Published online Jun 28, 2016. doi: 10.4329/wjr.v8.i6.588
Peer-review started: August 4, 2015
First decision: September 28, 2015
Revised: March 2, 2016
Accepted: March 17, 2016
Article in press: March 18, 2016
Published online: June 28, 2016
Processing time: 324 Days and 14.9 Hours
AIM: To characterize the effects of iodinated contrast material (ICM) on magnetic resonance imaging (MRI) comparing different sequences and magnetic fields, with emphasis to similarities/differences with well-known signal characteristics of hemorrhage in the brain.
METHODS: Aliquots of iopamidol and iodixanol mixed with normal saline were scanned at 1.5T and 3T. Signal intensity (SI) was measured using similar spin-echo (SE)-T1, SE-T2, gradient-echo (GRE) and fluid-attenuation-inversion-recovery (FLAIR) sequences at both magnets. Contrast to noise ratio (CNR) (SI contrast-SI saline/SD noise) for each aliquot were calculated and Kruskall-wallis test and graphic analysis was used to compare different pulse sequences and ICMs.
RESULTS: Both ICM showed increased SI on SE-T1 and decreased SI on SE-T2, GRE and FLAIR at both 1.5T and 3T, as the concentration was increased. By CNR measurements, SE-T2 had the greatest conspicuity at 3T with undiluted iopamidol (92.6 ± 0.3, P < 0.00) followed by iodixanol (77.5 ± 0.9, P < 0.00) as compared with other sequences (CNR range: 15-40). While SE-T2 had greatest conspicuity at 1.5T with iopamidol (49.3 ± 1, P < 0.01), SE-T1 showed similar or slightly better conspicuity (20.8 ± 4) than SE-T2 with iodixanol (23 ± 1.7). In all cases, hypo-intensity on GRE was less conspicuous than on SE-T2.
CONCLUSION: Iodixanol and iopamidol shorten T1 and T2 relaxation times at both 1.5T and 3T. Hypo-intensity due to shortened T2 relaxation time is significantly more conspicuous than signal changes on T1-WI, FLAIR or GRE. Variations in signal conspicuity according to pulse sequence and to type of ICM are exaggerated at 3T. We postulate T2 hypointensity with less GRE conspicuity differentiates ICM from hemorrhage; given the well-known GRE hypointensity of hemorrhage. Described signal changes may be relevant in the setting of recent intra-arterial or intravenous ICM administration in translational research and/or human stroke therapy.
Core tip: After recent groundbreaking stroke clinical trials have shown positive outcomes with endovascular therapy, the use of imaging, particularly magnetic resonance imaging (MRI) is expected to increase in this setting. Iodinated contrast material (ICM) is inherent to this scenario and can be deposited in the brain after intra-arterial or intra-venous injection. Differentiation of ICM from hemorrhagic changes is of upmost clinical importance. This paper demonstrates the signal characteristics of in vitro ICM with routine MR sequences [including not previously reported changes on gradient-echo (GRE)]. Changes at high magnetic field (3T) are to the best of our knowledge described for the first time, with T2 hypo intensity as the signal change with greatest conspicuity as compared with other routine brain sequences. Furthermore, no significant conspicuity/hypo intensity on GRE is demonstrate and postulated as a way to differentiate contrast deposition (T2 hypo intensity or T1 hyper intensity) from hemorrhagic changes.