Hansmann J, Apfaltrer P, Zoellner FG, Henzler T, Meyer M, Weisser G, Schoenberg SO, Attenberger UI. Correlation analysis of dual-energy CT iodine maps with quantitative pulmonary perfusion MRI. World J Radiol 2013; 5(5): 202-207 [PMID: 23805370 DOI: 10.4329/wjr.v5.i5.202]
Corresponding Author of This Article
Jan Hansmann, MD, Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany. jan.hansmann@medma.uni-heidelberg.de
Research Domain of This Article
Radiology, Nuclear Medicine & Medical Imaging
Article-Type of This Article
Brief Article
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Radiol. May 28, 2013; 5(5): 202-207 Published online May 28, 2013. doi: 10.4329/wjr.v5.i5.202
Correlation analysis of dual-energy CT iodine maps with quantitative pulmonary perfusion MRI
Jan Hansmann, Paul Apfaltrer, Frank G Zoellner, Thomas Henzler, Mathias Meyer, Gerald Weisser, Stefan O Schoenberg, Ulrike I Attenberger
Jan Hansmann, Paul Apfaltrer, Thomas Henzler, Mathias Meyer, Gerald Weisser, Stefan O Schoenberg, Ulrike I Attenberger, Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
Frank G Zoellner, Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
Author contributions: All authors made substantial contributions to the conception and design of the study, drafting or revising the article critically for important intellectual content; Hansmann J, Apfaltrer P, Zoellner FG and Attenberger UI contributed to the data analysis and interpretation.
Correspondence to: Jan Hansmann, MD, Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany. jan.hansmann@medma.uni-heidelberg.de
Telephone: +49-621-3832067 Fax: +49-621-3833817
Received: January 14, 2013 Revised: May 3, 2013 Accepted: May 16, 2013 Published online: May 28, 2013 Processing time: 144 Days and 7.6 Hours
Core Tip
Core tip: Dual-energy derived iodine maps and dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) may allow evaluation of pulmonary perfusion. Hypothetical the decrease in pulmonary perfusion detected on DCE-derived iodine maps would correlate highly with perfusion parameters derived from DCE-MRI in patients with restricted pulmonary perfusion. However, against our hypothesis, we did not find a significant correlation between pulmonary perfusion defects detected on dual-energy computed tomography-derived iodine maps and perfusion parameters derived from time-resolved MRI. In addition, there was only a moderate level of visual correlation. This is in contrast with prior studies that investigated the role of pulmonary iodine maps to serve as an additional tool providing a functional evaluation of pulmonary perfusion.