Published online Feb 28, 2019. doi: 10.4329/wjr.v11.i2.19
Peer-review started: November 30, 2018
First decision: January 4, 2019
Revised: January 14, 2019
Accepted: January 26, 2019
Article in press: January 27, 2019
Published online: February 28, 2019
Processing time: 91 Days and 16.6 Hours
Artificial intelligence (AI) is gaining extensive attention for its excellent performance in image-recognition tasks and increasingly applied in breast ultrasound. AI can conduct a quantitative assessment by recognizing imaging information automatically and make more accurate and reproductive imaging diagnosis. Breast cancer is the most commonly diagnosed cancer in women, severely threatening women’s health, the early screening of which is closely related to the prognosis of patients. Therefore, utilization of AI in breast cancer screening and detection is of great significance, which can not only save time for radiologists, but also make up for experience and skill deficiency on some beginners. This article illustrates the basic technical knowledge regarding AI in breast ultrasound, including early machine learning algorithms and deep learning algorithms, and their application in the differential diagnosis of benign and malignant masses. At last, we talk about the future perspectives of AI in breast ultrasound.
Core tip: Artificial intelligence (AI) is gaining extensive attention for its excellent performance in image-recognition tasks and increasingly applied in breast ultrasound. In this review, we summarize the current knowledge of AI in breast ultrasound, including the technical aspects, and its applications in the differentiation between benign and malignant breast masses. In the meanwhile, we also discuss the future perspectives, such as combining with elastography and contrast-enhanced ultrasound, to improve the performance of AI in breast ultrasound.