Copyright
©2014 Baishideng Publishing Group Inc. All rights reserved.
World J Radiol. Jun 28, 2014; 6(6): 252-260
Published online Jun 28, 2014. doi: 10.4329/wjr.v6.i6.252
Published online Jun 28, 2014. doi: 10.4329/wjr.v6.i6.252
Congenital hyperinsulinism: Role of fluorine-18L-3, 4 hydroxyphenylalanine positron emission tomography scanning
Jaya Sujatha Gopal-Kothandapani, Department of Paediatric Endocrinology, Royal Manchester Children’s Hospital, Manchester M13 9WL, United Kingdom
Khalid Hussain, Department of Paediatric Endocrinology, Great Ormond Street Hospital for Children NHS Trust and the Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
Khalid Hussain, Developmental Endocrinology Research Group, Molecular Genetics Unit, Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
Author contributions: Gopal-Kothandapani JS drafted the article; and Hussain K reviewed it critically, revised and approved the final version
Correspondence to: Dr. Khalid Hussain, Reader in Paediatric Endocrinology, Developmental Endocrinology Research Group, Molecular Genetics Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, United Kingdom. khalid.hussain@ucl.ac.uk
Telephone: +44-20-79052128 Fax: +44-20-74046191
Received: February 11, 2014
Revised: March 19, 2014
Accepted: May 16, 2014
Published online: June 28, 2014
Processing time: 136 Days and 16.9 Hours
Revised: March 19, 2014
Accepted: May 16, 2014
Published online: June 28, 2014
Processing time: 136 Days and 16.9 Hours
Core Tip
Core tip: This manuscript describes how the advent of fluorine-18L-3, 4-hydroxyphenylalanine positron emission tomography (18F-DOPA-PET) scanning has revolutionised the management of patients with a very complex condition called congenital hyperinsulinism. 18F-DOPA-PET scanning allows the accurate pre-operative localisation of the focal lesion in these patients which can then be surgically removed allowing complete cure from the hypoglycaemia.