1
|
Li C, Gao D, Gao Y, Zhang R, Qu X, Li S, Xing C. NIR-II Regulation of Mitochondrial Potassium Channel with Dual-Targeted Conjugated Oligomer Nanoparticles for Efficient Cancer Theranostics In Vivo. Adv Healthc Mater 2023; 12:e2301954. [PMID: 37722719 DOI: 10.1002/adhm.202301954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/13/2023] [Indexed: 09/20/2023]
Abstract
Cell fate can be efficiently modulated by switching ion channels. However, the precise regulation of ion channels in cells, especially in specific organelles, remains challenging. Herein, biomimetic second near-infrared (NIR-II) responsive conjugated oligomer nanoparticles with dual-targeted properties are designed and prepared to modulate the ion channels of mitochondria to selectively kill malignant cells in vivo. Upon 1060 nm laser irradiation, the mitochondria-located nanoparticles photothermally release a specific ion inhibitor of the potassium channel via a temperature-sensitive liposome, thus altering the redox balance and pathways of mitochondria. NIR-II responsive nanoparticles can effectively regulate the potassium channels of mitochondria and fully suppress tumor growth. This work provides a new modality based on the NIR-II nanoplatform to regulate ion channels in specific organelles and proposes an effective therapeutic mechanism for malignant tumors.
Collapse
Affiliation(s)
- Chaoqun Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Dong Gao
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Yijian Gao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215000, P. R. China
| | - Ran Zhang
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Xiongwei Qu
- School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215000, P. R. China
| | - Chengfen Xing
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| |
Collapse
|
2
|
Fogarty MJ, Dasgupta D, Khurram OU, Sieck GC. Chemogenetic inhibition of TrkB signalling reduces phrenic motor neuron survival and size. Mol Cell Neurosci 2023; 125:103847. [PMID: 36958643 PMCID: PMC10247511 DOI: 10.1016/j.mcn.2023.103847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
Brain derived neurotrophic factor (BDNF) signalling through its high-affinity tropomyosin receptor kinase B (TrkB) is known to have potent effects on motor neuron survival and morphology during development and in neurodegenerative diseases. Here, we employed a novel 1NMPP1 sensitive TrkBF616 rat model to evaluate the effect of 14 days inhibition of TrkB signalling on phrenic motor neurons (PhMNs). Adult female and male TrkBF616 rats were divided into 1NMPP1 or vehicle treated groups. Three days prior to treatment, PhMNs in both groups were initially labeled via intrapleural injection of Alexa-Fluor-647 cholera toxin B (CTB). After 11 days of treatment, retrograde axonal uptake/transport was assessed by secondary labeling of PhMNs by intrapleural injection of Alexa-Fluor-488 CTB. After 14 days of treatment, the spinal cord was excised 100 μm thick spinal sections containing PhMNs were imaged using two-channel confocal microscopy. TrkB inhibition reduced the total number of PhMNs by ∼16 %, reduced the mean PhMN somal surface areas by ∼25 %, impaired CTB uptake 2.5-fold and reduced the estimated PhMN dendritic surface area by ∼38 %. We conclude that inhibition of TrkB signalling alone in adult TrkBF616 rats is sufficient to lead to PhMN loss, morphological degeneration and deficits in retrograde axonal uptake/transport.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Debanjali Dasgupta
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Obaid U Khurram
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
3
|
The Effect of 40-Hz White LED Therapy on Structure-Function of Brain Mitochondrial ATP-Sensitive Ca-Activated Large-Conductance Potassium Channel in Amyloid Beta Toxicity. Neurotox Res 2022; 40:1380-1392. [PMID: 36057039 DOI: 10.1007/s12640-022-00565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/07/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
Photobiomodulation therapy has become the focus of medical research in many areas such as Alzheimer's disease (AD), because of its modulatory effect on cellular processes through light energy absorption via photoreceptors/chromophores located in the mitochondria. However, there are still many questions around the underlying mechanisms. This study was carried out to unravel whether the function-structure of ATP-sensitive mitoBKCa channels, as crucial components for maintenance of mitochondrial homeostasis, can be altered subsequent to light therapy in AD. Induction of Aβ neurotoxicity in male Wistar rats was done by intracerebroventricular injection of Aβ1-42. After a week, light-treated rats were exposed to 40-Hz white light LEDs, 15 min for 7 days. Electrophysiological properties of mitoBKCa channel were investigated using a channel incorporated into the bilayer lipid membrane, and mitoBKCa-β2 subunit expression was determined using western blot analysis in Aβ-induced toxicity and light-treated rats. Our results describe that conductance and open probability (Po) of mitoBKCa channel decreased significantly and was accompanied by a Po curve rightward shift in mitochondrial preparation in Aβ-induced toxicity rats. We also showed a significant reduction in expression of mitoBKCa-β2 subunit, which is partly responsible for a leftward shift in BKCa Po curve in low calcium status. Interestingly, we provided evidence of a significant improvement in channel conductance and Po after light therapy. We also found that light therapy improved mitoBKCa-β2 subunit expression, increasing it close to saline group. The current study explains a light therapy improvement in brain mitoBKCa channel function in the Aβ-induced neurotoxicity rat model, an effect that can be linked to increased expression of β2 subunit.
Collapse
|
4
|
Goyal A, Agrawal N, Jain A, Gupta JK, Garabadu D. Role of caveolin-eNOS platform and mitochondrial ATP-sensitive potassium channel in abrogated cardioprotective effect of ischemic preconditioning in postmenopausal women. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
| | | | - Ankit Jain
- Dr. Hari Singh Gour Central University, India
| | | | | |
Collapse
|
5
|
Kampa RP, Sęk A, Szewczyk A, Bednarczyk P. Cytoprotective effects of the flavonoid quercetin by activating mitochondrial BK Ca channels in endothelial cells. Biomed Pharmacother 2021; 142:112039. [PMID: 34392086 DOI: 10.1016/j.biopha.2021.112039] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial potassium channels have been implicated in cytoprotective mechanisms. Activation of the mitochondrial large-conductance Ca2+-regulated potassium (mitoBKCa) channel is important for protecting brain tissue against stroke damage as well as heart tissue against ischemia damage. In this paper, we examine the effect of the natural flavonoid quercetin as an activator of the mitoBKCa channel. Quercetin has a beneficial effect on many processes in the human body and interacts with many receptors and signaling pathways. We found that quercetin acts on mitochondria as a mitoBKCa channel opener. The activation observed with the patch-clamp technique was potent and increased the channel open probability from approximately 0.35 to 0.95 at + 40 mV in the micromolar concentration range. Moreover, quercetin at a concentration of 10 µM protected cells by reducing damage from treatment factors (tumor necrosis factor α and cycloheximide) by 40%, enhancing cellular migration and depolarizing the mitochondrial membrane. Moreover, the presence of quercetin increased the gene expression and protein level of the mitoBKCa β3 regulatory subunit. The observed cytoprotective effects suggested the involvement of BKCa channel activation. Additionally, the newly discovered mitoBKCa activator quercetin elucidates a new mitochondrial pathway that is beneficial for vascular endothelial cells.
Collapse
Affiliation(s)
- Rafał Paweł Kampa
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Warsaw, Poland; Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Aleksandra Sęk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Warsaw, Poland; Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland.
| |
Collapse
|
6
|
Fahanik-Babaei J, Rezaee B, Nazari M, Torabi N, Saghiri R, Sauve R, Eliassi A. A new brain mitochondrial sodium-sensitive potassium channel: effect of sodium ions on respiratory chain activity. J Cell Sci 2020; 133:jcs242446. [PMID: 32327555 DOI: 10.1242/jcs.242446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/30/2020] [Indexed: 12/17/2022] Open
Abstract
We have determined the electropharmacological properties of a new potassium channel from brain mitochondrial membrane using a planar lipid bilayer method. Our results show the presence of a channel with a conductance of 150 pS at potentials between 0 and -60 mV in 200 mM cis/50 mM trans KCl solutions. The channel was voltage independent, with an open probability value of approximately 0.6 at different voltages. ATP did not affect current amplitude or open probability at positive and negative voltages. Notably, adding iberiotoxin, charybdotoxin, lidocaine or margatoxin had no effect on the channel behavior. Similarly, no changes were observed by decreasing the cis pH to 6. Interestingly, the channel was inhibited by adding sodium in a dose-dependent manner. Our results also indicated a significant increase in mitochondrial complex IV activity and membrane potential and a decrease in complex I activity and mitochondrial ROS production in the presence of sodium ions. We propose that inhibition of mitochondrial potassium transport by sodium ions on potassium channel opening could be important for cell protection and ATP synthesis.
Collapse
Affiliation(s)
- Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran 1419733141, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Bahareh Rezaee
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Maryam Nazari
- Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Nihad Torabi
- Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Reza Saghiri
- Department of Biochemistry, Pasteur Institute of Iran, Tehran 1985717443, Iran
| | - Remy Sauve
- Department of Pharmacology and Physiology and Membrane Protein Research Group, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Afsaneh Eliassi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
- Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| |
Collapse
|
7
|
Lourdes A. Vega Rasgado, Urbieta AT, Medina Jiménez JM. Influence of Mitochondrial ATP-Sensitive Potassium Channels on Toxic Effect of Amyloid-β 25–35. NEUROCHEM J+ 2020. [DOI: 10.1134/s181971242001016x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
De Marchi U, Fernandez-Martinez S, de la Fuente S, Wiederkehr A, Santo-Domingo J. Mitochondrial ion channels in pancreatic β-cells: Novel pharmacological targets for the treatment of Type 2 diabetes. Br J Pharmacol 2020; 178:2077-2095. [PMID: 32056196 PMCID: PMC8246559 DOI: 10.1111/bph.15018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic beta‐cells are central regulators of glucose homeostasis. By tightly coupling nutrient sensing and granule exocytosis, beta‐cells adjust the secretion of insulin to the circulating blood glucose levels. Failure of beta‐cells to augment insulin secretion in insulin‐resistant individuals leads progressively to impaired glucose tolerance, Type 2 diabetes, and diabetes‐related diseases. Mitochondria play a crucial role in β‐cells during nutrient stimulation, linking the metabolism of glucose and other secretagogues to the generation of signals that promote insulin secretion. Mitochondria are double‐membrane organelles containing numerous channels allowing the transport of ions across both membranes. These channels regulate mitochondrial energy production, signalling, and cell death. The mitochondria of β‐cells express ion channels whose physio/pathological role is underappreciated. Here, we describe the mitochondrial ion channels identified in pancreatic β‐cells, we further discuss the possibility of targeting specific β‐cell mitochondrial channels for the treatment of Type 2 diabetes, and we finally highlight the evidence from clinical studies. LINKED ARTICLES This article is part of a themed issue on Cellular metabolism and diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.10/issuetoc
Collapse
Affiliation(s)
| | - Silvia Fernandez-Martinez
- Division of Clinical Pharmacology and Toxicology, Centre de Recherche Clinique, HUG, Genève, Switzerland
| | - Sergio de la Fuente
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
9
|
Cowan K, Anichtchik O, Luo S. Mitochondrial integrity in neurodegeneration. CNS Neurosci Ther 2019; 25:825-836. [PMID: 30746905 PMCID: PMC6566061 DOI: 10.1111/cns.13105] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 12/15/2022] Open
Abstract
The mitochondrion is a unique organelle with a diverse range of functions. Mitochondrial dysfunction is a key pathological process in several neurodegenerative diseases. Mitochondria are mostly important for energy production; however, they also have roles in Ca2+ homeostasis, ROS production, and apoptosis. There are two major systems in place, which regulate mitochondrial integrity, mitochondrial dynamics, and mitophagy. These two processes remove damaged mitochondria from cells and protect the functional mitochondrial population. These quality control systems often become dysfunctional during neurodegenerative diseases, such as Parkinson's and Alzheimer's disease, causing mitochondrial dysfunction and severe neurological symptoms.
Collapse
Affiliation(s)
- Katrina Cowan
- Peninsula Schools of Medicine and Dentistry, Institute of Translational and Stratified Medicine, University of Plymouth, Plymouth, UK
| | - Oleg Anichtchik
- Peninsula Schools of Medicine and Dentistry, Institute of Translational and Stratified Medicine, University of Plymouth, Plymouth, UK
| | - Shouqing Luo
- Peninsula Schools of Medicine and Dentistry, Institute of Translational and Stratified Medicine, University of Plymouth, Plymouth, UK
| |
Collapse
|
10
|
Daniel OO, Adeoye AO, Ojowu J, Olorunsogo OO. Inhibition of liver mitochondrial membrane permeability transition pore opening by quercetin and vitamin E in streptozotocin-induced diabetic rats. Biochem Biophys Res Commun 2018; 504:460-469. [DOI: 10.1016/j.bbrc.2018.08.114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 11/29/2022]
|
11
|
Krabbendam IE, Honrath B, Culmsee C, Dolga AM. Mitochondrial Ca 2+-activated K + channels and their role in cell life and death pathways. Cell Calcium 2017; 69:101-111. [PMID: 28818302 DOI: 10.1016/j.ceca.2017.07.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 12/18/2022]
Abstract
Ca2+-activated K+ channels (KCa) are expressed at the plasma membrane and in cellular organelles. Expression of all KCa channel subtypes (BK, IK and SK) has been detected at the inner mitochondrial membrane of several cell types. Primary functions of these mitochondrial KCa channels include the regulation of mitochondrial ROS production, maintenance of the mitochondrial membrane potential and preservation of mitochondrial calcium homeostasis. These channels are therefore thought to contribute to cellular protection against oxidative stress through mitochondrial mechanisms of preconditioning. In this review, we summarize the current knowledge on mitochondrial KCa channels, and their role in mitochondrial function in relation to cell death and survival pathways. More specifically, we systematically discuss studies on the role of these mitochondrial KCa channels in pharmacological preconditioning, and according protective effects on ischemic insults to the brain and the heart.
Collapse
Affiliation(s)
- Inge E Krabbendam
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Birgit Honrath
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands; Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany.
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany.
| | - Amalia M Dolga
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
12
|
The Slo(w) path to identifying the mitochondrial channels responsible for ischemic protection. Biochem J 2017; 474:2067-2094. [PMID: 28600454 DOI: 10.1042/bcj20160623] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 12/19/2022]
Abstract
Mitochondria play an important role in tissue ischemia and reperfusion (IR) injury, with energetic failure and the opening of the mitochondrial permeability transition pore being the major causes of IR-induced cell death. Thus, mitochondria are an appropriate focus for strategies to protect against IR injury. Two widely studied paradigms of IR protection, particularly in the field of cardiac IR, are ischemic preconditioning (IPC) and volatile anesthetic preconditioning (APC). While the molecular mechanisms recruited by these protective paradigms are not fully elucidated, a commonality is the involvement of mitochondrial K+ channel opening. In the case of IPC, research has focused on a mitochondrial ATP-sensitive K+ channel (mitoKATP), but, despite recent progress, the molecular identity of this channel remains a subject of contention. In the case of APC, early research suggested the existence of a mitochondrial large-conductance K+ (BK, big conductance of potassium) channel encoded by the Kcnma1 gene, although more recent work has shown that the channel that underlies APC is in fact encoded by Kcnt2 In this review, we discuss both the pharmacologic and genetic evidence for the existence and identity of mitochondrial K+ channels, and the role of these channels both in IR protection and in regulating normal mitochondrial function.
Collapse
|
13
|
Goyal A, Agrawal N. Ischemic preconditioning: Interruption of various disorders. J Saudi Heart Assoc 2017; 29:116-127. [PMID: 28373786 PMCID: PMC5366670 DOI: 10.1016/j.jsha.2016.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/05/2016] [Accepted: 09/04/2016] [Indexed: 02/05/2023] Open
Abstract
Ischemic heart diseases are the leading cause of morbidity and mortality worldwide. Reperfusion of an ischemic heart is necessary to regain the normal functioning of the heart. However, abrupt reperfusion of an ischemic heart elicits a cascade of adverse events that leads to injury of the myocardium, i.e., ischemia-reperfusion injury. An endogenous powerful strategy to protect the ischemic heart is ischemic preconditioning, in which the myocardium is subjected to short periods of sublethal ischemia and reperfusion before the prolonged ischemic insult. However, it should be noted that the cardioprotective effect of preconditioning is attenuated in some pathological conditions. The aim of this article is to review present knowledge on how menopause and some metabolic disorders such as diabetes and hyperlipidemia affect myocardial ischemic preconditioning and the mechanisms involved.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U.P., India
| | - Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U.P., India
| |
Collapse
|
14
|
Augustynek B, Kunz WS, Szewczyk A. Guide to the Pharmacology of Mitochondrial Potassium Channels. Handb Exp Pharmacol 2017; 240:103-127. [PMID: 27838853 DOI: 10.1007/164_2016_79] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This chapter provides a critical overview of the available literature on the pharmacology of mitochondrial potassium channels. In the first part, the reader is introduced to the topic, and eight known protein contributors to the potassium permeability of the inner mitochondrial membrane are presented. The main part of this chapter describes the basic characteristics of each channel type mentioned in the introduction. However, the most important and valuable information included in this chapter concerns the pharmacology of mitochondrial potassium channels. Several available channel modulators are critically evaluated and rated by suitability for research use. The last figure of this chapter shows the results of this evaluation at a glance. Thus, this chapter can be very useful for beginners in this field. It is intended to be a time- and resource-saving guide for those searching for proper modulators of mitochondrial potassium channels.
Collapse
Affiliation(s)
- Bartłomiej Augustynek
- Laboratory of Intracellular Ion Channels, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Wolfram S Kunz
- Department of Epileptology, University of Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland.
| |
Collapse
|
15
|
Abstract
KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease.
Collapse
Affiliation(s)
- Monique N Foster
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - William A Coetzee
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
16
|
Bernardi P, Rasola A, Forte M, Lippe G. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Physiol Rev 2015; 95:1111-55. [PMID: 26269524 DOI: 10.1152/physrev.00001.2015] [Citation(s) in RCA: 439] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mitochondrial permeability transition (PT) is a permeability increase of the inner mitochondrial membrane mediated by a channel, the permeability transition pore (PTP). After a brief historical introduction, we cover the key regulatory features of the PTP and provide a critical assessment of putative protein components that have been tested by genetic analysis. The discovery that under conditions of oxidative stress the F-ATP synthases of mammals, yeast, and Drosophila can be turned into Ca(2+)-dependent channels, whose electrophysiological properties match those of the corresponding PTPs, opens new perspectives to the field. We discuss structural and functional features of F-ATP synthases that may provide clues to its transition from an energy-conserving into an energy-dissipating device as well as recent advances on signal transduction to the PTP and on its role in cellular pathophysiology.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Michael Forte
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Giovanna Lippe
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| |
Collapse
|
17
|
Brain mitochondrial ATP-insensitive large conductance Ca⁺²-activated K⁺ channel properties are altered in a rat model of amyloid-β neurotoxicity. Exp Neurol 2015; 269:8-16. [PMID: 25828534 DOI: 10.1016/j.expneurol.2014.12.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 12/01/2014] [Accepted: 12/20/2014] [Indexed: 12/22/2022]
Abstract
Mitochondrial dysfunction is a hallmark of amyloid-beta (Aβ)-induced neuronal toxicity in Alzheimer's disease (AD). However, the underlying mechanism of how Aβ affects mitochondrial function remains uncertain. Because mitochondrial potassium channels have been involved in several mitochondrial functions including cytoprotection, apoptosis and calcium homeostasis, a study was undertaken to investigate whether the gating behavior of the mitochondrial ATP- and ChTx-insensitive-IbTx-sensitive Ca(2+)-activated potassium channel (mitoBKCa) is altered in a rat model of Aβ neurotoxicity. Aβ1-42 (4 μg/μl) was intracerebroventricularly injected in male Wistar rats (220-250 g). Brain Aβ accumulation was confirmed two weeks later on the basis of an immunohistochemistry staining assay, and physiological impacts measured in passive avoidance task cognitive performance experiments. Brain mitochondrial inner membranes were then extracted and membrane vesicles prepared for channel incorporation into bilayer lipid. Purity of the cell fraction was confirmed by Western blot using specific markers of mitochondria, plasma membrane, endoplasmic reticulum, and Golgi. Our results first provide evidence for differences in mitoBKCa ion permeation properties with channels coming from Aβ vesicle preparations characterized by an inward rectifying I-V curve, in contrast to control mitoBKCa channels which showed a linear I-V relationship under the same ionic conditions (200 mM cis/50mM trans). More importantly the open probability of channels from Aβ vesicles appeared 1.5 to 2.5 smaller compared to controls, the most significant decrease being observed at depolarizing potentials (30 mV to 50 mV). Because BKCa-β4 subunit has been documented to shift the BKCa channel voltage dependence curve, a Western blot analysis was undertaken where expression of mitoBKCa α and β4 subunits was estimated using anti-α and β4 subunit antibodies. Our results indicated a significant increase in mitoBKCa-β4 subunit expression coupled to a decrease in the expression of α subunit. Our results thus demonstrate a modification in the mitoBKCa channel gating properties in membrane preparations coming from a rat model of Aβ neurotoxicity, an effect potentially linked to a change in mitoBKCa-β4 and -α subunits expression or increased ROS production due to an enhanced Aβ mitochondrial accumulation. Our results may provide new insights into the cellular mechanisms underlying mitochondrial dysfunctions in Aβ neurotoxicity.
Collapse
|
18
|
Abstract
Over the last decades, cardiovascular disease has become the primary cause of death in the Western world, and this trend is expanding throughout the world. In particular, atherosclerosis and the subsequent vessel obliterations are the primary cause of ischemic disease (stroke and coronary heart disease). Excess calcium influx into the cells is one of the major pathophysiological mechanisms important for ischemic injury in the brain and heart in humans. The large-conductance calcium-activated K+ channels (BK) are thus interesting candidates to protect against excess calcium influx and the events leading to ischemic injury. Indeed, the mitochondrial BK channels (mitoBK) have recently been shown to play a protective function against ischemia-reperfusion injury both in vitro and in animal models, although the exact mechanism of this protection is still under scrutiny. In addition, in both the plasma membrane and mitochondrial BK channel, the α-subunit itself is sensitive to hypoxia. This sensitivity is tissue specific and conferred by a highly conserved motif within an alternatively spliced cysteine-rich insert (STREX) in the intracellular C terminus of the channel. This review describes recent developments of the increasing relevance of BK channels in hypoxia and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Jean-Yves Tano
- Experimental and Clinical Research Center (a Joint Institution Between the Charité University Medicine and Max Delbrück Center for Molecular Medicine), Berlin-Buch, Germany; and Nephrology/Intensive Care Section, Charité Campus Virchow, Berlin, Germany
| | - Maik Gollasch
- Experimental and Clinical Research Center (a Joint Institution Between the Charité University Medicine and Max Delbrück Center for Molecular Medicine), Berlin-Buch, Germany; and Nephrology/Intensive Care Section, Charité Campus Virchow, Berlin, Germany
| |
Collapse
|
19
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
20
|
Trono D, Laus MN, Soccio M, Pastore D. Transport pathways--proton motive force interrelationship in durum wheat mitochondria. Int J Mol Sci 2014; 15:8186-215. [PMID: 24821541 PMCID: PMC4057727 DOI: 10.3390/ijms15058186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/18/2014] [Accepted: 04/24/2014] [Indexed: 12/25/2022] Open
Abstract
In durum wheat mitochondria (DWM) the ATP-inhibited plant mitochondrial potassium channel (PmitoK(ATP)) and the plant uncoupling protein (PUCP) are able to strongly reduce the proton motive force (pmf) to control mitochondrial production of reactive oxygen species; under these conditions, mitochondrial carriers lack the driving force for transport and should be inactive. However, unexpectedly, DWM uncoupling by PmitoK(ATP) neither impairs the exchange of ADP for ATP nor blocks the inward transport of Pi and succinate. This uptake may occur via the plant inner membrane anion channel (PIMAC), which is physiologically inhibited by membrane potential, but unlocks its activity in de-energized mitochondria. Probably, cooperation between PIMAC and carriers may accomplish metabolite movement across the inner membrane under both energized and de-energized conditions. PIMAC may also cooperate with PmitoK(ATP) to transport ammonium salts in DWM. Interestingly, this finding may trouble classical interpretation of in vitro mitochondrial swelling; instead of free passage of ammonia through the inner membrane and proton symport with Pi, that trigger metabolite movements via carriers, transport of ammonium via PmitoK(ATP) and that of the counteranion via PIMAC may occur. Here, we review properties, modulation and function of the above reported DWM channels and carriers to shed new light on the control that they exert on pmf and vice-versa.
Collapse
Affiliation(s)
- Daniela Trono
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Centro di Ricerca per la Cerealicoltura, S.S. 673 Km 25, 71122 Foggia, Italy.
| | - Maura N Laus
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Mario Soccio
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Donato Pastore
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy.
| |
Collapse
|
21
|
Krammer EM, Saidani H, Prévost M, Homblé F. Origin of ion selectivity in Phaseolus coccineus mitochondrial VDAC. Mitochondrion 2014; 19 Pt B:206-13. [PMID: 24742372 DOI: 10.1016/j.mito.2014.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/14/2014] [Accepted: 04/04/2014] [Indexed: 12/23/2022]
Abstract
The mitochondrial voltage-dependent a nion-selective channel (VDAC) is the major permeation pathway for small ions and metabolites. Although a wealth of electrophysiological data has been obtained on different VDAC species, the physical mechanisms of their ionic selectivity are still elusive. We addressed this issue using electrophysiological experiments performed on plant VDAC. A simple macroscopic electrodiffusion model accounting for ion diffusion and for an effective fixed charge of the channel describes well its selectivity. Brownian Dynamics simulations of ion permeation performed on plant and mammalian VDACs point to the role of specific charged residues located at about the middle of the pore.
Collapse
Affiliation(s)
- Eva-Maria Krammer
- Structure et Fonction des Membranes Biologiques, Centre de Biologie Structurale et de Bioinformatique, Université Libre de Bruxelles (ULB), Bld du Triomphe, 1050 Brussels, Belgium
| | - Hayet Saidani
- Structure et Fonction des Membranes Biologiques, Centre de Biologie Structurale et de Bioinformatique, Université Libre de Bruxelles (ULB), Bld du Triomphe, 1050 Brussels, Belgium
| | - Martine Prévost
- Structure et Fonction des Membranes Biologiques, Centre de Biologie Structurale et de Bioinformatique, Université Libre de Bruxelles (ULB), Bld du Triomphe, 1050 Brussels, Belgium
| | - Fabrice Homblé
- Structure et Fonction des Membranes Biologiques, Centre de Biologie Structurale et de Bioinformatique, Université Libre de Bruxelles (ULB), Bld du Triomphe, 1050 Brussels, Belgium.
| |
Collapse
|
22
|
Mitochondrial ion channels as oncological targets. Oncogene 2014; 33:5569-81. [DOI: 10.1038/onc.2013.578] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 02/06/2023]
|
23
|
Leanza L, Biasutto L, Managò A, Gulbins E, Zoratti M, Szabò I. Intracellular ion channels and cancer. Front Physiol 2013; 4:227. [PMID: 24027528 PMCID: PMC3759743 DOI: 10.3389/fphys.2013.00227] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/05/2013] [Indexed: 02/02/2023] Open
Abstract
Several types of channels play a role in the maintenance of ion homeostasis in subcellular organelles including endoplasmatic reticulum, nucleus, lysosome, endosome, and mitochondria. Here we give a brief overview of the contribution of various mitochondrial and other organellar channels to cancer cell proliferation or death. Much attention is focused on channels involved in intracellular calcium signaling and on ion fluxes in the ATP-producing organelle mitochondria. Mitochondrial K+ channels (Ca2+-dependent BKCa and IKCa, ATP-dependent KATP, Kv1.3, two-pore TWIK-related Acid-Sensitive K+ channel-3 (TASK-3)), Ca2+ uniporter MCU, Mg2+-permeable Mrs2, anion channels (voltage-dependent chloride channel VDAC, intracellular chloride channel CLIC) and the Permeability Transition Pore (MPTP) contribute importantly to the regulation of function in this organelle. Since mitochondria play a central role in apoptosis, modulation of their ion channels by pharmacological means may lead to death of cancer cells. The nuclear potassium channel Kv10.1 and the nuclear chloride channel CLIC4 as well as the endoplasmatic reticulum (ER)-located inositol 1,4,5-trisphosphate (IP3) receptor, the ER-located Ca2+ depletion sensor STIM1 (stromal interaction molecule 1), a component of the store-operated Ca2+ channel and the ER-resident TRPM8 are also mentioned. Furthermore, pharmacological tools affecting organellar channels and modulating cancer cell survival are discussed. The channels described in this review are summarized on Figure 1. Overall, the view is emerging that intracellular ion channels may represent a promising target for cancer treatment.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova Padova, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Chachi L, Shikotra A, Duffy SM, Tliba O, Brightling C, Bradding P, Amrani Y. Functional KCa3.1 channels regulate steroid insensitivity in bronchial smooth muscle cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:2624-2636. [PMID: 23904164 DOI: 10.4049/jimmunol.1300104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Identifying the factors responsible for relative glucocorticosteroid (GC) resistance present in patients with severe asthma and finding tools to reverse it are of paramount importance. In asthma we see in vivo evidence of GC-resistant pathways in airway smooth muscle (ASM) bundles that can be modeled in vitro by exposing cultured ASM cells to TNF-α/IFN-γ. This action drives GC insensitivity via protein phosphatase 5-dependent impairment of GC receptor phosphorylation. In this study, we investigated whether KCa3.1 ion channels modulate the activity of GC-resistant pathways using our ASM model of GC insensitivity. Immunohistochemical staining of endobronchial biopsies revealed that KCa3.1 channels are localized to the plasma membrane and nucleus of ASM in both healthy controls and asthmatic patients, irrespective of disease severity. Western blot assays and immunofluorescence staining confirmed the nuclear localization of KCa3.1 channels in ASM cells. The functional importance of KCa3.1 channels in the regulation of GC-resistant chemokines induced by TNF-α/IFN-γ was assessed using complementary inhibitory strategies, including KCa3.1 blockers (TRAM-34 and ICA-17043) or KCa3.1-specific small hairpin RNA delivered by adenoviruses. KCa3.1 channel blockade led to a significant reduction of fluticasone-resistant CX3CL1, CCL5, and CCL11 gene and protein expression. KCa3.1 channel blockade also restored fluticasone-induced GC receptor-α phosphorylation at Ser(211) and transactivation properties via the suppression of cytokine-induced protein phosphatase 5 expression. The effect of KCa3.1 blockade was evident in ASM cells from both healthy controls and asthmatic subjects. In summary, KCa3.1 channels contribute to the regulation of GC-resistant inflammatory pathways in ASM cells: blocking KCa3.1 channels may enhance corticosteroid activity in severe asthma.
Collapse
Affiliation(s)
- Latifa Chachi
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester, LE1 7RH, U.K
| | - Aarti Shikotra
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester, LE1 7RH, U.K
| | - S Mark Duffy
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester, LE1 7RH, U.K
| | - Omar Tliba
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, PA, USA
| | - Christopher Brightling
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester, LE1 7RH, U.K
| | - Peter Bradding
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester, LE1 7RH, U.K
| | - Yassine Amrani
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester, LE1 7RH, U.K
| |
Collapse
|
25
|
Wojtovich AP, Nadtochiy SM, Urciuoli WR, Smith CO, Grunnet M, Nehrke K, Brookes PS. A non-cardiomyocyte autonomous mechanism of cardioprotection involving the SLO1 BK channel. PeerJ 2013; 1:e48. [PMID: 23638385 PMCID: PMC3628382 DOI: 10.7717/peerj.48] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/19/2013] [Indexed: 12/30/2022] Open
Abstract
Opening of BK-type Ca2+ activated K+ channels protects the heart against ischemia-reperfusion (IR) injury. However, the location of BK channels responsible for cardioprotection is debated. Herein we confirmed that openers of the SLO1 BK channel, NS1619 and NS11021, were protective in a mouse perfused heart model of IR injury. As anticipated, deletion of the Slo1 gene blocked this protection. However, in an isolated cardiomyocyte model of IR injury, protection by NS1619 and NS11021 was insensitive to Slo1 deletion. These data suggest that protection in intact hearts occurs by a non-cardiomyocyte autonomous, SLO1-dependent, mechanism. In this regard, an in-situ assay of intrinsic cardiac neuronal function (tachycardic response to nicotine) revealed that NS1619 preserved cardiac neurons following IR injury. Furthermore, blockade of synaptic transmission by hexamethonium suppressed cardioprotection by NS1619 in intact hearts. These results suggest that opening SLO1 protects the heart during IR injury, via a mechanism that involves intrinsic cardiac neurons. Cardiac neuronal ion channels may be useful therapeutic targets for eliciting cardioprotection.
Collapse
Affiliation(s)
- Andrew P Wojtovich
- Department of Medicine, University of Rochester Medical Center , Rochester, NY , USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Ashrafpour M, Babaei JF, Saghiri R, Sepehri H, Sharifi H. Modulation of the hepatocyte rough endoplasmic reticulum single chloride channel by nucleotide-Mg2+ interaction. Pflugers Arch 2012; 464:175-82. [PMID: 22684478 DOI: 10.1007/s00424-012-1121-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/27/2012] [Accepted: 05/30/2012] [Indexed: 01/07/2023]
Abstract
The effect of nucleotides on single chloride channels derived from rat hepatocyte rough endoplasmic reticulum vesicles incorporated into bilayer lipid membrane was investigated. The single chloride channel currents were measured in 200/50 mmol/l KCl cis/trans solutions. Adding 2.5 mM adenosine triphosphate (ATP) and adenosine diphosphate (ADP) did not influence channel activity. However, MgATP addition inhibited the chloride channels by decreasing the channel open probability (Po) and current amplitude, whereas mixture of Mg(2+) and ADP activated the chloride channel by increasing the Po and unitary current amplitude. According to the results, there is a novel regulation mechanism for rough endoplasmic reticulum (RER) Cl(-) channel activity by intracellular MgATP and mixture of Mg(2+) and ADP that would result in significant inhibition by MgATP and activation by mixture of Mg(2+) and ADP. These modulatory effects of nucleotide-Mg(2+) complexes on chloride channels may be dependent on their chemical structure configuration. It seems that Mg-nucleotide-ion channel interactions are involved to produce a regulatory response for RER chloride channels.
Collapse
Affiliation(s)
- M Ashrafpour
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Babol University of Medical Sciences, Babol, Iran.
| | | | | | | | | |
Collapse
|
27
|
Gerencser AA, Chinopoulos C, Birket MJ, Jastroch M, Vitelli C, Nicholls DG, Brand MD. Quantitative measurement of mitochondrial membrane potential in cultured cells: calcium-induced de- and hyperpolarization of neuronal mitochondria. J Physiol 2012; 590:2845-71. [PMID: 22495585 DOI: 10.1113/jphysiol.2012.228387] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial membrane potential (ΔΨM) is a central intermediate in oxidative energy metabolism. Although ΔΨM is routinely measured qualitatively or semi-quantitatively using fluorescent probes, its quantitative assay in intact cells has been limited mostly to slow, bulk-scale radioisotope distribution methods. Here we derive and verify a biophysical model of fluorescent potentiometric probe compartmentation and dynamics using a bis-oxonol-type indicator of plasma membrane potential (ΔΨP) and the ΔΨM probe tetramethylrhodamine methyl ester (TMRM) using fluorescence imaging and voltage clamp. Using this model we introduce a purely fluorescence-based quantitative assay to measure absolute values of ΔΨM in millivolts as they vary in time in individual cells in monolayer culture. The ΔΨP-dependent distribution of the probes is modelled by Eyring rate theory. Solutions of the model are used to deconvolute ΔΨP and ΔΨM in time from the probe fluorescence intensities, taking into account their slow, ΔΨP-dependent redistribution and Nernstian behaviour. The calibration accounts for matrix:cell volume ratio, high- and low-affinity binding, activity coefficients, background fluorescence and optical dilution, allowing comparisons of potentials in cells or cell types differing in these properties. In cultured rat cortical neurons, ΔΨM is −139 mV at rest, and is regulated between −108 mV and −158 mV by concerted increases in ATP demand and Ca2+-dependent metabolic activation. Sensitivity analysis showed that the standard error of the mean in the absolute calibrated values of resting ΔΨM including all biological and systematic measurement errors introduced by the calibration parameters is less than 11 mV. Between samples treated in different ways, the typical equivalent error is ∼5 mV.
Collapse
Affiliation(s)
- Akos A Gerencser
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Kefaloyianni E, Bao L, Rindler MJ, Hong M, Patel T, Taskin E, Coetzee WA. Measuring and evaluating the role of ATP-sensitive K+ channels in cardiac muscle. J Mol Cell Cardiol 2012; 52:596-607. [PMID: 22245446 DOI: 10.1016/j.yjmcc.2011.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 12/06/2011] [Accepted: 12/23/2011] [Indexed: 11/27/2022]
Abstract
Since ion channels move electrical charge during their activity, they have traditionally been studied using electrophysiological approaches. This was sometimes combined with mathematical models, for example with the description of the ionic mechanisms underlying the initiation and propagation of action potentials in the squid giant axon by Hodgkin and Huxley. The methods for studying ion channels also have strong roots in protein chemistry (limited proteolysis, the use of antibodies, etc.). The advent of the molecular cloning and the identification of genes coding for specific ion channel subunits in the late 1980s introduced a multitude of new techniques with which to study ion channels and the field has been rapidly expanding ever since (e.g. antibody development against specific peptide sequences, mutagenesis, the use of gene targeting in animal models, determination of their protein structures) and new methods are still in development. This review focuses on techniques commonly employed to examine ion channel function in an electrophysiological laboratory. The focus is on the K(ATP) channel, but many of the techniques described are also used to study other ion channels.
Collapse
|
29
|
Abstract
SIGNIFICANCE Plants produce many small molecules with biomedical potential. Their absorption from foods, metabolism, their effects on physiological and pathological processes, and the mechanisms of action are intensely investigated. Many are known to affect multiple cellular functions. Mitochondria are coming to be recognized as a major target for these compounds, especially redox-active ones, but the mechanisms involved still need clarification. At the same time, frontline research is uncovering the importance of processes involving these organelles for the cell and for an array of physiological and pathological processes. We review the major functions and possible dysfunctions of mitochondria, identify signaling pathways through which plant-derived molecules have an impact, and show how this may be relevant for major pathologies. RECENT ADVANCES Antioxidant, protective effects may arise as a reaction to a low-level pro-oxidant activity, largely taking place at mitochondria. Some plant-derived molecules can activate AMP-dependent kinase, with a consequent upregulation of mitochondrial biogenesis and a potential favorable impact on aging, pathologies like diabetes and neurodegeneration, and on ischemic damage. CRITICAL ISSUES The extrapolation of in vitro results and the verification of paradigms in vivo is a key issue for current research on both plant-derived compounds and mitochondria. The low bioavailability of many of these molecules poses a problem for both the study of their activities and their utilization. FUTURE DIRECTIONS The further clarification of the role of mitochondria in the activities of plant dietary compounds and their metabolites, mitochondrial targeting, the development of analogs and pro-drugs are all topics for promising research.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Institute of Neuroscience, Department of Experimental Biomedical Sciences, University of Padova, Padova, Italy
| | | | | |
Collapse
|
30
|
How many types of large conductance Ca+2-activated potassium channels exist in brain mitochondrial inner membrane: evidence for a new mitochondrial large conductance Ca2+-activated potassium channel in brain mitochondria. Neuroscience 2011; 199:125-32. [DOI: 10.1016/j.neuroscience.2011.09.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 09/25/2011] [Accepted: 09/27/2011] [Indexed: 11/24/2022]
|
31
|
Tampieri E, Baraldi E, Carnevali F, Frascaroli E, De Santis A. The activity of plant inner membrane anion channel (PIMAC) can be performed by a chloride channel (CLC) protein in mitochondria from seedlings of maize populations divergently selected for cold tolerance. J Bioenerg Biomembr 2011; 43:611-21. [PMID: 21989547 DOI: 10.1007/s10863-011-9386-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/21/2011] [Indexed: 10/17/2022]
Abstract
The proteins performing the activity of the inner membrane anion channel (IMAC) and its plant counterpart (PIMAC) are still unknown. Lurin et al. (Biochem J 348: 291-295, 2000) indicated that a chloride channel (CLC) protein corresponds to PIMAC activity in tobacco seedling mitochondria. In this study, we investigated: (i) the presence of a CLC protein in maize seedling mitochondria; (ii) the involvement of this protein in plant cold tolerance; and (iii) its possible role in PIMAC activity. We validated the presence of a CLC protein (ZmCLCc) in maize mitochondria by immunoassay using a polyclonal antibody against its C-terminus. The differential expression of the ZmCLCc protein in mitochondria was measured in seedlings of maize populations divergently selected for cold tolerance and grown at different temperatures. The ZmCLCc protein level was higher in cold stressed than in non-stressed growing conditions. Moreover, the ZmCLCc level showed a direct relationship with the cold sensitivity level of the populations under both growing conditions, suggesting that selection for cold tolerance induced a constitutive change of the ZmCLCc protein amount in mitochondria. The anti-ZmCLCc antibody inhibited (about 60%) the channel-mediated anion translocations by PIMAC, whereas the same antibody did not affect the free diffusion of potassium thiocyanide through the inner mitochondrial membrane. For this reason, we conclude that the mitochondrial ZmCLCc protein can perform the PIMAC activity in maize seedlings.
Collapse
Affiliation(s)
- Elisabetta Tampieri
- Laboratory of Plant Physiology, Dipartimento di Scienze del Mare, Università Politecnica delle Marche, Via Brecce Bianche, 60123, Ancona, Italy
| | | | | | | | | |
Collapse
|
32
|
Szabò I, Leanza L, Gulbins E, Zoratti M. Physiology of potassium channels in the inner membrane of mitochondria. Pflugers Arch 2011; 463:231-46. [PMID: 22089812 DOI: 10.1007/s00424-011-1058-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 10/30/2011] [Indexed: 02/06/2023]
Abstract
The inner membrane of the ATP-producing organelles of endosymbiotic origin, mitochondria, has long been considered to be poorly permeable to cations and anions, since the strict control of inner mitochondrial membrane permeability is crucial for efficient ATP synthesis. Over the past 30 years, however, it has become clear that various ion channels--along with antiporters and uniporters--are present in the mitochondrial inner membrane, although at rather low abundance. These channels are important for energy supply, and some are a decisive factor in determining whether a cell lives or dies. Their electrophysiological and pharmacological characterisations have contributed importantly to the ongoing elucidation of their pathophysiological roles. This review gives an overview of recent advances in our understanding of the functions of the mitochondrial potassium channels identified so far. Open issues concerning the possible molecular entities giving rise to the observed activities and channel protein targeting to mitochondria are also discussed.
Collapse
Affiliation(s)
- Ildikò Szabò
- Department of Biology, University of Padova, Padova, Italy.
| | | | | | | |
Collapse
|
33
|
Drew J. Janice Drew’s work on diet and cancer. World J Gastrointest Pathophysiol 2011; 2:61-4. [PMID: 21860839 PMCID: PMC3158879 DOI: 10.4291/wjgp.v2.i4.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 08/06/2011] [Accepted: 08/13/2011] [Indexed: 02/06/2023] Open
Abstract
Obesity and associated reduced consumption of plant derived foods are linked to increased risk of colon cancer as well as a number of other organ specific cancers. Inflammatory processes are a contributing factor but the precise mechanisms remain elusive. Obesity and cancer incidence are increasing worldwide, presenting bleak prospects for reducing, or preventing, obesity related cancers. The incidence of these preventable cancers can be achieved with greater understanding of the molecular mechanisms linking diet and carcinogenesis. Janice Drew has developed a research program over recent years to investigate molecular mechanisms related to consumption of anti-inflammatory metabolites generated from consumption of plant based diets, the impact of high fat diets and associated altered metabolism and obesity on regulation of colon inflammatory responses and processes regulating the colon epithelium. Comprehensive strategies have been developed incorporating transcriptomics, including the novel gene expression technology, the GenomeLab System and proteomics, together with biochemical analyses of plasma and tissue samples to assess correlated changes in oxidative stress, inflammation and pathology. The approaches developed have achieved success in establishing antioxidant and anti-inflammatory activity of dietary antioxidants and associated genes and pathways that interact to modulate redox status in the colon. Cellular processes and genes altered in response to obesity and high fat diets have provided evidence of molecular mechanisms that are implicated in obesity related cancer.
Collapse
|
34
|
Rasola A, Bernardi P. Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis. Cell Calcium 2011; 50:222-33. [PMID: 21601280 DOI: 10.1016/j.ceca.2011.04.007] [Citation(s) in RCA: 405] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 04/22/2011] [Accepted: 04/28/2011] [Indexed: 12/25/2022]
Abstract
A variety of stimuli utilize an increase of cytosolic free Ca(2+) concentration as a second messenger to transmit signals, through Ca(2+) release from the endoplasmic reticulum or opening of plasma membrane Ca(2+) channels. Mitochondria contribute to the tight spatiotemporal control of this process by accumulating Ca(2+), thus shaping the return of cytosolic Ca(2+) to resting levels. The rise of mitochondrial matrix free Ca(2+) concentration stimulates oxidative metabolism; yet, in the presence of a variety of sensitizing factors of pathophysiological relevance, the matrix Ca(2+) increase can also lead to opening of the permeability transition pore (PTP), a high conductance inner membrane channel. While transient openings may serve the purpose of providing a fast Ca(2+) release mechanism, persistent PTP opening is followed by deregulated release of matrix Ca(2+), termination of oxidative phosphorylation, matrix swelling with inner membrane unfolding and eventually outer membrane rupture with release of apoptogenic proteins and cell death. Thus, a rise in mitochondrial Ca(2+) can convey both apoptotic and necrotic death signals by inducing opening of the PTP. Understanding the signalling networks that govern changes in mitochondrial free Ca(2+) concentration, their interplay with Ca(2+) signalling in other subcellular compartments, and regulation of PTP has important implications in the fine comprehension of the main biological routines of the cell and in disease pathogenesis.
Collapse
Affiliation(s)
- Andrea Rasola
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Italy.
| | | |
Collapse
|
35
|
Borchert GH, Yang C, Kolár F. Mitochondrial BKCa channels contribute to protection of cardiomyocytes isolated from chronically hypoxic rats. Am J Physiol Heart Circ Physiol 2011; 300:H507-13. [PMID: 21112945 PMCID: PMC3044046 DOI: 10.1152/ajpheart.00594.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 11/22/2010] [Indexed: 01/24/2023]
Abstract
Chronic hypoxia protects the heart against injury caused by acute oxygen deprivation, but its salutary mechanism is poorly understood. The aim was to find out whether cardiomyocytes isolated from chronically hypoxic hearts retain the improved resistance to injury and whether the mitochondrial large-conductance Ca2+-activated K+ (BKCa) channels contribute to the protective effect. Adult male rats were adapted to continuous normobaric hypoxia (inspired O2 fraction 0.10) for 3 wk or kept at room air (normoxic controls). Myocytes, isolated separately from the left ventricle (LVM), septum (SEPM), and right ventricle, were exposed to 25-min metabolic inhibition with sodium cyanide, followed by 30-min reenergization (MI/R). Some LVM were treated with either 30 μM NS-1619 (BKCa opener), or 2 μM paxilline (BKCa blocker), starting 25 min before metabolic inhibition. Cell injury was detected by Trypan blue exclusion and lactate dehydrogenase (LDH) release. Chronic hypoxia doubled the number of rod-shaped LVM and SEPM surviving the MI/R insult and reduced LDH release. While NS-1619 protected cells from normoxic rats, it had no additive salutary effect in the hypoxic group. Paxilline attenuated the improved resistance of cells from hypoxic animals without affecting normoxic controls; it also abolished the protective effect of NS-1619 on LDH release in the normoxic group. While chronic hypoxia did not affect protein abundance of the BKCa channel regulatory β1-subunit, it markedly decreased its glycosylation level. It is concluded that ventricular myocytes isolated from chronically hypoxic rats retain the improved resistance against injury caused by MI/R. Activation of the mitochondrial BKCa channel likely contributes to this protective effect.
Collapse
Affiliation(s)
- Gudrun H Borchert
- Centre for Cardiovascular Research, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | |
Collapse
|
36
|
De Marchi U, Checchetto V, Zanetti M, Teardo E, Soccio M, Formentin E, Giacometti GM, Pastore D, Zoratti M, Szabò I. ATP-sensitive cation-channel in wheat (Triticum durum Desf.): identification and characterization of a plant mitochondrial channel by patch-clamp. Cell Physiol Biochem 2011; 26:975-82. [PMID: 21220928 DOI: 10.1159/000324010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2010] [Indexed: 11/19/2022] Open
Abstract
Indirect evidence points to the presence of K(+) channels in plant mitochondria. In the present study, we report the results of the first patch clamp experiments on plant mitochondria. Single-channel recordings in 150 mM potassium gluconate have allowed the biophysical characterization of a channel with a conductance of 150 pS in the inner mitochondrial membrane of mitoplasts obtained from wheat (Triticum durum Desf.). The channel displayed sharp voltage sensitivity, permeability to potassium and cation selectivity. ATP in the mM concentration range completely abolished the activity. We discuss the possible molecular identity of the channel and its possible role in the defence mechanisms against oxidative stress in plants.
Collapse
Affiliation(s)
- Umberto De Marchi
- Department of Experimental Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Padova, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
De Santis A, Frascaroli E, Baraldi E, Carnevali F, Landi P. The activity of the plant mitochondrial inner membrane anion channel (PIMAC) of maize populations divergently selected for cold tolerance level is differentially dependent on the growth temperature of seedlings. PLANT & CELL PHYSIOLOGY 2011; 52:193-204. [PMID: 21148151 DOI: 10.1093/pcp/pcq189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The activity of the plant inner membrane mitochondrial anion channel (PIMAC) is involved in metabolite shuttles and mitochondrial volume changes and could have a role in plant temperature tolerance. Our objectives were to investigate (i) the occurrence and (ii) the temperature dependence of anion fluxes through PIMAC in mitochondria isolated from seedlings of three maize populations differing in terms of cold tolerance; and (iii) the relationships between the PIMAC activity kinetics and the level of cold tolerance. Populations were the source population (C0) and two populations divergently selected for high (C4H) and low (C4L) cold tolerance. Such divergently selected populations are expected to share most of their genes, with the main exception of those genes controlling cold tolerance. Arrhenius plots of PIMAC chloride fluxes showed a linear temperature dependence when seedlings were grown at 25 or 14°C, whereas a non-linear temperature dependence was found when seedlings were grown at 5°C, with or without acclimation at 14°C. The activation energy and other thermodynamic parameters of PIMAC activity varied depending on temperature treatments during seedling growth. When seedlings were grown at 14 and 5°C with acclimation, PIMAC activity of the C4H population increased, while that of C4L declined, as compared with the activities of seedlings grown at 25°C. These symmetric responses indicate that PIMAC activity changes are associated with genetically determined differences in the cold tolerance level of the investigated populations. We conclude that anion fluxes by PIMAC depend upon changes on growth temperature and are differentially related to the tolerance level of the tested populations.
Collapse
Affiliation(s)
- Aurelio De Santis
- Dipartimento di Scienze del Mare, Università Politecnica delle Marche, Ancona, Italy.
| | | | | | | | | |
Collapse
|
38
|
Fahanik-babaei J, Eliassi A, Jafari A, Sauve R, Salari S, Saghiri R. Electro-pharmacological profile of a mitochondrial inner membrane big-potassium channel from rat brain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:454-60. [DOI: 10.1016/j.bbamem.2010.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 09/25/2010] [Accepted: 10/12/2010] [Indexed: 11/16/2022]
|
39
|
Szabò I, Soddemann M, Leanza L, Zoratti M, Gulbins E. Single-point mutations of a lysine residue change function of Bax and Bcl-xL expressed in Bax- and Bak-less mouse embryonic fibroblasts: novel insights into the molecular mechanisms of Bax-induced apoptosis. Cell Death Differ 2010; 18:427-38. [PMID: 20885444 DOI: 10.1038/cdd.2010.112] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Members of the Bcl-2 family play key roles as proapoptotic (e.g., Bax) and antiapoptotic (e.g., Bcl-x(L)) regulators of programmed cell death. We previously identified the mitochondrial potassium channel Kv1.3 as a novel target of Bax. Incubating Kv1.3-positive isolated mitochondria with Bax triggered apoptotic events, whereas Kv1.3-deficient mitochondria were resistant to this stimulus. Mutation of Bax at lysine 128 (BaxK128E) abrogated its effects on Kv1.3 and the induction of apoptotic changes in mitochondria. These data indicate a toxin-like action of Bax on Kv1.3 to trigger at least some of the mitochondrial changes typical for apoptosis. To gain insight into the mechanism of Bax-Kv1.3 interaction, we mutated Glu158 of Bcl-x(L) (corresponding to K128 in Bax) to lysine. This substitution turned Bcl-x(L) proapoptotic. Transfection of double knockout (Bax(-/-)/Bak(-/-)) mouse embryonic fibroblasts (DKO MEFs) with either wild-type Bax, BaxK128E, or Bcl-x(L)E158K showed that apoptosis induced by various stimuli was defective in DKO MEFs and BaxK128E-transfected cells, but was recovered upon transfection with Bcl-xLE158K or wild-type Bax. Both wild-type Bax and BaxK128E can form similar ion-conducting pores upon incorporation into planar lipid bilayers. Our results point to a physiologically relevant interaction of Bax with Kv1.3 and further indicate a crucial role of a distinct lysine in determining the proapoptotic character of Bcl2-family proteins.
Collapse
Affiliation(s)
- I Szabò
- Department of Biology, University of Padova, Padova, Italy.
| | | | | | | | | |
Collapse
|
40
|
Breygina MA, Smirnova AV, Maslennikov MV, Matveeva NP, Yermakov IP. Effects of anion channel blockers NPPB and DIDS on tobacco pollen tube growth and its mitochondria state. ACTA ACUST UNITED AC 2010. [DOI: 10.1134/s1990519x10030119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Biasutto L, Dong LF, Zoratti M, Neuzil J. Mitochondrially targeted anti-cancer agents. Mitochondrion 2010; 10:670-81. [PMID: 20601192 DOI: 10.1016/j.mito.2010.06.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 06/20/2010] [Accepted: 06/23/2010] [Indexed: 01/12/2023]
Abstract
Cancer is an ever-increasing problem that is yet to be harnessed. Frequent mutations make this pathology very variable and, consequently, a considerable challenge. Intriguingly, mitochondria have recently emerged as novel targets for cancer therapy. A group of agents with anti-cancer activity that induce apoptosis by way of mitochondrial destabilisation, termed mitocans, have been a recent focus of research. Of these compounds, many are hydrophobic agents that associate with various sub-cellular organelles. Clearly, modification of such structures with mitochondria-targeting moieties, for example tagging them with lipophilic cations, would be expected to enhance their activity. This may be accomplished by the addition of triphenylphosphonium groups that direct such compounds to mitochondria, enhancing their activity. In this paper, we will review agents that possess anti-cancer activity by way of destabilizing mitochondria and their possible targets. We propose that mitochondrial targeting, in particular where the agent associates directly with the target, results in more specific and efficient anti-cancer drugs of potential high clinical relevance.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Institute of Neuroscience and Dept. of Experimental Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | | |
Collapse
|
42
|
Role of Kv1.3 mitochondrial potassium channel in apoptotic signalling in lymphocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1251-9. [DOI: 10.1016/j.bbabio.2010.01.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 11/24/2022]
|
43
|
Blokhina O, Fagerstedt KV. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems. PHYSIOLOGIA PLANTARUM 2010; 138:447-62. [PMID: 20059731 DOI: 10.1111/j.1399-3054.2009.01340.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant mitochondria differ from their mammalian counterparts in many respects, which are due to the unique and variable surroundings of plant mitochondria. In green leaves, plant mitochondria are surrounded by ample respiratory substrates and abundant molecular oxygen, both resulting from active photosynthesis, while in roots and bulky rhizomes and fruit carbohydrates may be plenty, whereas oxygen levels are falling. Several enzymatic complexes in mitochondrial electron transport chain (ETC) are capable of reactive oxygen species (ROS) formation under physiological and pathological conditions. Inherently connected parameters such as the redox state of electron carriers in the ETC, ATP synthase activity and inner mitochondrial membrane potential, when affected by external stimuli, can give rise to ROS formation via complexes I and III, and by reverse electron transport (RET) from complex II. Superoxide radicals produced are quickly scavenged by superoxide dismutase (MnSOD), and the resulting H(2)O(2) is detoxified by peroxiredoxin-thioredoxin system or by the enzymes of ascorbate-glutathione cycle, found in the mitochondrial matrix. Arginine-dependent nitric oxide (NO)-releasing activity of enzymatic origin has been detected in plant mitochondria. The molecular identity of the enzyme is not clear but the involvement of mitochondria-localized enzymes responsible for arginine catabolism, arginase and ornithine aminotransferase has been shown in the regulation of NO efflux. Besides direct control by antioxidants, mitochondrial ROS production is tightly controlled by multiple redundant systems affecting inner membrane potential: NAD(P)H-dependent dehydrogenases, alternative oxidase (AOX), uncoupling proteins, ATP-sensitive K(+) channel and a number of matrix and intermembrane enzymes capable of direct electron donation to ETC. NO removal, on the other hand, takes place either by reactions with molecular oxygen or superoxide resulting in peroxynitrite, nitrite or nitrate ions or through interaction with non-symbiotic hemoglobins or glutathione. Mitochondrial ROS and NO production is tightly controlled by multiple redundant systems providing the regulatory mechanism for redox homeostasis and specific ROS/NO signaling.
Collapse
Affiliation(s)
- Olga Blokhina
- Department of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland.
| | | |
Collapse
|
44
|
Kominkova V, Malekova L, Tomaskova Z, Slezak P, Szewczyk A, Ondrias K. Modulation of intracellular chloride channels by ATP and Mg2+. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1300-12. [PMID: 20206596 DOI: 10.1016/j.bbabio.2010.02.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 02/03/2010] [Accepted: 02/26/2010] [Indexed: 12/15/2022]
Abstract
We report the effects of ATP and Mg2+ on the activity of intracellular chloride channels. Mitochondrial and lysosomal membrane vesicles isolated from rat hearts were incorporated into bilayer lipid membranes, and single chloride channel currents were measured. The observed chloride channels (n=112) possessed a wide variation in single channel parameters and sensitivities to ATP. ATP (0.5-2 mmol/l) modulated and/or inhibited the chloride channel activities (n=38/112) in a concentration-dependent manner. The inhibition effect was irreversible (n=5/93) or reversible (n=15/93). The non-hydrolysable ATP analogue AMP-PNP had a similar inhibition effect as ATP, indicating that phosphorylation did not play a role in the ATP inhibition effect. ATP modulated the gating properties of the channels (n=6/93), decreased the channels' open dwell times and increased the gating transition rates. ATP (0.5-2 mmol/l) without the presence of Mg2+ decreased the chloride channel current (n=12/14), whereas Mg2+ significantly reversed the effect (n=4/4). We suggest that ATP-intracellular chloride channel interactions and Mg2+ modulation of these interactions may regulate different physiological and pathological processes.
Collapse
Affiliation(s)
- Viera Kominkova
- Institute of Molecular Physiology and Genetics, Centre of Excellence for Cardiovascular Research, Slovak Academy of Sciences, 83334 Bratislava, Slovakia
| | | | | | | | | | | |
Collapse
|
45
|
Rasola A, Sciacovelli M, Pantic B, Bernardi P. Signal transduction to the permeability transition pore. FEBS Lett 2010; 584:1989-96. [PMID: 20153328 DOI: 10.1016/j.febslet.2010.02.022] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 01/31/2010] [Accepted: 02/03/2010] [Indexed: 11/24/2022]
Abstract
The permeability transition pore (PTP) is an inner mitochondrial membrane channel that has been thoroughly characterized functionally, yet remains an elusive molecular entity. The best characterized PTP-regulatory component, cyclophilin (CyP) D, is a matrix protein that favors pore opening. CyP inhibitors, CyP-D null animals, and in situ PTP readouts have established the role of PTP as an effector mechanism of cell death, and the growing definition of PTP signalling mechanisms. This review briefly covers the functional features of the PTP and the role played by its dysregulation in disease pathogenesis. Recent progress on PTP modulation by kinase/phosphatase signal transduction is discussed, with specific emphasis on hexokinase and on the Akt-ERK-GSK3 axis, which might modulate the PTP through CyP-D phosphorylation.
Collapse
Affiliation(s)
- Andrea Rasola
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Italy.
| | | | | | | |
Collapse
|
46
|
Mitochondrial chloride channels - What are they for? FEBS Lett 2010; 584:2085-92. [DOI: 10.1016/j.febslet.2010.01.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/11/2010] [Accepted: 01/19/2010] [Indexed: 11/21/2022]
|
47
|
Contribution of voltage-gated potassium channels to the regulation of apoptosis. FEBS Lett 2010; 584:2049-56. [DOI: 10.1016/j.febslet.2010.01.038] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 01/18/2010] [Accepted: 01/19/2010] [Indexed: 01/25/2023]
|
48
|
Zoratti M, De Marchi U, Biasutto L, Szabò I. Electrophysiology clarifies the megariddles of the mitochondrial permeability transition pore. FEBS Lett 2010; 584:1997-2004. [PMID: 20080089 DOI: 10.1016/j.febslet.2010.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/08/2010] [Accepted: 01/08/2010] [Indexed: 12/18/2022]
Abstract
After a brief review of the early history of mitochondrial electrophysiology, the contribution of this approach to the study of the mitochondrial permeability transition (MPT) is recapitulated. It has for example provided evidence for a dimeric nature of the MPT pore, allowed the distinction between two levels of control of its activity, and underscored the relevance of redox events for the phenomenon. Single-channel recording provides a means to finally solve the riddle of the biochemical entity underlying it by comparing the characteristics of the pore with those of channels formed by candidate molecules or complexes. The possibility that this entity may be the protein import machinery of the inner mitochondrial membrane is emphasized.
Collapse
|
49
|
An investigation of the occurrence and properties of the mitochondrial intermediate-conductance Ca2+-activated K+ channel mtKCa3.1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:1260-7. [PMID: 20036632 DOI: 10.1016/j.bbabio.2009.12.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 12/15/2009] [Accepted: 12/19/2009] [Indexed: 12/24/2022]
Abstract
The mitochondrial intermediate-conductance Ca2+-activated K+ channel mtKCa3.1 has recently been discovered in the HCT116 colon tumor-derived cell line, which expresses relatively high levels of this protein also in the plasma membrane. Electrophysiological recordings revealed that the channel can exhibit different conductance states and kinetic modes, which we tentatively ascribe to post-translational modifications. To verify whether the localization of this channel in mitochondria might be a peculiarity of these cells or a more widespread feature we have checked for the presence of mtKCa3.1 in a few other cell lines using biochemical and electrophysiological approaches. It turned out to be present at least in some of the cells investigated. Functional assays explored the possibility that mtKCa3.1 might be involved in cell proliferation or play a role similar to that of the Shaker-type KV1.3 channel in lymphocytes, which interacts with outer mitochondrial membrane-inserted Bax thereby promoting apoptosis (Szabò, I. et al., Proc. Natl. Acad Sci. USA 105 (2008) 14861-14866). A specific KCa3.1 inhibitor however did not have any detectable effect on cell proliferation or death.
Collapse
|
50
|
Interaction of mitochondrial potassium channels with the permeability transition pore. FEBS Lett 2009; 584:2005-12. [DOI: 10.1016/j.febslet.2009.12.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 12/20/2009] [Indexed: 01/11/2023]
|