent the obvious target for developing highly effective preventive vaccines for virus-induced cancers. In this respect, the drastic reduction in cancer incidence following HBV and HPV preventive vaccines are the paradigmatic example of such evidence. More recently, experimental evidences suggest that MoAs may represent a "natural" anti-cancer preventive vaccination or can be exploited for developing vaccines to prevent cancers presenting highly homologous tumor-associated antigens (TAAs) (e.g. molecular mimicry). The present review describes the different preventive anti-cancer vaccines based on antigens derived from pathogens at the different stages of development.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Beatrice Cavalluzzo
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Angela Mauriello
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Concetta Ragone
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Maria Tagliamonte
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy.
| |
Collapse
|
22
|
Sherwood AV, Rivera-Rangel LR, Ryberg LA, Larsen HS, Anker KM, Costa R, Vågbø CB, Jakljevič E, Pham LV, Fernandez-Antunez C, Indrisiunaite G, Podolska-Charlery A, Grothen JER, Langvad NW, Fossat N, Offersgaard A, Al-Chaer A, Nielsen L, Kuśnierczyk A, Sølund C, Weis N, Gottwein JM, Holmbeck K, Bottaro S, Ramirez S, Bukh J, Scheel TKH, Vinther J. Hepatitis C virus RNA is 5'-capped with flavin adenine dinucleotide. Nature 2023; 619:811-818. [PMID: 37407817 PMCID: PMC7616780 DOI: 10.1038/s41586-023-06301-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Abstract
RNA viruses have evolved elaborate strategies to protect their genomes, including 5' capping. However, until now no RNA 5' cap has been identified for hepatitis C virus1,2 (HCV), which causes chronic infection, liver cirrhosis and cancer3. Here we demonstrate that the cellular metabolite flavin adenine dinucleotide (FAD) is used as a non-canonical initiating nucleotide by the viral RNA-dependent RNA polymerase, resulting in a 5'-FAD cap on the HCV RNA. The HCV FAD-capping frequency is around 75%, which is the highest observed for any RNA metabolite cap across all kingdoms of life4-8. FAD capping is conserved among HCV isolates for the replication-intermediate negative strand and partially for the positive strand. It is also observed in vivo on HCV RNA isolated from patient samples and from the liver and serum of a human liver chimeric mouse model. Furthermore, we show that 5'-FAD capping protects RNA from RIG-I mediated innate immune recognition but does not stabilize the HCV RNA. These results establish capping with cellular metabolites as a novel viral RNA-capping strategy, which could be used by other viruses and affect anti-viral treatment outcomes and persistence of infection.
Collapse
Affiliation(s)
- Anna V Sherwood
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Lizandro R Rivera-Rangel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Line A Ryberg
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Helena S Larsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Klara M Anker
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Rui Costa
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Cathrine B Vågbø
- Proteomics and Modomics Experimental Core (PROMEC), Norwegian University of Science and Technology and the Central Norway Regional Health Authority, Trondheim, Norway
| | - Eva Jakljevič
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Long V Pham
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Carlota Fernandez-Antunez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Gabriele Indrisiunaite
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Agnieszka Podolska-Charlery
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Julius E R Grothen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Nicklas W Langvad
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Nicolas Fossat
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Amal Al-Chaer
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Louise Nielsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Anna Kuśnierczyk
- Proteomics and Modomics Experimental Core (PROMEC), Norwegian University of Science and Technology and the Central Norway Regional Health Authority, Trondheim, Norway
| | - Christina Sølund
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Kenn Holmbeck
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Sandro Bottaro
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark.
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark.
| | - Troels K H Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark.
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark.
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.
| | - Jeppe Vinther
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
23
|
Baccili AP, Monteiro LHA. Social Pressure from a Core Group can Cause Self-Sustained Oscillations in an Epidemic Model. Acta Biotheor 2023; 71:18. [PMID: 37347302 DOI: 10.1007/s10441-023-09469-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
Let the individuals of a population be divided into two groups with different personal habits. The core group is associated with health risk behaviors; the non-core group avoids unhealthy activities. Assume that the infected individuals of the core group can spread a contagious disease to the whole population. Also, assume that cure does not confer immunity. Here, an epidemiological model written as a set of ordinary differential equations is proposed to investigate the infection propagation in this population. In the model, migrations between these two groups are allowed; however, the transitions from the non-core group into the core group prevail. These migrations can be either spontaneous or stimulated by social pressure. It is analytically shown that, in the scenario of spontaneous migration, the disease is either naturally eradicated or chronically persists at a constant level. In the scenario of stimulated migration, in addition to eradication and constant persistence, self-sustained oscillations in the number of sick individuals can also be found. These analytical results are illustrated by numerical simulations and discussed from a public health perspective.
Collapse
Affiliation(s)
- A P Baccili
- Universidade Presbiteriana Mackenzie, PPGEEC, Escola de Engenharia, Rua da Consolação, n.896, 01302-907, São Paulo, SP, Brazil
| | - L H A Monteiro
- Universidade Presbiteriana Mackenzie, PPGEEC, Escola de Engenharia, Rua da Consolação, n.896, 01302-907, São Paulo, SP, Brazil.
- Universidade de São Paulo, Escola Politécnica, São Paulo, SP, Brazil.
| |
Collapse
|
24
|
Choudhary HB, Mandlik SK, Mandlik DS. Role of p53 suppression in the pathogenesis of hepatocellular carcinoma. World J Gastrointest Pathophysiol 2023; 14:46-70. [PMID: 37304923 PMCID: PMC10251250 DOI: 10.4291/wjgp.v14.i3.46] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/01/2023] Open
Abstract
In the world, hepatocellular carcinoma (HCC) is among the top 10 most prevalent malignancies. HCC formation has indeed been linked to numerous etiological factors, including alcohol usage, hepatitis viruses and liver cirrhosis. Among the most prevalent defects in a wide range of tumours, notably HCC, is the silencing of the p53 tumour suppressor gene. The control of the cell cycle and the preservation of gene function are both critically important functions of p53. In order to pinpoint the core mechanisms of HCC and find more efficient treatments, molecular research employing HCC tissues has been the main focus. Stimulated p53 triggers necessary reactions that achieve cell cycle arrest, genetic stability, DNA repair and the elimination of DNA-damaged cells’ responses to biological stressors (like oncogenes or DNA damage). To the contrary hand, the oncogene protein of the murine double minute 2 (MDM2) is a significant biological inhibitor of p53. MDM2 causes p53 protein degradation, which in turn adversely controls p53 function. Despite carrying wt-p53, the majority of HCCs show abnormalities in the p53-expressed apoptotic pathway. High p53 in-vivo expression might have two clinical impacts on HCC: (1) Increased levels of exogenous p53 protein cause tumour cells to undergo apoptosis by preventing cell growth through a number of biological pathways; and (2) Exogenous p53 makes HCC susceptible to various anticancer drugs. This review describes the functions and primary mechanisms of p53 in pathological mechanism, chemoresistance and therapeutic mechanisms of HCC.
Collapse
Affiliation(s)
- Heena B Choudhary
- Department of Pharmacology, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| | - Satish K Mandlik
- Department of Pharmaceutics, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| | - Deepa S Mandlik
- Department of Pharmacology, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| |
Collapse
|
25
|
Challenges Facing Viral Hepatitis C Elimination in Lebanon. Pathogens 2023; 12:pathogens12030432. [PMID: 36986354 PMCID: PMC10057017 DOI: 10.3390/pathogens12030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/25/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Hepatitis C is a hepatotropic virus that causes progressive liver inflammation, eventually leading to cirrhosis and hepatocellular carcinoma if left untreated. All infected patients can achieve a cure if treated early. Unfortunately, many patients remain asymptomatic and tend to present late with hepatic complications. Given the economic and health burdens of chronic hepatitis C infection, the World Health Organization (WHO) has proposed a strategy to eliminate hepatitis C by 2030. This article describes the epidemiology of hepatitis C in Lebanon and highlights the challenges hindering its elimination. An extensive search was conducted using PubMed, Medline, Cochrane, and the Lebanese Ministry of Public Health–Epidemiologic Surveillance Unit website. Obtained data were analyzed and discussed in light of the current WHO recommendations. It was found that Lebanon has a low prevalence of hepatitis C. Incidence is higher among males and Mount Lebanon residents. A wide variety of hepatitis C genotypes exists among various risk groups, with genotype 1 being the most predominant. In Lebanon, many barriers prevent successful hepatitis C elimination, including the absence of a comprehensive screening policy, stigma, neglect among high-risk groups, economic collapse, and a lack of proper care and surveillance among the refugees. Appropriate screening schemes and early linkage to care among the general and high-risk populations are essential for successful hepatitis C elimination in Lebanon.
Collapse
|
26
|
Alzua GP, Pihl AF, Offersgaard A, Velázquez-Moctezuma R, Duarte Hernandez CR, Augestad EH, Fahnøe U, Mathiesen CK, Krarup H, Law M, Prentoe J, Bukh J, Gottwein JM. Identification of novel neutralizing determinants for protection against HCV. Hepatology 2023; 77:982-996. [PMID: 36056620 PMCID: PMC9936975 DOI: 10.1002/hep.32772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND AIMS HCV evasion of neutralizing antibodies (nAb) results in viral persistence and poses challenges to the development of an urgently needed vaccine. N-linked glycosylation of viral envelope proteins is a key mechanism for such evasion. To facilitate rational vaccine design, we aimed to identify determinants of protection of conserved neutralizing epitopes. APPROACH AND RESULTS Using a reverse evolutionary approach, we passaged genotype 1a, 1b, 2a, 3a, and 4a HCV with envelope proteins (E1 and E2) derived from chronically infected patients without selective pressure by nAb in cell culture. Compared with the original viruses, HCV recombinants, engineered to harbor substitutions identified in polyclonal cell culture-passaged viruses, showed highly increased fitness and exposure of conserved neutralizing epitopes in antigenic regions 3 and 4, associated with protection from chronic infection. Further reverse genetic studies of acquired E1/E2 substitutions identified positions 418 and 532 in the N1 and N6 glycosylation motifs, localizing to adjacent E2 areas, as key regulators of changes of the E1/E2 conformational state, which governed viral sensitivity to nAb. These effects were independent of predicted glycan occupancy. CONCLUSIONS We show how N-linked glycosylation motifs can trigger dramatic changes in HCV sensitivity to nAb, independent of glycan occupancy. These findings aid in the understanding of HCV nAb evasion and rational vaccine design, as they can be exploited to stabilize the structurally flexible envelope proteins in an open conformation, exposing important neutralizing epitopes. Finally, this work resulted in a panel of highly fit cell culture infectious HCV recombinants.
Collapse
Affiliation(s)
- Garazi P Alzua
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases , Copenhagen University Hospital-Hvidovre , Hvidovre , Denmark.,Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Anne F Pihl
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases , Copenhagen University Hospital-Hvidovre , Hvidovre , Denmark.,Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases , Copenhagen University Hospital-Hvidovre , Hvidovre , Denmark.,Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Rodrigo Velázquez-Moctezuma
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases , Copenhagen University Hospital-Hvidovre , Hvidovre , Denmark.,Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Carlos R Duarte Hernandez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases , Copenhagen University Hospital-Hvidovre , Hvidovre , Denmark.,Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Elias H Augestad
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases , Copenhagen University Hospital-Hvidovre , Hvidovre , Denmark.,Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases , Copenhagen University Hospital-Hvidovre , Hvidovre , Denmark.,Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Christian K Mathiesen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases , Copenhagen University Hospital-Hvidovre , Hvidovre , Denmark.,Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Henrik Krarup
- Department of Molecular Diagnostics , Aalborg University Hospital , Aalborg , Denmark.,Department of Clinical Medicine , Aalborg University , Aalborg , Denmark
| | - Mansun Law
- Department of Immunology and Microbiology , The Scripps Research Institute , La Jolla , California , USA
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases , Copenhagen University Hospital-Hvidovre , Hvidovre , Denmark.,Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases , Copenhagen University Hospital-Hvidovre , Hvidovre , Denmark.,Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases , Copenhagen University Hospital-Hvidovre , Hvidovre , Denmark.,Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
27
|
Alzua GP, Pihl AF, Offersgaard A, Duarte Hernandez CR, Duan Z, Feng S, Fahnøe U, Sølund C, Weis N, Law M, Prentoe JC, Christensen JP, Bukh J, Gottwein JM. Inactivated genotype 1a, 2a and 3a HCV vaccine candidates induced broadly neutralising antibodies in mice. Gut 2023; 72:560-572. [PMID: 35918103 PMCID: PMC9933178 DOI: 10.1136/gutjnl-2021-326323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 07/13/2022] [Indexed: 01/21/2023]
Abstract
OBJECTIVE A prophylactic vaccine is needed to control the HCV epidemic, with genotypes 1-3 causing >80% of worldwide infections. Vaccine development is hampered by HCV heterogeneity, viral escape including protection of conserved neutralising epitopes and suboptimal efficacy of HCV cell culture systems. We developed cell culture-based inactivated genotype 1-3 HCV vaccine candidates to present natively folded envelope proteins to elicit neutralising antibodies. DESIGN High-yield genotype 1a, 2a and 3a HCV were developed by serial passage of TNcc, J6cc and DBN3acc in Huh7.5 cells and engineering of acquired mutations detected by next-generation sequencing. Neutralising epitope exposure was determined in cell-based neutralisation assays using human monoclonal antibodies AR3A and AR4A, and polyclonal antibody C211. BALB/c mice were immunised with processed and inactivated genotype 1a, 2a or 3a viruses using AddaVax, a homologue of the licenced adjuvant MF-59. Purified mouse and patient serum IgG were assayed for neutralisation capacity; mouse IgG and immune-sera were assayed for E1/E2 binding. RESULTS Compared with the original viruses, high-yield viruses had up to ~1000 fold increased infectivity titres (peak titres: 6-7 log10 focus-forming units (FFU)/mL) and up to ~2470 fold increased exposure of conserved neutralising epitopes. Vaccine-induced IgG broadly neutralised genotype 1-6 HCV (EC50: 30-193 µg/mL; mean 71 µg/mL), compared favourably with IgG from chronically infected patients, and bound genotype 1-3 E1/E2; immune-sera endpoint titres reached up to 32 000. CONCLUSION High-yield genotype 1-3 HCV could be developed as basis for inactivated vaccine candidates inducing broadly neutralising antibodies in mice supporting further preclinical development.
Collapse
Affiliation(s)
- Garazi Pena Alzua
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Finne Pihl
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carlos Rene Duarte Hernandez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zhe Duan
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shan Feng
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Sølund
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Jannick C Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Pravsgaard Christensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Judith Margarete Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital-Hvidovre, Hvidovre, Denmark and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Abstract
Hepatitis C virus (HCV) infection contributes significantly to liver cirrhosis and hepatocellular carcinoma (HCC), often requiring liver transplantation. Introducing direct-acting antiviral agents (DAAs) has radically changed HCV treatment. DAAs achieve high rates of sustained virological response (>98%). Even then, resistant-associated substitution and HCC during or after treatment have become prominent clinical concerns. Further, several clinically significant issues remain unresolved after successful HCV eradication by DAAs, including treating patients with chronic kidney disease or decompensated liver cirrhosis. Extensive and large-scale screening and treatment implementation programs are needed to make DAA therapies effective at the population level.
Collapse
|
29
|
Mechanisms and Consequences of Genetic Variation in Hepatitis C Virus (HCV). Curr Top Microbiol Immunol 2023; 439:237-264. [PMID: 36592248 DOI: 10.1007/978-3-031-15640-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chronic infection with hepatitis C virus (HCV) is an important contributor to the global incidence of liver diseases, including liver cirrhosis and hepatocellular carcinoma. Although common for single-stranded RNA viruses, HCV displays a remarkable high level of genetic diversity, produced primarily by the error-prone viral polymerase and host immune pressure. The high genetic heterogeneity of HCV has led to the evolution of several distinct genotypes and subtypes, with important consequences for pathogenesis, and clinical outcomes. Genetic variability constitutes an evasion mechanism against immune suppression, allowing the virus to evolve epitope escape mutants that avoid immune recognition. Thus, heterogeneity and variability of the HCV genome represent a great hindrance for the development of vaccines against HCV. In addition, the high genetic plasticity of HCV allows the virus to rapidly develop antiviral resistance mutations, leading to treatment failure and potentially representing a major hindrance for the cure of chronic HCV patients. In this chapter, we will present the central role that genetic diversity has in the viral life cycle and epidemiology of HCV. Incorporation errors and recombination, both the result of HCV polymerase activity, represent the main mechanisms of HCV evolution. The molecular details of both mechanisms have been only partially clarified and will be presented in the following sections. Finally, we will discuss the major consequences of HCV genetic diversity, namely its capacity to rapidly evolve antiviral and immunological escape variants that represent an important limitation for clearance of acute HCV, for treatment of chronic hepatitis C and for broadly protective vaccines.
Collapse
|
30
|
A single mutation in the E2 glycoprotein of hepatitis C virus broadens the claudin specificity for its infection. Sci Rep 2022; 12:20243. [PMID: 36424447 PMCID: PMC9691748 DOI: 10.1038/s41598-022-23824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Entry of the hepatitis C virus (HCV) into host cells is a multistep process mediated by several host factors, including a tight junction protein claudin-1 (CLDN1). We repeatedly passaged HCV-JFH1-tau, an HCV substrain with higher infectivity, on Huh7.5.1-8 cells. A multi-passaged HCV-JFH1-tau lot was infectious to CLDN1-defective S7-A cells, non-permissive to original HCV-JFH1-tau infection. We identified a single mutation, M706L, in the E2 glycoprotein of the HCV-JFH1-tau lot as an essential mutation for infectivity to S7-A cells. The pseudovirus JFH1/M706L mutant could not infect human embryonic kidney 293 T (HEK293T) cells lacking CLDN family but infected HEK293T cells expressing CLDN1, CLDN6, or CLDN9. Thus, this mutant virus could utilize CLDN1, and other CLDN6 and CLDN9, making HCV possible to infect cells other than hepatocytes. iPS cells, one of the stem cells, do not express CLDN1 but express CLDN6 and other host factors required for HCV infection. We confirmed that the HCV-JFH1-tau-derived mutant with an M706L mutation infected iPS cells in a CLDN6-dependent manner. These results demonstrated that a missense mutation in E2 could broaden the CLDN member specificity for HCV infection. HCV may change its receptor requirement through a single amino acid mutation and infect non-hepatic cells.
Collapse
|
31
|
Pham LV, Velázquez-Moctezuma R, Fahnøe U, Collignon L, Bajpai P, Sølund C, Weis N, Holmbeck K, Prentoe J, Bukh J. Novel HCV Genotype 4d Infectious Systems and Assessment of Direct-Acting Antivirals and Antibody Neutralization. Viruses 2022; 14:2527. [PMID: 36423136 PMCID: PMC9698709 DOI: 10.3390/v14112527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatitis C virus (HCV) genotype 4 is highly prevalent in the Middle East and parts of Africa. Subtype 4d has recently spread among high-risk groups in Europe. However, 4d infectious culture systems are not available, hampering studies of drugs, as well as neutralizing antibodies relevant for HCV vaccine development. We determined the consensus 4d sequence from a chronic hepatitis C patient by next-generation sequencing, generated a full-length clone thereof (pDH13), and demonstrated that pDH13 RNA-transcripts were viable in the human-liver chimeric mouse model, but not in Huh7.5 cells. However, a JFH1-based DH13 Core-NS5A 4d clone encoding A1671S, T1785V, and D2411G was viable in Huh7.5 cells, with efficient growth after inclusion of 10 additional substitutions [4d(C5A)-13m]. The efficacies of NS3/4A protease- and NS5A- inhibitors against genotypes 4a and 4d were similar, except for ledipasvir, which is less potent against 4d. Compared to 4a, the 4d(C5A)-13m virus was more sensitive to neutralizing monoclonal antibodies AR3A and AR5A, as well as 4a and 4d patient plasma antibodies. In conclusion, we developed the first genotype 4d infectious culture system enabling DAA efficacy testing and antibody neutralization assessment critical to optimization of DAA treatments in the clinic and for vaccine design to combat the HCV epidemic.
Collapse
Affiliation(s)
- Long V. Pham
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Rodrigo Velázquez-Moctezuma
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Laura Collignon
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Priyanka Bajpai
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Christina Sølund
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, DK-2650 Hvidovre, Denmark
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, DK-2650 Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kenn Holmbeck
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
32
|
Prentoe J, Janitzek CM, Velázquez-Moctezuma R, Soerensen A, Jørgensen T, Clemmensen S, Soroka V, Thrane S, Theander T, Nielsen MA, Salanti A, Bukh J, Sander AF. Two-component vaccine consisting of virus-like particles displaying hepatitis C virus envelope protein 2 oligomers. NPJ Vaccines 2022; 7:148. [DOI: 10.1038/s41541-022-00570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractDevelopment of B-cell-based hepatitis C virus (HCV) vaccines that induce broadly neutralizing antibodies (bNAbs) is hindered by extensive sequence diversity and low immunogenicity of envelope glycoprotein vaccine candidates, most notably soluble E2 (sE2). To overcome this, we employed two-component approaches using self-assembling virus-like particles (cVLPs; component 1), displaying monomeric or oligomeric forms of HCV sE2 (sE2mono or sE2oligo; component 2). Immunization studies were performed in BALB/c mice and the neutralizing capacity of vaccine-induced antibodies was tested in cultured-virus-neutralizations, using HCV of genotypes 1–6. sE2-cVLP vaccines induced significantly higher levels of NAbs (p = 0.0065) compared to corresponding sE2 vaccines. Additionally, sE2oligo-cVLP was superior to sE2mono-cVLP in inducing bNAbs. Interestingly, human monoclonal antibody AR2A had reduced binding in ELISA to sE2oligo-cVLP compared with sE2mono-cVLP and competition ELISA using mouse sera from vaccinated animals indicated that sE2oligo-cVLP induced significantly less non-bNAbs AR2A (p = 0.0043) and AR1B (p = 0.017). Thus, cVLP-displayed oligomeric sE2 shows promise as an HCV vaccine candidate.
Collapse
|
33
|
Kori M, Arga KY. Human oncogenic viruses: an overview of protein biomarkers in viral cancers and their potential use in clinics. Expert Rev Anticancer Ther 2022; 22:1211-1224. [PMID: 36270027 DOI: 10.1080/14737140.2022.2139681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Although the idea that carcinogenesis might be caused by viruses was first voiced about 100 years ago, today's data disappointingly show that we have not made much progress in preventing and/or treating viral cancers in a century. According to recent studies, infections are responsible for approximately 13% of cancer development in the world. Today, it is accepted and proven by many authorities that Epstein-Barr virus (EBV), Hepatitis B virus (HBV), Hepatitis C virus (HCV), Human Herpesvirus 8 (HHV8), Human T-cell Lymphotropic virus 1 (HTLV1) and highly oncogenic Human Papillomaviruses (HPVs) cause or/and contribute to cancer development in humans. AREAS COVERED Considering the insufficient prevention and/or treatment strategies for viral cancers, in this review we present the current knowledge on protein biomarkers of oncogenic viruses. In addition, we aimed to decipher their potential for clinical use by evaluating whether the proposed biomarkers are expressed in body fluids, are druggable, and act as tumor suppressors or oncoproteins. EXPERT OPINION Consequently, we believe that this review will shed light on researchers and provide a guide to find remarkable solutions for the prevention and/or treatment of viral cancers.
Collapse
Affiliation(s)
- Medi Kori
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey.,Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Istanbul, Turkey
| |
Collapse
|
34
|
High dose of bile acid enables the cellular entry and replication of hepatitis C virus in vitro. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
De Francesco MA, Gargiulo F, Zaltron S, Spinetti A, Castelli F, Caruso A. DAA Treatment Failure in a HIV/HBV/HCV Co-Infected Patient Carrying a Chimeric HCV Genotype 4/1b. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11655. [PMID: 36141921 PMCID: PMC9517502 DOI: 10.3390/ijerph191811655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Approved direct antiviral agent (DAA) combinations are associated with high rates of sustained virological response (SVR) and the absence of a detectable hepatitis C viral load 12-24 weeks after treatment discontinuation. However, a low percentage of individuals fail DAA therapy. Here, we report the case of a HIV/HBV/HCV co-infected patient who failed to respond to DAA pangenotypic combination therapy. The sequencing of NS5a, NS5b, NS3 and core regions evidenced a recombinant intergenotypic strain 4/1b with a recombination crossover point located inside the NS3 region. The identification of this natural recombinant virus underlines the concept that HCV recombination, even if it occurs rarely, may play a key role in the virus fitness and evolution.
Collapse
Affiliation(s)
- Maria Antonia De Francesco
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia ASST Spedali Civili, 25123 Brescia, Italy
| | - Franco Gargiulo
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia ASST Spedali Civili, 25123 Brescia, Italy
| | - Serena Zaltron
- Division of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili, 25123 Brescia, Italy
| | - Angiola Spinetti
- Division of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili, 25123 Brescia, Italy
| | - Francesco Castelli
- Division of Infectious and Tropical Diseases, Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili, 25123 Brescia, Italy
| | - Arnaldo Caruso
- Institute of Microbiology, Department of Molecular and Translational Medicine, University of Brescia ASST Spedali Civili, 25123 Brescia, Italy
| |
Collapse
|
36
|
Ghamar Talepoor A, Doroudchi M. Immunosenescence in atherosclerosis: A role for chronic viral infections. Front Immunol 2022; 13:945016. [PMID: 36059478 PMCID: PMC9428721 DOI: 10.3389/fimmu.2022.945016] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023] Open
Abstract
Immune system is a versatile and dynamic body organ which offers survival and endurance of human beings in their hostile living environment. However, similar to other cells, immune cells are hijacked by senescence. The ageing immune cells lose their beneficial functions but continue to produce inflammatory mediators which draw other immune and non-immune cells to the senescence loop. Immunosenescence has been shown to be associated with different pathological conditions and diseases, among which atherosclerosis has recently come to light. There are common drivers of both immunosenescence and atherosclerosis; e.g. inflammation, reactive oxygen species (ROS), chronic viral infections, genomic damage, oxidized-LDL, hypertension, cigarette smoke, hyperglycaemia, and mitochondrial failure. Chronic viral infections induce inflammaging, sustained cytokine signaling, ROS generation and DNA damage which are associated with atherogenesis. Accumulating evidence shows that several DNA and RNA viruses are stimulators of immunosenescence and atherosclerosis in an interrelated network. DNA viruses such as CMV, EBV and HBV upregulate p16, p21 and p53 senescence-associated molecules; induce inflammaging, metabolic reprogramming of infected cells, replicative senescence and telomere shortening. RNA viruses such as HCV and HIV induce ROS generation, DNA damage, induction of senescence-associated secretory phenotype (SASP), metabolic reprogramming of infected cells, G1 cell cycle arrest, telomere shortening, as well as epigenetic modifications of DNA and histones. The newly emerged SARS-CoV-2 virus is also a potent inducer of cytokine storm and SASP. The spike protein of SARS-CoV-2 promotes senescence phenotype in endothelial cells by augmenting p16, p21, senescence-associated β-galactosidase (SA-β-Gal) and adhesion molecules expression. The impact of SARS-CoV-2 mega-inflammation on atherogenesis, however, remains to be investigated. In this review we focus on the common processes in immunosenescence and atherogenesis caused by chronic viral infections and discuss the current knowledge on this topic.
Collapse
|
37
|
Frumento N, Figueroa A, Wang T, Zahid MN, Wang S, Massaccesi G, Stavrakis G, Crowe JE, Flyak AI, Ji H, Ray SC, Shaw GM, Cox AL, Bailey JR. Repeated exposure to heterologous hepatitis C viruses associates with enhanced neutralizing antibody breadth and potency. J Clin Invest 2022; 132:e160058. [PMID: 35588376 PMCID: PMC9337827 DOI: 10.1172/jci160058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
A prophylactic hepatitis C virus (HCV) vaccine that elicits neutralizing antibodies could be key to HCV eradication. However, the genetic and antigenic properties of HCV envelope (E1E2) proteins capable of inducing anti-HCV broadly neutralizing antibodies (bNAbs) in humans have not been defined. Here, we investigated the development of bNAbs in longitudinal plasma of HCV-infected persons with persistent infection or spontaneous clearance of multiple reinfections. By measuring plasma antibody neutralization of a heterologous virus panel, we found that the breadth and potency of the antibody response increased upon exposure to multiple genetically distinct infections and with longer duration of viremia. Greater genetic divergence between infecting strains was not associated with enhanced neutralizing breadth. Rather, repeated exposure to antigenically related, antibody-sensitive E1E2s was associated with potent bNAb induction. These data reveal that a prime-boost vaccine strategy with genetically distinct, antibody-sensitive viruses is a promising approach to inducing potent bNAbs in humans.
Collapse
Affiliation(s)
| | | | - Tingchang Wang
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Muhammad N. Zahid
- University of Bahrain, Department of Biology, College of Science, Sakhir Campus, Bahrain
| | - Shuyi Wang
- Department of Medicine and
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - James E. Crowe
- Department of Pathology, Microbiology and Immunology
- Department of Pediatrics, and
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Andrew I. Flyak
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - George M. Shaw
- Department of Medicine and
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
38
|
Rajasekar SP, Pitchaimani M, Zhu Q. Probing a Stochastic Epidemic Hepatitis C Virus Model with a Chronically Infected Treated Population. ACTA MATHEMATICA SCIENTIA = SHU XUE WU LI XUE BAO 2022; 42:2087-2112. [PMID: 35911571 PMCID: PMC9310688 DOI: 10.1007/s10473-022-0521-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The hepatitis C virus is hitherto a tremendous threat to human beings, but many researchers have analyzed mathematical models for hepatitis C virus transmission dynamics only in the deterministic case. Stochasticity plays an immense role in pathology and epidemiology. Hence, the main theme of this article is to investigate a stochastic epidemic hepatitis C virus model with five states of epidemiological classification: susceptible, acutely infected, chronically infected, recovered or removed and chronically infected, and treated. The stochastic hepatitis C virus model in epidemiology is established based on the environmental influence on individuals, is manifested by stochastic perturbations, and is proportional to each state. We assert that the stochastic HCV model has a unique global positive solution and attains sufficient conditions for the extinction of the hepatotropic RNA virus. Furthermore, by constructing a suitable Lyapunov function, we obtain sufficient conditions for the existence of an ergodic stationary distribution of the solutions to the stochastic HCV model. Moreover, this article confirms that using numerical simulations, the six parameters of the stochastic HCV model can have a high impact over the disease transmission dynamics, specifically the disease transmission rate, the rate of chronically infected population, the rate of progression to chronic infection, the treatment failure rate of chronically infected population, the recovery rate from chronic infection and the treatment rate of the chronically infected population. Eventually, numerical simulations validate the effectiveness of our theoretical conclusions.
Collapse
Affiliation(s)
- S. P. Rajasekar
- Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai, Tamil Nadu, 600 005 India
- Department of Mathematics, Government Arts College for Women, Nilakottai, Tamil Nadu, 624 202 India
| | - M. Pitchaimani
- Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai, Tamil Nadu, 600 005 India
| | - Quanxin Zhu
- CHP-LCOCS, School of Mathematics and Statistics, Hunan Normal University, Changsha, 410081 China
| |
Collapse
|
39
|
Yamauchi K, Sato M, Osawa L, Matsuda S, Komiyama Y, Nakakuki N, Takada H, Katoh R, Muraoka M, Suzuki Y, Tatsumi A, Miura M, Takano S, Amemiya F, Fukasawa M, Nakayama Y, Yamaguchi T, Inoue T, Maekawa S, Enomoto N. Analysis of direct-acting antiviral-resistant hepatitis C virus haplotype diversity by single-molecule and long-read sequencing. Hepatol Commun 2022; 6:1634-1651. [PMID: 35357088 PMCID: PMC9234623 DOI: 10.1002/hep4.1929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/08/2022] Open
Abstract
The method of analyzing individual resistant hepatitis C virus (HCV) by a combination of haplotyping and resistance-associated substitution (RAS) has not been fully elucidated because conventional sequencing has only yielded short and fragmented viral genomes. We performed haplotype analysis of HCV mutations in 12 asunaprevir/daclatasvir treatment-failure cases using the Oxford Nanopore sequencer. This enabled single-molecule long-read sequencing using rolling circle amplification (RCA) for correction of the sequencing error. RCA of the circularized reverse-transcription polymerase chain reaction products successfully produced DNA longer than 30 kilobase pairs (kb) containing multiple tandem repeats of a target 3 kb HCV genome. The long-read sequencing of these RCA products could determine the original sequence of the target single molecule as the consensus nucleotide sequence of the tandem repeats and revealed the presence of multiple viral haplotypes with the combination of various mutations in each host. In addition to already known signature RASs, such as NS3-D168 and NS5A-L31/Y93, there were various RASs specific to a different haplotype after treatment failure. The distribution of viral haplotype changed over time; some haplotypes disappeared without acquiring resistant mutations, and other haplotypes, which were not observed before treatment, appeared after treatment. Conclusion: The combination of various mutations other than the known signature RAS was suggested to influence the kinetics of individual HCV quasispecies in the direct-acting antiviral treatment. HCV haplotype dynamic analysis will provide novel information on the role of HCV diversity within the host, which will be useful for elucidating the pathological mechanism of HCV-related diseases.
Collapse
Affiliation(s)
- Kozue Yamauchi
- Department of Gastroenterology and HepatologyFaculty of MedicineUniversity of YamanashiYamanashiJapan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Salama II, Raslan HM, Abdel-Latif GA, Salama SI, Sami SM, Shaaban FA, Abdelmohsen AM, Fouad WA. Impact of direct-acting antiviral regimens on hepatic and extrahepatic manifestations of hepatitis C virus infection. World J Hepatol 2022; 14:1053-1073. [PMID: 35978668 PMCID: PMC9258264 DOI: 10.4254/wjh.v14.i6.1053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/01/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a common cause of liver disease and is associated with various extrahepatic manifestations (EHMs). This mini-review outlines the currently available treatments for HCV infection and their prognostic effect on hepatic manifestations and EHMs. Direct-acting antiviral (DAA) regimens are considered pan-genotypic as they achieve a sustained virological response (SVR) > 85% after 12 wk through all the major HCV genotypes, with high percentages of SVR even in advanced fibrosis and cirrhosis. The risk factors for DAA failure include old males, cirrhosis, and the presence of resistance-associated substitutions (RAS) in the region targeted by the received DAAs. The effectiveness of DAA regimens is reduced in HCV genotype 3 with baseline RAS like A30K, Y93H, and P53del. Moreover, the European Association for the Study of the Liver recommended the identification of baseline RAS for HCV genotype 1a. The higher rate of hepatocellular carcinoma (HCC) after DAA therapy may be related to the fact that DAA regimens are offered to patients with advanced liver fibrosis and cirrhosis, where interferon was contraindicated to those patients. The change in the growth of pre-existing subclinical, undetectable HCC upon DAA treatment might be also a cause. Furthermore, after DAA therapy, the T cell-dependent immune response is much weaker upon HCV clearance, and the down-regulation of TNF-α or the elevated neutrophil to lymphocyte ratio might increase the risk of HCC. DAAs can result in reactivation of hepatitis B virus (HBV) in HCV co-infected patients. DAAs are effective in treating HCV-associated mixed cryoglobulinemia, with clinical and immunological responses, and have rapid and high effectiveness in thrombocytopenia. DAAs improve insulin resistance in 90% of patients, increase glomerular filtration rate, and decrease proteinuria, hematuria and articular manifestations. HCV clearance by DAAs allows a significant improvement in atherosclerosis and metabolic and immunological conditions, with a reduction of major cardiovascular events. They also improve physical function, fatigue, cognitive impairment, and quality of life. Early therapeutic approach with DAAs is recommended as it cure many of the EHMs that are still in a reversible stage and can prevent others that can develop due to delayed treatment.
Collapse
Affiliation(s)
- Iman Ibrahim Salama
- Department of Community Medicine Research, National Research Center, Giza 12622, Dokki, Egypt
| | - Hala M Raslan
- Department of Internal Medicine, National Research Center, Giza 12622, Dokki, Egypt
| | - Ghada A Abdel-Latif
- Department of Community Medicine Research, National Research Center, Giza 12622, Dokki, Egypt
| | - Somaia I Salama
- Department of Community Medicine Research, National Research Center, Giza 12622, Dokki, Egypt
| | - Samia M Sami
- Department of Child Health, National Research Center, Giza 12622, Dokki, Egypt
| | - Fatma A Shaaban
- Department of Child Health, National Research Center, Giza 12622, Dokki, Egypt
| | - Aida M Abdelmohsen
- Department of Community Medicine Research, National Research Center, Giza 12622, Dokki, Egypt
| | - Walaa A Fouad
- Department of Community Medicine Research, National Research Center, Giza 12622, Dokki, Egypt
| |
Collapse
|
41
|
Wang Y, Li Y, Liang X, Xin S, Yang L, Cao P, Jiang M, Xin Y, Zhang S, Yang Y, Lu J. The implications of cell-free DNAs derived from tumor viruses as biomarkers of associated cancers. J Med Virol 2022; 94:4677-4688. [PMID: 35652186 DOI: 10.1002/jmv.27903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022]
Abstract
Cancer is still ranked as a leading cause of death according to estimates from the World Health Organization (WHO) and the strong link between tumor viruses and human cancers have been proved for almost six decades. Cell-free DNA (cfDNA) has drawn enormous attention for its dynamic, instant, and noninvasive advantages as one popular type of cancer biomarker. cfDNAs are mainly released from apoptotic cells and exosomes released from cancer cells, including those infected with viruses. Although cfDNAs are present at low concentrations in peripheral blood, they can reflect tumor load with high sensitivity. Considering the relevance of the tumor viruses to the associated cancers, cfDNAs derived from viruses may serve as good biomarkers for the early screening, diagnosis, and treatment monitoring. In this review, we summarize the methods and newly developed analytic techniques for the detection of cfDNAs from different body fluids, and discuss the implications of cfDNAs derived from different tumor viruses in the detection and treatment monitoring of virus-associated cancers. A better understanding of cfDNAs derived from tumor viruses may help formulate novel anti-tumoral strategies to decrease the burden of cancers that attributed to viruses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yiwei Wang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Yanling Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Xinyu Liang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Shuyu Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Li Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Pengfei Cao
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China
| | - Mingjuan Jiang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Yujie Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Senmiao Zhang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Yang Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Jianhong Lu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| |
Collapse
|
42
|
Cai D, Liu L, Tian B, Fu X, Yang Q, Chen J, Zhang Y, Fang J, Shen L, Wang Y, Gou L, Zuo Z. Dual-Role Ubiquitination Regulation Shuttling the Entire Life Cycle of the Flaviviridae. Front Microbiol 2022; 13:835344. [PMID: 35602051 PMCID: PMC9120866 DOI: 10.3389/fmicb.2022.835344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Ubiquitination is a reversible protein post-translational modification that regulates various pivotal physiological and pathological processes in all eukaryotes. Recently, the antiviral immune response is enhanced by the regulation of ubiquitination. Intriguingly, Flaviviridae viruses can ingeniously hijack the ubiquitination system to help them survive, which has become a hot topic among worldwide researchers. The Flaviviridae family members, such as HCV and CSFV, can cause serious diseases of humans and animals around the world. The multiple roles of ubiquitination involved in the life cycle of Flaviviridae family would open new sight for future development of antiviral tactic. Here, we discuss recent advances with regard to functional roles of ubiquitination and some ubiquitin-like modifications in the life cycle of Flaviviridae infection, shedding new light on the antiviral mechanism research and therapeutic drug development.
Collapse
Affiliation(s)
- Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lingli Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingxin Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiyuan Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jie Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yilin Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Laboratory of Animal Disease Prevention and Control Center, Agriculture and Rural Affairs Bureau of Luoping County, Luoping, China
| | - Jing Fang
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuhong Shen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Zhicai Zuo,
| |
Collapse
|
43
|
Hagag RS, Fakhry MM, Ahmed OA, Abdalgeleel SA, Radwan MA, Naguib GG. Assessment of efficacy and safety of two Egyptian protocols for treatment-experienced HCV patients: an observational study. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2022. [DOI: 10.1186/s43162-022-00126-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The devastating adverse effects of interferon (IFN) for the treatment of hepatitis C virus (HCV) lead to the emerging of direct acting antiviral agents (DAAs). This investigation was undertaken to assess safety and efficacy of two Egyptian DAA protocols for HCV: sofosbuvir (SOF)/daclatasvir (DCV)/simeprevir (SMV)/ribavirin (RBV) and sofosbuvir (SOF)/ombitasvir (OMB)/paritaprevir (PTV)/ritonavir (RTV)/RBV for 12 weeks in treatment-experienced HCV Egyptian patients.
Methods
It is a retrospective study where 139 patients, out of 400 patients, were divided according to their documented treatment protocol into two groups (Gp1: SOF/DCV/SMV/RBV and Gp2: SOF/PTV/OMB/RTV/RBV). All patients’ physical examination, disease history, laboratory baseline, and end of treatment data were collected from their profiles, evaluated and compared.
Results
Gp1 and Gp2 regimens had achieved sustained virologic response rates (SVR12) of 96.6% and 95.1%, respectively. Hemoglobin, ALT, and AST had decreased significantly (P < 0.05) in the two groups. Total bilirubin level had increased significantly in Gp1 and Gp2 (P = 0.002 and < 0.001, respectively). Creatinine level had increased significantly (P = 0.002) in Gp1 at end of treatment, while Gp2 remained unchanged. Headache and fatigue were the most common side effects in both protocols.
Conclusions
SOF/DCV/SMV/RBV and SOF/PTV/OMB/RTV/RBV regimens achieved high similar efficacy in Egyptian treatment-experienced HCV patients. Even though the outcome was with tolerable side effects, a better treatment regimen was recommended to abate these side effects for the welfare of Egyptian HCV patients.
Collapse
|
44
|
Pihl AF, Feng S, Offersgaard A, Alzua GP, Augestad EH, Mathiesen CK, Jensen TB, Krarup H, Law M, Prentoe J, Christensen JP, Bukh J, Gottwein JM. Inactivated whole hepatitis C virus vaccine employing a licensed adjuvant elicits cross-genotype neutralizing antibodies in mice. J Hepatol 2022; 76:1051-1061. [PMID: 34990750 DOI: 10.1016/j.jhep.2021.12.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/26/2021] [Accepted: 12/22/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS A prophylactic vaccine is required to eliminate HCV as a global public health threat. We developed whole virus inactivated HCV vaccine candidates employing a licensed adjuvant. Further, we investigated the effects of HCV envelope protein modifications (to increase neutralization epitope exposure) on immunogenicity. METHODS Whole virus vaccine antigen was produced in Huh7.5 hepatoma cells, processed using a multistep protocol and formulated with adjuvant (MF-59 analogue AddaVax or aluminium hydroxide). We investigated the capacity of IgG purified from the serum of immunized BALB/c mice to neutralize genotype 1-6 HCV (by virus neutralization assays) and to bind homologous envelope proteins (by ELISA). Viruses used for immunizations were (i) HCV5aHi with strain SA13 envelope proteins and modification of an O-linked glycosylation site in E2 (T385P), (ii) HCV5aHi(T385) with reversion of T385P to T385, featuring the original E2 sequence determined in vivo and (iii) HCV5aHi(ΔHVR1) with deletion of HVR1. For these viruses, epitope exposure was investigated using human monoclonal (AR3A and AR4A) and polyclonal (C211 and H06) antibodies in neutralization assays. RESULTS Processed HCV5aHi formulated with AddaVax induced antibodies that efficiently bound homologous envelope proteins and broadly neutralized cultured genotype 1-6 HCV, with half maximal inhibitory concentrations of between 14 and 192 μg/ml (mean of 36 μg/ml against the homologous virus). Vaccination with aluminium hydroxide was less immunogenic. Compared to HCV5aHi(T385) with the original E2 sequence, HCV5aHi with a modified glycosylation site and HCV5aHi(ΔHVR1) without HVR1 showed increased neutralization epitope exposure but similar immunogenicity. CONCLUSION Using an adjuvant suitable for human use, we developed inactivated whole HCV vaccine candidates that induced broadly neutralizing antibodies, which warrant investigation in further pre-clinical studies. LAY SUMMARY A vaccine against hepatitis C virus (HCV) is needed to prevent the estimated 2 million new infections and 400,000 deaths caused by this virus each year. We developed inactivated whole HCV vaccine candidates using adjuvants licensed for human use, which, following immunization of mice, induced antibodies that efficiently neutralized all HCV genotypes with recognized epidemiological importance. HCV variants with modified envelope proteins exhibited similar immunogenicity as the virus with the original envelope proteins.
Collapse
Affiliation(s)
- Anne Finne Pihl
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Shan Feng
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Garazi Peña Alzua
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Elias Honerød Augestad
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Christian Kjaerulff Mathiesen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Tanja Bertelsen Jensen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Henrik Krarup
- Department of Molecular Diagnostics, Aalborg University Hospital and Clinical Institute, Aalborg University, Aalborg, Denmark
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jan Pravsgaard Christensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Judith Margarete Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre, and Department of Immunology and Microbiolgy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
45
|
Binding of GS-461203 and Its Halogen Derivatives to HCV Genotype 2a RNA Polymerase Drug Resistance Mutants. Sci Pharm 2022. [DOI: 10.3390/scipharm90020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Hepatitis C Virus (HCV) is reported to develop GS-461203 resistance because of multiple mutations within the RNA-dependent RNA Polymerase (RdRp) of HCV. The lack of a high-resolution structure of these RdRp mutants in complex with GS-461203 hinders efforts to understand the drug resistance. Here we decipher the binding differences of GS-461203 in the wild type and mutated systems T179A or M289L of HCV RdRp Genotype 2a using homology modeling, molecular docking, and molecular dynamics simulation. Key residues responsible for GS-461203 binding were identified to be Arg48, Arg158, Asp318, Asp319, and Asp220, and that mutations T179A or M289L have caused conformational changes of GS-461203 in the RdRp active site. The affinities of GS-461203 were reduced in T179A system, but it became slightly stronger in the M289L system. Furthermore, we designed two new analogues of GS-461203 which encouragingly induced more stable interactions than GS-461203, and thus resulted in much better binding energies. This present study reveals how a single mutation, T179A or M289L, will modulate GS-461203 binding in HCV RdRp Genotype 2a, while introducing two novel analogues to overcome the drug resistance which may be good candidate for further experimental verification.
Collapse
|
46
|
Sun HY, Cheng CY, Lin CY, Yang CJ, Lee NY, Liou BH, Tang HJ, Liu YM, Lee CY, Chen TC, Huang YC, Lee YT, Tsai MJ, Lu PL, Tsai HC, Wang NC, Hung TC, Cheng SH, Hung CC. Real-world effectiveness of direct-acting antivirals in people living with human immunodeficiency virus and hepatitis C virus genotype 6 infections. World J Gastroenterol 2022; 28:1172-1183. [PMID: 35431505 PMCID: PMC8985481 DOI: 10.3748/wjg.v28.i11.1172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/26/2021] [Accepted: 01/29/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) genotype 6 (HCV-6) infection is prevalent predominantly in Southeast Asia, and the data on the virologic response of HCV-6 to direct-acting antivirals (DAAs) are sparse in people living with human immunodeficiency virus (HIV) (PLWH).
AIM To assess the virologic response of HCV-6 to DAAs in PLWH.
METHODS From September 2016 to July 2019, PLWH coinfected with HCV-6 initiating DAAs were included. Laboratory investigations were performed at baseline, the end of treatment, and 12 wk off-therapy.
RESULTS Of the 349 PLWH included (mean age 48.9 years, 82.5% men), 80.5% comprised people who inject drugs, 18.1% men who have sex with men, and 1.4% heterosexuals. Coexistent hepatitis B virus infection was present in 12.3% of the included PLWH, liver cirrhosis 10.9%, hepatocellular carcinoma 0.9%, and previous HCV treatment experience 10.9%. The mean baseline plasma HCV RNA was 6.2 log10 IU/mL. Treatment with glecaprevir/pibrentasvir was initiated in 51.9%, sofosbuvir/ledipasvir 41.5%, sofosbuvir/velpatasvir 6.3%, and sofosbuvir/daclatasvir 0.3%. At DAA initiation, antiretroviral therapy containing tenofovir alafenamide was given in 26.4%, tenofovir disoproxil fumarate 34.4%, non-tenofovir alafenamide/tenofovir disoproxil fumarate 39.3%, non-nucleoside reverse-transcriptase inhibitors 30.4%, protease inhibitors 4.0%, and integrase strand transfer inhibitors 66.8%; 94.8% of the included patients had CD4 counts ≥ 200 cells/mm3 and 96.0% had plasma HIV RNA < 50 copies/mL. Overall, 96.8% achieved undetectable plasma HCV RNA (< 30 IU/mL) at end of treatment; and 92.3% achieved sustained virologic response 12 wk off-therapy in the intention-to-treat analysis (93.5% in patients receiving sofosbuvir-based DAAs and 91.2% in those receiving glecaprevir/pibrentasvir).
CONCLUSION Similar to the observation made in HIV-negative patients, sustained virologic response 12 wk off-therapy with DAAs is high in PLWH coinfected with HCV-6.
Collapse
Affiliation(s)
- Hsin-Yun Sun
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100225, Taiwan
| | - Chien-Yu Cheng
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330215, Taiwan
- School of Public Health, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chi-Ying Lin
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin County 640203, Taiwan
| | - Chia-Jui Yang
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Nan-Yao Lee
- Department of Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704302, Taiwan
| | - Bo-Huang Liou
- Department of Internal Medicine, Hsinchu MacKay Memorial Hospital, Hsin-Chu 300044, Taiwan
| | - Hung-Jen Tang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan 710402, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Sciences, Tainan 717301, Taiwan
| | - Yuang-Meng Liu
- Department of Internal Medicine, Changhua Christian Hospital, Changhua 500209, Taiwan
| | - Chun-Yuan Lee
- Department of Internal Medicine, Kaohsiung Medical University Hospital and College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Tun-Chieh Chen
- Department of Internal Medicine, Kaohsiung Medical University Hospital and College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801735, Taiwan
| | - Yi-Chia Huang
- Department of Internal Medicine, National Taiwan University Hospital Biomedical Park Branch, Hsin-Chu 302058, Taiwan
| | - Yuan-Ti Lee
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan
| | - Ming-Jui Tsai
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin County 640203, Taiwan
| | - Po-Liang Lu
- Department of Internal Medicine, Kaohsiung Medical University Hospital and College of Medicine, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
| | - Hung-Chin Tsai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| | - Ning-Chi Wang
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Tung-Che Hung
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi 600566, Taiwan
| | - Shu-Hsing Cheng
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330215, Taiwan
- School of Public Health, Taipei Medical University, Taipei 110301, Taiwan
| | - Chien-Ching Hung
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100225, Taiwan
- Department of Tropical Medicine and Parasitology, National Taiwan University College of Medicine, Taipei 100233, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, 404332, Taiwan
- China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
47
|
Four Weeks Treatment with Glecaprevir/Pibrentasvir + Ribavirin-A Randomized Controlled Clinical Trial. Viruses 2022; 14:v14030614. [PMID: 35337021 PMCID: PMC8948928 DOI: 10.3390/v14030614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 01/25/2023] Open
Abstract
Enhancing treatment uptake for hepatitis C to achieve the elimination goals set by the World Health Organization could be achieved by reducing the treatment duration. The aim of this study was to compare the sustained virological response at week 12 (SVR12) after four weeks of glecaprevir/pibrentasvir (GLE/PIB) + ribavirin compared to eight weeks of GLE/PIB and to estimate predictors for SVR12 with four weeks of treatment through a multicenter open label randomized controlled trial. Patients were randomized 2:1 (4 weeks:8 weeks) and stratified by genotype 3 and were treatment naïve of all genotypes and without significant liver fibrosis. A total of 27 patients were analyzed for predictors for SVR12, including 15 from the first pilot phase of the study. In the ‘modified intention to treat’ group, 100% (7/7) achieved cure after eight weeks and for patients treated for four weeks the SVR12 was 58.3% (7/12). However, patients with a baseline viral load <2 mill IU/mL had 93% SVR12. The study closed prematurely due to the low number of included patients due to the COVID-19 pandemic. Our results suggest that viral load should be taken into account when considering trials of short course treatment.
Collapse
|
48
|
Pham LV, Pedersen MS, Fahnøe U, Fernandez-Antunez C, Humes D, Schønning K, Ramirez S, Bukh J. HCV genome-wide analysis for development of efficient culture systems and unravelling of antiviral resistance in genotype 4. Gut 2022; 71:627-642. [PMID: 33833066 PMCID: PMC8862099 DOI: 10.1136/gutjnl-2020-323585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/17/2021] [Accepted: 02/03/2021] [Indexed: 01/14/2023]
Abstract
OBJECTIVE HCV-genotype 4 infections are a major cause of liver diseases in the Middle East/Africa with certain subtypes associated with increased risk of direct-acting antiviral (DAA) treatment failures. We aimed at developing infectious genotype 4 cell culture systems to understand the evolutionary genetic landscapes of antiviral resistance, which can help preserve the future efficacy of DAA-based therapy. DESIGN HCV recombinants were tested in liver-derived cells. Long-term coculture with DAAs served to induce antiviral-resistance phenotypes. Next-generation sequencing (NGS) of the entire HCV-coding sequence identified mutation networks. Resistance-associated substitutions (RAS) were studied using reverse-genetics. RESULT The in-vivo infectious ED43(4a) clone was adapted in Huh7.5 cells, using substitutions identified in ED43(Core-NS5A)/JFH1-chimeric viruses combined with selected NS5B-changes. NGS, and linkage analysis, permitted identification of multiple genetic branches emerging during culture adaptation, one of which had 31 substitutions leading to robust replication/propagation. Treatment of culture-adapted ED43 with nine clinically relevant protease-DAA, NS5A-DAA and NS5B-DAA led to complex dynamics of drug-target-specific RAS with coselection of genome-wide substitutions. Approved DAA combinations were efficient against the original virus, but not against variants with RAS in corresponding drug targets. However, retreatment with glecaprevir/pibrentasvir remained efficient against NS5A inhibitor and sofosbuvir resistant variants. Recombinants with specific RAS at NS3-156, NS5A-28, 30, 31 and 93 and NS5B-282 were viable, but NS3-A156M and NS5A-L30Δ (deletion) led to attenuated phenotypes. CONCLUSION Rapidly emerging complex evolutionary landscapes of mutations define the persistence of HCV-RASs conferring resistance levels leading to treatment failure in genotype 4. The high barrier to resistance of glecaprevir/pibrentasvir could prevent persistence and propagation of antiviral resistance.
Collapse
Affiliation(s)
- Long V. Pham
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Schou Pedersen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,Department of Clinical Microbiology, Hvidovre Hospital, Hvidovre, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carlota Fernandez-Antunez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daryl Humes
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Schønning
- Department of Clinical Microbiology, Hvidovre Hospital, Hvidovre, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
High-Titer Hepatitis C Virus Production in a Scalable Single-Use High Cell Density Bioreactor. Vaccines (Basel) 2022; 10:vaccines10020249. [PMID: 35214707 PMCID: PMC8880717 DOI: 10.3390/vaccines10020249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatitis C virus (HCV) infections pose a major public health burden due to high chronicity rates and associated morbidity and mortality. A vaccine protecting against chronic infection is not available but would be important for global control of HCV infections. In this study, cell culture-based HCV production was established in a packed-bed bioreactor (CelCradle™) aiming to further the development of an inactivated whole virus vaccine and to facilitate virological and immunological studies requiring large quantities of virus particles. HCV was produced in human hepatoma-derived Huh7.5 cells maintained in serum-free medium on days of virus harvesting. Highest virus yields were obtained when the culture was maintained with two medium exchanges per day. However, increasing the total number of cells in the culture vessel negatively impacted infectivity titers. Peak infectivity titers of up to 7.2 log10 focus forming units (FFU)/mL, accumulated virus yields of up to 5.9 × 1010 FFU, and a cell specific virus yield of up to 41 FFU/cell were obtained from one CelCradle™. CelCradle™-derived and T flask-derived virus had similar characteristics regarding neutralization sensitivity and buoyant density. This packed-bed tide-motion system is available with larger vessels and may thus be a promising platform for large-scale HCV production.
Collapse
|
50
|
Zephyr J, Nageswara Rao D, Vo SV, Henes M, Kosovrasti K, Matthew AN, Hedger AK, Timm J, Chan ET, Ali A, Kurt Yilmaz N, Schiffer CA. Deciphering the Molecular Mechanism of HCV Protease Inhibitor Fluorination as a General Approach to Avoid Drug Resistance. J Mol Biol 2022; 434:167503. [PMID: 35183560 PMCID: PMC9189784 DOI: 10.1016/j.jmb.2022.167503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
Abstract
Third generation Hepatitis C virus (HCV) NS3/4A protease inhibitors (PIs), glecaprevir and voxilaprevir, are highly effective across genotypes and against many resistant variants. Unlike earlier PIs, these compounds have fluorine substitutions on the P2-P4 macrocycle and P1 moieties. Fluorination has long been used in medicinal chemistry as a strategy to improve physicochemical properties and potency. However, the molecular basis by which fluorination improves potency and resistance profile of HCV NS3/4A PIs is not well understood. To systematically analyze the contribution of fluorine substitutions to inhibitor potency and resistance profile, we used a multi-disciplinary approach involving inhibitor design and synthesis, enzyme inhibition assays, co-crystallography, and structural analysis. A panel of inhibitors in matched pairs were designed with and without P4 cap fluorination, tested against WT protease and the D168A resistant variant, and a total of 22 high-resolution co-crystal structures were determined. While fluorination did not significantly improve potency against the WT protease, PIs with fluorinated P4 caps retained much better potency against the D168A protease variant. Detailed analysis of the co-crystal structures revealed that PIs with fluorinated P4 caps can sample alternate binding conformations that enable adapting to structural changes induced by the D168A substitution. Our results elucidate molecular mechanisms of fluorine-specific inhibitor interactions that can be leveraged in avoiding drug resistance.
Collapse
|