1
|
Deraison C, Vergnolle N. Pharmacology of Intestinal Inflammation and Repair. Annu Rev Pharmacol Toxicol 2025; 65:301-314. [PMID: 39847467 DOI: 10.1146/annurev-pharmtox-051921-084536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Chronic inflammation is a common trait in the pathogenesis of several diseases of the gut, including inflammatory bowel disease and celiac disease. Control of the inflammatory response is crucial in these pathologies to avoid tissue destruction and loss of intestinal function. Over the last 50 years, the identification of the mechanisms and mediators involved in the acute phase of the inflammatory response, which is characterized by massive leukocyte recruitment, has led to a number of therapeutic options. New drugs targeting inflammatory flares are still under development. However, interest on the other end of the spectrum-the resolution and repair phases-has emerged, as promoting tissue functional repair may maintain remission and counteract the chronicity of the disease. This review aims to discuss the current and future pharmacological approaches to the treatment of chronic intestinal inflammation and the restoration of functional tissues.
Collapse
Affiliation(s)
- Céline Deraison
- Institute of Digestive Health Research (IRSD), Toulouse University, INSERM 1022, INRAe, ENVT, University of Toulouse III Paul Sabatier, Toulouse, France;
| | - Nathalie Vergnolle
- Institute of Digestive Health Research (IRSD), Toulouse University, INSERM 1022, INRAe, ENVT, University of Toulouse III Paul Sabatier, Toulouse, France;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Sun S, Xie E, Xu S, Ji S, Wang S, Shen J, Wang R, Shen X, Su Y, Song Z, Wu X, Zhou J, Cai Z, Li X, Zhang Y, Min J, Wang F. The Intestinal Transporter SLC30A1 Plays a Critical Role in Regulating Systemic Zinc Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406421. [PMID: 39422023 PMCID: PMC11633486 DOI: 10.1002/advs.202406421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/15/2024] [Indexed: 10/19/2024]
Abstract
The essential trace element, zinc, regulates virtually all aspects of cellular physiology, particularly cell proliferation and survival. Diverse families of metal transporters, metallothioneins, and metal-responsive transcriptional regulators are linked to zinc homeostasis. However, the mechanism underlying the regulation of systemic zinc homeostasis remains largely unknown. Here, it is reported that the intestinal transporter SLC30A1 plays an essential role in maintaining systemic zinc homeostasis. Using several lines of tissue-specific knockout mice, it is found that intestinal Slc30a1 plays a critical role in survival. Furthermore, lineage tracing reveals that Slc30a1 is localized to the basolateral membrane of intestinal epithelial cells (IECs). It is also found that Slc30a1 safeguards both intestinal barrier integrity and systemic zinc homeostasis. Finally, an integrative analysis of the cryo-EM structure and site-specific mutagenesis of human SLC30A1 are performed and a zinc transport mechanism of SLC30A1 unique within the SLC30A family, with His43 serving as a critical residue for zinc selectivity, is identified.
Collapse
Affiliation(s)
- Shumin Sun
- The First Affiliated HospitalInstitute of Translational MedicineZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismZhejiang University School of MedicineHangzhou310058China
| | - Enjun Xie
- The Second Affiliated HospitalSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Shan Xu
- The First Affiliated HospitalInstitute of Translational MedicineZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismZhejiang University School of MedicineHangzhou310058China
| | - Suyu Ji
- Department of Biophysics and Department of PathologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Shufen Wang
- The First Affiliated HospitalInstitute of Translational MedicineZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismZhejiang University School of MedicineHangzhou310058China
| | - Jie Shen
- The First Affiliated HospitalInstitute of Translational MedicineZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismZhejiang University School of MedicineHangzhou310058China
| | - Rong Wang
- The Second Affiliated HospitalSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Xinyi Shen
- The First Affiliated HospitalBasic Medical SciencesSchool of Public HealthHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Yunxing Su
- The Second Affiliated HospitalSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Zijun Song
- The First Affiliated HospitalInstitute of Translational MedicineZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismZhejiang University School of MedicineHangzhou310058China
| | - Xiaotian Wu
- The Second Affiliated HospitalSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Jiahui Zhou
- The Second Affiliated HospitalSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Zhaoxian Cai
- The Second Affiliated HospitalSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Xiaopeng Li
- The Second Affiliated HospitalSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
| | - Yan Zhang
- Department of Biophysics and Department of PathologySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310016China
| | - Junxia Min
- The First Affiliated HospitalInstitute of Translational MedicineZhejiang Key Laboratory of Frontier Medical Research on Cancer MetabolismZhejiang University School of MedicineHangzhou310058China
| | - Fudi Wang
- The Second Affiliated HospitalSchool of Public HealthZhejiang University School of MedicineHangzhou310058China
- The First Affiliated HospitalBasic Medical SciencesSchool of Public HealthHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| |
Collapse
|
3
|
Chai X, Chen X, Yan T, Zhao Q, Hu B, Jiang Z, Guo W, Zhang Y. Intestinal Barrier Impairment Induced by Gut Microbiome and Its Metabolites in School-Age Children with Zinc Deficiency. Nutrients 2024; 16:1289. [PMID: 38732540 PMCID: PMC11085614 DOI: 10.3390/nu16091289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Zinc deficiency affects the physical and intellectual development of school-age children, while studies on the effects on intestinal microbes and metabolites in school-age children have not been reported. School-age children were enrolled to conduct anthropometric measurements and serum zinc and serum inflammatory factors detection, and children were divided into a zinc deficiency group (ZD) and control group (CK) based on the results of serum zinc. Stool samples were collected to conduct metagenome, metabolome, and diversity analysis, and species composition analysis, functional annotation, and correlation analysis were conducted to further explore the function and composition of the gut flora and metabolites of children with zinc deficiency. Beta-diversity analysis revealed a significantly different gut microbial community composition between ZD and CK groups. For instance, the relative abundances of Phocaeicola vulgatus, Alistipes putredinis, Bacteroides uniformis, Phocaeicola sp000434735, and Coprococcus eutactus were more enriched in the ZD group, while probiotic bacteria Bifidobacterium kashiwanohense showed the reverse trend. The functional profile of intestinal flora was also under the influence of zinc deficiency, as reflected by higher levels of various glycoside hydrolases in the ZD group. In addition, saccharin, the pro-inflammatory metabolites, and taurocholic acid, the potential factor inducing intestinal leakage, were higher in the ZD group. In conclusion, zinc deficiency may disturb the gut microbiome community and metabolic function profile of school-age children, potentially affecting human health.
Collapse
Affiliation(s)
- Xiaoqi Chai
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Xiaohui Chen
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Tenglong Yan
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Qian Zhao
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Binshuo Hu
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Zhongquan Jiang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Wei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550000, China
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| |
Collapse
|
4
|
Zhou S, Chai P, Dong X, Liang Z, Yang Z, Li J, Teng G, Sun S, Xu M, Zheng ZJ, Wang J, Zhang Z, Chen K. Drinking water quality and inflammatory bowel disease: a prospective cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:71171-71183. [PMID: 37160856 DOI: 10.1007/s11356-023-27460-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
Environmental factors, such as drinking water and diets, play an important role in the development of inflammatory bowel disease (IBD). This study aimed to investigate the associations of metal elements and disinfectants in drinking water with the risk of inflammatory bowel disease (IBD) and to assess whether diet influences these associations. We conducted a prospective cohort study including 22,824 participants free from IBD from the Yinzhou cohort study in the 2016-2022 period with an average follow-up of 5.24 years. The metal and disinfectant concentrations were measured in local pipeline terminal tap water samples. Cox regression models adjusted for multi-level covariates were used to estimate adjusted hazard ratios (aHRs) and 95% confidence intervals (95% CIs). During an average follow-up period of 5.24 years, 46 cases of IBD were identified. For every 1 standard deviation (SD) increase in the concentration of manganese, mercury, selenium, sulfur tetraoxide (SO4), chlorine, and nitrate nitrogen (NO3_N) were associated with a higher risk of IBD with the HRs of 1.45 (95% CI: 1.14 to 1.84), 1.51 (95% CI: 1.24-1.82), 1.29 (95% CI: 1.03-1.61), 1.52 (95% CI: 1.26-1.83), 1.26 (95% CI: 1.18-1.34), and 1.66 (95% CI: 1.32-2.09), whereas zinc and fluorine were inversely associated with IBD with the HRs of 0.42 (95% CI: 0.24 to 0.73) and 0.68 (95% CI: 0.54-0.84), respectively. Stronger associations were observed in females, higher income groups, low education groups, former drinkers, and participants who never drink tea. Diets have a moderating effect on the associations of metal and nonmetal elements with the risk of IBD. We found significant associations between exposure to metals and disinfectants and IBD. Diets regulated the associations to some extent.
Collapse
Affiliation(s)
- Shuduo Zhou
- Department of Global Health, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China
- Institute for Global Health and Development, Peking University, Beijing, China
| | - Pengfei Chai
- The Center for Disease Control and Prevention of Yinzhou District, Ningbo, Zhejiang, China
| | - Xuejie Dong
- Department of Global Health, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China
- Institute for Global Health and Development, Peking University, Beijing, China
| | - Zhisheng Liang
- Department of Global Health, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China
| | - Zongming Yang
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, China
| | - Junxia Li
- Department of Gastroenterology, Peking University First Hospital, Beijing, 100034, China
| | - Guigen Teng
- Department of Gastroenterology, Peking University First Hospital, Beijing, 100034, China
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ming Xu
- Department of Global Health, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China
- Institute for Global Health and Development, Peking University, Beijing, China
| | - Zhi-Jie Zheng
- Department of Global Health, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China
- Institute for Global Health and Development, Peking University, Beijing, China
| | - Jianbing Wang
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, China
- Department of Epidemiology and Biostatistics, and National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhenyu Zhang
- Department of Global Health, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing, 100191, China.
- Institute for Global Health and Development, Peking University, Beijing, China.
| | - Kun Chen
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, China
- Department of Epidemiology and Biostatistics, and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
5
|
Tizhe EV, Igbokwe IO, Njoku CO, Fatihu MY, Tizhe UD, Ibrahim NDG, Unanam ES, Korzerzer RM. Effect of zinc supplementation on immunotoxicity induced by subchronic oral exposure to glyphosate-based herbicide (GOBARA®) in Wistar rats. J Int Med Res 2023; 51:3000605221147188. [PMID: 36636770 PMCID: PMC9841866 DOI: 10.1177/03000605221147188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVES To evaluate the effect of zinc supplementation on immunotoxicity induced by subchronic oral exposure to glyphosate-based herbicide (GBH). METHODS Sixty adult male Wistar rats randomly divided equally into six groups were exposed to GBH by gavage daily for 16 weeks with or without zinc pretreatment. Group DW rats received distilled water (2 mL/kg), group Z rats received zinc (50 mg/kg), and group G1 and G2 rats received 187.5 and 375 mg/kg GBH, respectively. Group ZG1 and ZG2 rats were pretreated with 50 mg/kg zinc before exposure to 187.5 and 375 mg/kg GBH, respectively. Tumor necrosis factor alpha (TNF-α) and immunoglobulin (IgG, IgM, IgE) levels were measured by enzyme-linked immunosorbent assay. Spleen, submandibular lymph node, and thymus samples were processed for histopathology. RESULTS Exposure to GBH (G1 and G2) significantly increased serum TNF-α concentrations and significantly decreased serum IgG and IgM concentrations compared with the control levels. Moderate-to-severe lymphocyte depletion occurred in the spleen, lymph nodes, and thymus in the GBH-exposed groups. Zinc supplementation mitigated the immunotoxic effects of GBH exposure. CONCLUSIONS GBH exposure increased pro-inflammatory cytokine responses, decreased immunoglobulin production, and depleted lymphocytes in lymphoid organs in rats, but zinc supplementation mitigated this immunotoxicity.
Collapse
Affiliation(s)
- Emmanuel V Tizhe
- Department of Veterinary Microbiology and Pathology, Faculty of Veterinary Medicine, University of Jos, Jos, Plateau State, Nigeria,Emmanuel Vandi Tizhe, Department of Veterinary Microbiology and Pathology, Faculty of Veterinary Medicine, Naraguta Campus, Ground Floor Room 3, University of Jos, P.M.B 2084, Jos, Plateau State 930001, Nigeria.
| | - Ikechukwu O Igbokwe
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - Celestine O Njoku
- Department of Veterinary Microbiology and Pathology, Faculty of Veterinary Medicine, University of Jos, Jos, Plateau State, Nigeria
| | - Mohammed Y Fatihu
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Ussa D Tizhe
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Najume DG Ibrahim
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Essienifiok S Unanam
- Department of Veterinary Medicine, Surgery and Radiology, Faculty of Veterinary Medicine, University of Jos, Jos, Plateau State, Nigeria
| | - Rachel M Korzerzer
- Department of Veterinary Anatomy, College of Veterinary Medicine, University of Agriculture, Makurdi, Benue State, Nigeria
| |
Collapse
|
6
|
Andrews-Guzmán M, Ruz M, Arredondo-Olguín M. Zinc Modulates the Response to Apoptosis in an In Vitro Model with High Glucose and Inflammatory Stimuli in C2C12 Cells. Biol Trace Elem Res 2021; 199:2288-2294. [PMID: 32840726 DOI: 10.1007/s12011-020-02348-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
Apoptosis is programmed cell death and its alteration is related to cancer, neurologic, autoimmune, and chronic diseases. A number of factors can affect this process. The aim of this paper is to study the effect of supplemental zinc on apoptosis-related genes in C2C12 myoblast cells after being challenged with a series of stimuli, such as high glucose, insulin, and an inflammatory agent. C2C12 myoblast cells were cultured for 24 h with zinc (Zn) (ZnSO4) 10 or 100 μM and/or glucose 10 or 30 mM. In addition to these stimuli, the cells were challenged with insulin 1 nM or interleukin-6 (IL-6) 5 nM. The mRNA expression of proapoptotic genes caspase 3 and Fas, the antiapoptotic genes, Xiap and Bcl-xL and the ratio of pro-/antiapoptotic genes Bax/Bcl-2, were determined by qRT-PCR. The expression of caspase-3 gene was significantly increased in the presence of the combination high Zn/high glucose with and without the presence of insulin and IL6 in the culture medium Fas expression instead, showed uneven responses. The expression of Bcl-xL and Xiap was increased in most conditions by having high Zn in the medium regardless of the presence of insulin or IL6. Bax/Bcl2 ratio was decreased in the presence of high Zn. Zn was able to stimulate the expression of antiapoptotic genes. This effect was specially noted in high-glucose conditions with and without the presence of insulin. This effect is partially overridden by the presence of an inflammatory agent such as IL-6.
Collapse
Affiliation(s)
- Mónica Andrews-Guzmán
- Micronutrient Laboratory, Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Manuel Ruz
- Department of Nutrition, Faculty of Medicine, University of Chile, Avenida Independencia 1027, Independencia, Santiago, Chile
| | - Miguel Arredondo-Olguín
- Micronutrient Laboratory, Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago, Chile.
| |
Collapse
|
7
|
Sharma L, Riva A. Intestinal Barrier Function in Health and Disease-Any role of SARS-CoV-2? Microorganisms 2020; 8:E1744. [PMID: 33172188 PMCID: PMC7694956 DOI: 10.3390/microorganisms8111744] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Alterations in the structure and function of the intestinal barrier play a role in the pathogenesis of a multitude of diseases. During the recent and ongoing coronavirus disease (COVID-19) pandemic, it has become clear that the gastrointestinal system and the gut barrier may be affected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, and disruption of barrier functions or intestinal microbial dysbiosis may have an impact on the progression and severity of this new disease. In this review, we aim to provide an overview of current evidence on the involvement of gut alterations in human disease including COVID-19, with a prospective outlook on supportive therapeutic strategies that may be investigated to rescue intestinal barrier functions and possibly facilitate clinical improvement in these patients.
Collapse
Affiliation(s)
- Lakshya Sharma
- Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, UK;
| | - Antonio Riva
- Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, UK;
- Foundation for Liver Research, Institute of Hepatology, London SE5 9NT, UK
| |
Collapse
|
8
|
He Y, Li X, Yu H, Ge Y, Liu Y, Qin X, Jiang M, Wang X. The Functional Role of Fecal Microbiota Transplantation on Dextran Sulfate Sodium-Induced Colitis in Mice. Front Cell Infect Microbiol 2019; 9:393. [PMID: 31803633 PMCID: PMC6873233 DOI: 10.3389/fcimb.2019.00393] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022] Open
Abstract
Increasingly studies revealed that dysbiosis of gut microbiota plays a pivotal role in the pathogenesis of ulcerative colitis (UC). Fecal microbiota transplantation (FMT) has drawn more and more attention and become an important therapeutic approach. This study aims to examine the facts about the effective components and look into potential mechanisms of FMT. Colitis was induced by 3% (w/v) dextran sulfate sodium (DSS) in drinking water for 7 days. Colitis mice were administered by oral gavage with fecal suspension, fecal supernatant, fecal bacteria, or boiling-killed fecal bacteria from healthy controls and the disease activity index was monitored daily. On the seventh day, mice were euthanized. The length, histological score, parameters related to inflammation, gut barrier functions of the colon, activities of digestive protease and β-glucuronidase in feces were measured. All of the four fecal components showed certain degree of efficacy in DSS-induced colitis, while transplantation of fecal suspension showed the most potent effect as demonstrated by less body weight loss, lower disease activity scores, more expression of tight junction proteins and TRAF6 and IκBα, less expression of TNF-α, IL-1β, IL-10, TLR-4, and MyD88 in gut tissue, as well as restoration of fecal β-glucuronidase and decreases in fecal digestive proteases. These results provide a novel insight into the possible mechanism of FMT and may help to improve and optimize clinical use of FMT.
Collapse
Affiliation(s)
- Yan He
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, China
| | - Xueting Li
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, China
| | - Hengyuan Yu
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, China
| | - Yixuan Ge
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, China
| | - Yuanli Liu
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, China
| | - Xiaofa Qin
- GI Biopharma Inc., Westfield, NJ, United States
| | - Mingshan Jiang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiuhong Wang
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Sundman MH, Chen NK, Subbian V, Chou YH. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain Behav Immun 2017; 66:31-44. [PMID: 28526435 DOI: 10.1016/j.bbi.2017.05.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/25/2017] [Accepted: 05/10/2017] [Indexed: 02/06/2023] Open
Abstract
As head injuries and their sequelae have become an increasingly salient matter of public health, experts in the field have made great progress elucidating the biological processes occurring within the brain at the moment of injury and throughout the recovery thereafter. Given the extraordinary rate at which our collective knowledge of neurotrauma has grown, new insights may be revealed by examining the existing literature across disciplines with a new perspective. This article will aim to expand the scope of this rapidly evolving field of research beyond the confines of the central nervous system (CNS). Specifically, we will examine the extent to which the bidirectional influence of the gut-brain axis modulates the complex biological processes occurring at the time of traumatic brain injury (TBI) and over the days, months, and years that follow. In addition to local enteric signals originating in the gut, it is well accepted that gastrointestinal (GI) physiology is highly regulated by innervation from the CNS. Conversely, emerging data suggests that the function and health of the CNS is modulated by the interaction between 1) neurotransmitters, immune signaling, hormones, and neuropeptides produced in the gut, 2) the composition of the gut microbiota, and 3) integrity of the intestinal wall serving as a barrier to the external environment. Specific to TBI, existing pre-clinical data indicates that head injuries can cause structural and functional damage to the GI tract, but research directly investigating the neuronal consequences of this intestinal damage is lacking. Despite this void, the proposed mechanisms emanating from a damaged gut are closely implicated in the inflammatory processes known to promote neuropathology in the brain following TBI, which suggests the gut-brain axis may be a therapeutic target to reduce the risk of Chronic Traumatic Encephalopathy and other neurodegenerative diseases following TBI. To better appreciate how various peripheral influences are implicated in the health of the CNS following TBI, this paper will also review the secondary biological injury mechanisms and the dynamic pathophysiological response to neurotrauma. Together, this review article will attempt to connect the dots to reveal novel insights into the bidirectional influence of the gut-brain axis and propose a conceptual model relevant to the recovery from TBI and subsequent risk for future neurological conditions.
Collapse
Affiliation(s)
- Mark H Sundman
- Department of Psychology, University of Arizona, Tucson, AZ, USA.
| | - Nan-Kuei Chen
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Vignesh Subbian
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA; Department of Systems and Industrial Engineering, University of Arizona, Tucson, AZ, USA
| | - Ying-Hui Chou
- Department of Psychology, University of Arizona, Tucson, AZ, USA; Cognitive Science Program, University of Arizona, Tucson, AZ, USA; Arizona Center on Aging, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
10
|
Zhong W, Li Q, Sun Q, Zhang W, Zhang J, Sun X, Yin X, Zhang X, Zhou Z. Preventing Gut Leakiness and Endotoxemia Contributes to the Protective Effect of Zinc on Alcohol-Induced Steatohepatitis in Rats. J Nutr 2015; 145:2690-8. [PMID: 26468492 PMCID: PMC4656905 DOI: 10.3945/jn.115.216093] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Zinc deficiency has been well documented in alcoholic liver disease. OBJECTIVE This study was undertaken to determine whether dietary zinc supplementation provides beneficial effects in treating alcohol-induced gut leakiness and endotoxemia. METHODS Male Sprague Dawley rats were divided into 3 groups and pair-fed (PF) Lieber-DeCarli liquid diet for 8 wk: 1) control (PF); 2) alcohol-fed (AF; 5.00-5.42% wt:vol ethanol); and 3) AF with zinc supplementation (AF/Zn) at 220 ppm zinc sulfate heptahydrate. The PF and AF/Zn groups were pair-fed with the AF group. Hepatic inflammation and endotoxin signaling were determined by immunofluorescence and quantitative polymerase chain reaction (qPCR). Alterations in intestinal tight junctions and aldehyde dehydrogenases were assessed by qPCR and Western blot analysis. RESULTS The AF rats had greater macrophage activation and cytokine production (P < 0.05) in the liver compared with the PF rats, whereas the AF/Zn rats showed no significant differences (P > 0.05). Plasma endotoxin concentrations of the AF rats were 136% greater than those of the PF rats, whereas the AF/Zn rats did not differ from the PF rats. Ileal permeability was 255% greater in the AF rats and 19% greater in the AF/Zn rats than in the PF rats. The AF group had reduced intestinal claudin-1, occludin, and zona occludens-1 (ZO-1) expression, and the AF/Zn group had upregulated claudin-1 and ZO-1 expression (P < 0.05) compared with the PF group. The intestinal epithelial expression and activity of aldehyde dehydrogenases were elevated (P < 0.05) in the AF/Zn rats compared with those of the AF rats. Furthermore, the ileal expression and function of hepatocyte nuclear factor 4α, which was impaired in the AF group, was significantly elevated in the AF/Zn group compared with the PF group. CONCLUSIONS The results demonstrate that attenuating hepatic endotoxin signaling by preserving the intestinal barrier contributes to the protective effect of zinc on alcohol-induced steatohepatitis in rats.
Collapse
Affiliation(s)
- Wei Zhong
- Center for Translational Biomedical Research and
| | - Qiong Li
- Center for Translational Biomedical Research and
| | - Qian Sun
- Center for Translational Biomedical Research and,Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC; and
| | | | - Jiayang Zhang
- Department of Chemistry, University of Louisville, Louisville, KY
| | - Xinguo Sun
- Center for Translational Biomedical Research and
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, KY
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, KY
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research and Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC; and
| |
Collapse
|
11
|
Abstract
IBD, comprising Crohn's disease and ulcerative colitis, is a chronic immunologically mediated disease at the intersection of complex interactions between genetics, environment and gut microbiota. Established high-prevalence populations of IBD in North America and Europe experienced the steepest increase in incidence towards the second half of the twentieth century. Furthermore, populations previously considered 'low risk' (such as in Japan and India) are witnessing an increase in incidence. Potentially relevant environmental influences span the spectrum of life from mode of childbirth and early-life exposures (including breastfeeding and antibiotic exposure in infancy) to exposures later on in adulthood (including smoking, major life stressors, diet and lifestyle). Data support an association between smoking and Crohn's disease whereas smoking cessation, but not current smoking, is associated with an increased risk of ulcerative colitis. Dietary fibre (particularly fruits and vegetables), saturated fats, depression and impaired sleep, and low vitamin D levels have all been associated with incident IBD. Interventional studies assessing the effects of modifying these risk factors on natural history and patient outcomes are an important unmet need. In this Review, the changing epidemiology of IBD, mechanisms behind various environmental associations and interventional studies to modify risk factors and disease course are discussed.
Collapse
Affiliation(s)
- Ashwin N Ananthakrishnan
- Massachusetts General Hospital Crohn's and Colitis Centre, 165 Cambridge Street, 9th Floor, Boston, MA 02114, USA
| |
Collapse
|
12
|
Skrovanek S, DiGuilio K, Bailey R, Huntington W, Urbas R, Mayilvaganan B, Mercogliano G, Mullin JM. Zinc and gastrointestinal disease. World J Gastrointest Pathophysiol 2014; 5:496-513. [PMID: 25400994 PMCID: PMC4231515 DOI: 10.4291/wjgp.v5.i4.496] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/18/2014] [Accepted: 10/01/2014] [Indexed: 02/06/2023] Open
Abstract
This review is a current summary of the role that both zinc deficiency and zinc supplementation can play in the etiology and therapy of a wide range of gastrointestinal diseases. The recent literature describing zinc action on gastrointestinal epithelial tight junctions and epithelial barrier function is described. Zinc enhancement of gastrointestinal epithelial barrier function may figure prominently in its potential therapeutic action in several gastrointestinal diseases.
Collapse
|
13
|
Abstract
Inflammatory bowel disease includes ulcerative colitis and Crohn's disease, which are both inflammatory disorders of the gastrointestinal tract. Both types of inflammatory bowel disease have a complex etiology, resulting from a genetically determined susceptibility interacting with environmental factors, including the diet and gut microbiota. Genome Wide Association Studies have implicated more than 160 single-nucleotide polymorphisms in disease susceptibility. Consideration of the different pathways suggested to be involved implies that specific dietary interventions are likely to be appropriate, dependent upon the nature of the genes involved. Epigenetics and the gut microbiota are also responsive to dietary interventions. Nutrigenetics may lead to personalized nutrition for disease prevention and treatment, while nutrigenomics may help to understand the nature of the disease and individual response to nutrients.
Collapse
Affiliation(s)
- Lynnette R Ferguson
- Discipline of Nutrition, Faculty of Medical & Health Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand and Nutrigenomics New Zealand, Auckland, New Zealand.
| |
Collapse
|