Published online Feb 28, 2016. doi: 10.4329/wjr.v8.i2.148
Peer-review started: June 7, 2015
First decision: August 16, 2015
Revised: September 6, 2015
Accepted: December 17, 2015
Article in press: December 18, 2015
Published online: February 28, 2016
Processing time: 264 Days and 17.9 Hours
Abdominal aortic aneurysm is a common pathology in the aging population of the developed world which carries a significant mortality in excess of 80% in case of rupture. Aneurysmal disease probably represents the only surgical condition in which size is such a critical determinant of the need for intervention and therefore the ability to accurately and reproducibly record aneurysm size and growth over time is of outmost importance. In the same time that imaging techniques may be limited by intra- and inter-observer variability and there may be inconsistencies due to different modalities [ultrasound, computed tomography (CT)], rapid technologic advancement have taken aortic imaging to the next level. Digital imaging, multi-detector scanners, thin slice CT and most- importantly the ability to perform 3-dimensional reconstruction and image post-processing have currently become widely available rendering most of the imaging modalities used in the past out of date. The aim of the current article is to report on various imaging methods and current state of the art techniques used to record aneurysm size and growth. Moreover we aim to emphasize on the future research directions and report on techniques which probably will be widely used and incorporated in clinical practice in the near future.
Core tip: Abdominal aortic aneurysms probably represent the only surgical condition in which size is such a critical determinant of the need for intervention. Recent advances in imaging techniques have raised new possibilities in medical imaging regarding aneurysmal disease making size recordings more accurate and reproducible than ever. This review article summarizes available techniques, reports state of the art imaging modalities and discusses future perspectives regarding aortic aneurysms’ imaging and decision making.