1
|
Jiang Y, Wang C, Zu C, Rong X, Yu Q, Jiang J. Synergistic Potential of Nanomedicine in Prostate Cancer Immunotherapy: Breakthroughs and Prospects. Int J Nanomedicine 2024; 19:9459-9486. [PMID: 39371481 PMCID: PMC11456300 DOI: 10.2147/ijn.s466396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Given the global prevalence of prostate cancer in men, it is crucial to explore more effective treatment strategies. Recently, immunotherapy has emerged as a promising cancer treatment due to its unique mechanism of action and potential long-term effectiveness. However, its limited efficacy in prostate cancer has prompted renewed interest in developing strategies to improve immunotherapy outcomes. Nanomedicine offers a novel perspective on cancer treatment with its unique size effects and surface properties. By employing targeted delivery, controlled release, and enhanced immunogenicity, nanoparticles can be synergized with nanomedicine platforms to amplify the effectiveness of immunotherapy in treating prostate cancer. Simultaneously, nanotechnology can address the limitations of immunotherapy and the challenges of immune escape and tumor microenvironment regulation. Additionally, the synergistic effects of combining nanomedicine with other therapies offer promising clinical outcomes. Innovative applications of nanomedicine include smart nanocarriers, stimulus-responsive systems, and precision medicine approaches to overcome translational obstacles in prostate cancer immunotherapy. This review highlights the transformative potential of nanomedicine in enhancing prostate cancer immunotherapy and emphasizes the need for interdisciplinary collaboration to drive research and clinical applications forward.
Collapse
Affiliation(s)
- Yueyao Jiang
- Department of Pharmacy, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Chengran Wang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Chuancheng Zu
- China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Xin’ao Rong
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Qian Yu
- Department of Pharmacy, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Jinlan Jiang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| |
Collapse
|
2
|
Adekiya TA, Owoseni O. Emerging frontiers in nanomedicine targeted therapy for prostate cancer. Cancer Treat Res Commun 2023; 37:100778. [PMID: 37992539 DOI: 10.1016/j.ctarc.2023.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Prostate cancer is a prevalent cancer in men, often treated with chemotherapy. However, it tumor cells are clinically grows slowly and is heterogeneous, leading to treatment resistance and recurrence. Nanomedicines, through targeted delivery using nanocarriers, can enhance drug accumulation at the tumor site, sustain drug release, and counteract drug resistance. In addition, combination therapy using nanomedicines can target multiple cancer pathways, improving effectiveness and addressing tumor heterogeneity. The application of nanomedicine in prostate cancer treatment would be an important strategy in controlling tumor dynamic process as well as improve survival. Thus, this review highlights therapeutic nanoparticles as a solution for prostate cancer chemotherapy, exploring targeting strategies and approaches to combat drug resistance.
Collapse
Affiliation(s)
- Tayo Alex Adekiya
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, United States.
| | - Oluwanifemi Owoseni
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, United States
| |
Collapse
|
3
|
Kerr BN, Duffy D, McInerney CE, Hutchinson A, Dabaja I, Bazzi R, Roux S, Prise KM, Butterworth KT. Evaluation of Radiosensitization and Cytokine Modulation by Differentially PEGylated Gold Nanoparticles in Glioblastoma Cells. Int J Mol Sci 2023; 24:10032. [PMID: 37373179 DOI: 10.3390/ijms241210032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma (GBM) is known as the most aggressive type of malignant brain tumour, with an extremely poor prognosis of approximately 12 months following standard-of-care treatment with surgical resection, radiotherapy (RT), and temozolomide treatment. Novel RT-drug combinations are urgently needed to improve patient outcomes. Gold nanoparticles (GNPs) have demonstrated significant preclinical potential as radiosensitizers due to their unique physicochemical properties and their ability to pass the blood-brain barrier. The modification of GNP surface coatings with poly(ethylene) glycol (PEG) confers several therapeutic advantages including immune avoidance and improved cellular localisation. This study aimed to characterise both the radiosensitizing and immunomodulatory properties of differentially PEGylated GNPs in GBM cells in vitro. Two GBM cell lines were used, U-87 MG and U-251 MG. The radiobiological response was evaluated by clonogenic assay, immunofluorescent staining of 53BP1 foci, and flow cytometry. Changes in the cytokine expression levels were quantified by cytokine arrays. PEGylation improved the radiobiological efficacy, with double-strand break induction being identified as an underlying mechanism. PEGylated GNPs also caused the greatest boost in RT immunogenicity, with radiosensitization correlating with a greater upregulation of inflammatory cytokines. These findings demonstrate the radiosensitizing and immunostimulatory potential of ID11 and ID12 as candidates for RT-drug combination in future GBM preclinical investigations.
Collapse
Affiliation(s)
- Bríanna N Kerr
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, Northern Ireland, UK
| | - Daniel Duffy
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, Northern Ireland, UK
| | - Caitríona E McInerney
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, Northern Ireland, UK
| | - Ashton Hutchinson
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, Northern Ireland, UK
| | - Inaya Dabaja
- Institute Utinam, UMR 6213 CNRS-UFC, University of Franche, 25000 Comté, France
| | - Rana Bazzi
- Institute Utinam, UMR 6213 CNRS-UFC, University of Franche, 25000 Comté, France
| | - Stéphane Roux
- Institute Utinam, UMR 6213 CNRS-UFC, University of Franche, 25000 Comté, France
| | - Kevin M Prise
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, Northern Ireland, UK
| | - Karl T Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, Northern Ireland, UK
| |
Collapse
|
4
|
Durand M, Chateau A, Jubréaux J, Devy J, Paquot H, Laurent G, Bazzi R, Roux S, Richet N, Reinhard-Ruch A, Chastagner P, Pinel S. Radiosensitization with Gadolinium Chelate-Coated Gold Nanoparticles Prevents Aggressiveness and Invasiveness in Glioblastoma. Int J Nanomedicine 2023; 18:243-261. [PMID: 36660336 PMCID: PMC9844821 DOI: 10.2147/ijn.s375918] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/23/2022] [Indexed: 01/15/2023] Open
Abstract
Purpose This study aimed to evaluate the radiosensitizing potential of Au@DTDTPA(Gd) nanoparticles when combined with conventional external X-ray irradiation (RT) to treat GBM. Methods Complementary biological models based on U87 spheroids including conventional 3D invasion assay, organotypic brain slice cultures, chronic cranial window model were implemented to investigate the impact of RT treatments (10 Gy single dose; 5×2 Gy or 2×5 Gy) combined with Au@DTDTPA(Gd) nanoparticles on tumor progression. The main tumor mass and its infiltrative area were analyzed. This work focused on the invading cancer cells after irradiation and their viability, aggressiveness, and recurrence potential were assessed using mitotic catastrophe quantification, MMP secretion analysis and neurosphere assays, respectively. Results In vitro clonogenic assays showed that Au@DTDTPA(Gd) nanoparticles exerted a radiosensitizing effect on U87 cells, and in vivo experiments suggested a benefit of the combined treatment "RT 2×5 Gy + Au@DTDTPA(Gd)" compared to RT alone. Invasion assays revealed that invasion distance tended to increase after irradiation alone, while the combined treatments were able to significantly reduce tumor invasion. Monitoring of U87-GFP tumor progression using organotypic cultures or intracerebral grafts confirmed the anti-invasive effect of Au@DTDTPA(Gd) on irradiated spheroids. Most importantly, the combination of Au@DTDTPA(Gd) with irradiation drastically reduced the number, the viability and the aggressiveness of tumor cells able to escape from U87 spheroids. Notably, the combined treatments significantly reduced the proportion of escaped cells with stem-like features that could cause recurrence. Conclusion Combining Au@DTDTPA(Gd) nanoparticles and X-ray radiotherapy appears as an attractive therapeutic strategy to decrease number, viability and aggressiveness of tumor cells that escape and can invade the surrounding brain parenchyma. Hence, Au@DTDTPA(Gd)-enhanced radiotherapy opens up interesting perspectives for glioblastoma treatment.
Collapse
Affiliation(s)
- Maxime Durand
- Université de Lorraine, CNRS, CRAN, Nancy, F-54000, France
| | - Alicia Chateau
- Université de Lorraine, CNRS, CRAN, Nancy, F-54000, France
| | | | - Jérôme Devy
- Université de Reims-Champagne-Ardennes, UMR CNRS/URCA 7369, MEDyC, Reims, F-51100, France
| | - Héna Paquot
- Université de Lorraine, CNRS, CRAN, Nancy, F-54000, France
| | - Gautier Laurent
- Université Bourgogne Franche-Comté, UMR 6213 CNRS-UBFC, UTINAM, Besançon, F-25000, France
| | - Rana Bazzi
- Université Bourgogne Franche-Comté, UMR 6213 CNRS-UBFC, UTINAM, Besançon, F-25000, France
| | - Stéphane Roux
- Université Bourgogne Franche-Comté, UMR 6213 CNRS-UBFC, UTINAM, Besançon, F-25000, France
| | - Nicolas Richet
- Université de Reims-Champagne-Ardennes, Plateau Technique Mobile de Cytométrie Environnementale MOBICYTE Mobicyte, Reims, F-51100, France
| | | | - Pascal Chastagner
- Université de Lorraine, CNRS, CRAN, Nancy, F-54000, France,CHRU de Nancy, Hôpital d’enfants - Brabois, Vandoeuvre-lès-Nancy, F-54500, France
| | - Sophie Pinel
- Université de Lorraine, CNRS, CRAN, Nancy, F-54000, France,Correspondence: Sophie Pinel, Email
| |
Collapse
|
5
|
Metal nanoparticles-assisted early diagnosis of diseases. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Freitas LF, Ferreira AH, Thipe VC, Varca GHC, Lima CSA, Batista JGS, Riello FN, Nogueira K, Cruz CPC, Mendes GOA, Rodrigues AS, Sousa TS, Alves VM, Lugão AB. The State of the Art of Theranostic Nanomaterials for Lung, Breast, and Prostate Cancers. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2579. [PMID: 34685018 PMCID: PMC8539690 DOI: 10.3390/nano11102579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
The synthesis and engineering of nanomaterials offer more robust systems for the treatment of cancer, with technologies that combine therapy with imaging diagnostic tools in the so-called nanotheranostics. Among the most studied systems, there are quantum dots, liposomes, polymeric nanoparticles, inorganic nanoparticles, magnetic nanoparticles, dendrimers, and gold nanoparticles. Most of the advantages of nanomaterials over the classic anticancer therapies come from their optimal size, which prevents the elimination by the kidneys and enhances their permeation in the tumor due to the abnormal blood vessels present in cancer tissues. Furthermore, the drug delivery and the contrast efficiency for imaging are enhanced, especially due to the increased surface area and the selective accumulation in the desired tissues. This property leads to the reduced drug dose necessary to exert the desired effect and for a longer action within the tumor. Finally, they are made so that there is no degradation into toxic byproducts and have a lower immune response triggering. In this article, we intend to review and discuss the state-of-the-art regarding the use of nanomaterials as therapeutic and diagnostic tools for lung, breast, and prostate cancer, as they are among the most prevalent worldwide.
Collapse
Affiliation(s)
- Lucas F. Freitas
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Aryel H. Ferreira
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
- MackGraphe-Graphene and Nanomaterial Research Center, Mackenzie Presbyterian University, Sao Paulo 01302-907, Brazil
| | - Velaphi C. Thipe
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Gustavo H. C. Varca
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Caroline S. A. Lima
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Jorge G. S. Batista
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Fabiane N. Riello
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Kamila Nogueira
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Cassia P. C. Cruz
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Giovanna O. A. Mendes
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Adriana S. Rodrigues
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Thayna S. Sousa
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Victoria M. Alves
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| | - Ademar B. Lugão
- Nuclear and Energy Research Institute, IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil; (A.H.F.); (V.C.T.); (C.S.A.L.); (J.G.S.B.); (F.N.R.); (K.N.); (C.P.C.C.); (G.O.A.M.); (A.S.R.); (T.S.S.); (V.M.A.); (A.B.L.)
| |
Collapse
|
7
|
Bennie LA, Feng J, Emmerson C, Hyland WB, Matchett KB, McCarthy HO, Coulter JA. Formulating RALA/Au nanocomplexes to enhance nanoparticle internalisation efficiency, sensitising prostate tumour models to radiation treatment. J Nanobiotechnology 2021; 19:279. [PMID: 34538237 PMCID: PMC8451112 DOI: 10.1186/s12951-021-01019-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Gold nanoparticles (AuNP) are effective radiosensitisers, however, successful clinical translation has been impeded by short systemic circulation times and poor internalisation efficiency. This work examines the potential of RALA, a short amphipathic peptide, to enhance the uptake efficiency of negatively charged AuNPs in tumour cells, detailing the subsequent impact of AuNP internalisation on tumour cell radiation sensitivity. RESULTS RALA/Au nanoparticles were formed by optimising the ratio of RALA to citrate capped AuNPs, with assembly occurring through electrostatic interactions. Physical nanoparticle characteristics were determined by UV-vis spectroscopy and dynamic light scattering. Nano-complexes successfully formed at w:w ratios > 20:1 (20 µg RALA:1 µg AuNP) yielding positively charged nanoparticles, sized < 110 nm with PDI values < 0.52. ICP-MS demonstrated that RALA enhanced AuNP internalisation by more than threefold in both PC-3 and DU145 prostate cancer cell models, without causing significant toxicity. Importantly, all RALA-AuNP formulations significantly increased prostate cancer cell radiosensitivity. This effect was greatest using the 25:1 RALA-AuNP formulation, producing a dose enhancement effect (DEF) of 1.54 in PC3 cells. Using clinical radiation energies (6 MV) RALA-AuNP also significantly augmented radiation sensitivity. Mechanistic studies support RALA-AuNP nuclear accumulation resulting in increased DNA damage yields. CONCLUSIONS This is the first study to demonstrate meaningful radiosensitisation using low microgram AuNP treatment concentrations. This effect was achieved using RALA, providing functional evidence to support our previous imaging study indicating RALA-AuNP nuclear accumulation.
Collapse
Affiliation(s)
- Lindsey A Bennie
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Jie Feng
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Christopher Emmerson
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Wendy B Hyland
- Western Health & Social Care Trust, North West Cancer Centre, Altnagelvin Hospital, Derry/Londonderry, BT47 6SB, Northern Ireland, UK
| | - Kyle B Matchett
- Northern Ireland Centre for Stratified Medicine, C-TRIC, Altnagelvin Hospital Campus, Derry/Londonderry, BT47 6SB, Northern Ireland, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Jonathan A Coulter
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
8
|
Parashar P, Singh N, Alka A, Maurya P, Saraf SA. An assessment of in-vitro and in-vivo evaluation methods for theranostic nanomaterials. Curr Pharm Des 2021; 28:78-90. [PMID: 34348616 DOI: 10.2174/1381612827666210804101720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/08/2021] [Indexed: 11/22/2022]
Abstract
Nanoparticles (NPs) as nanocarriers have emerged as novel and promising theranostic agents. The term theranostics revealed the properties of NPs capable of diagnosing the disease at an early stage and/or treating the disease. Such NPs are usually developed employing a surface engineering approach. The theranostic agents comprise NPs loaded with a drug/diagnostic agent that delivers it precisely to the target site. Theranostics is a field with promising results in enhancing therapeutic efficacy facilitated through higher payload at the targeted tissue, reduced dose, and dose-dependent side effects. However, controversies in terms of toxicity and size-dependent properties have often surfaced for NPs. Thus, a stringent in-vitro and in-vivo evaluation is required to develop safe and non-toxic NPs as theranostic agents. The review also focuses on the various entry points of NPs in the human system and their outcomes, including toxicity. It elaborates the evaluation criteria to ensure the safe use of NPs for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Poonam Parashar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P. 226025. India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P. 226025. India
| | - Alka Alka
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P. 226025. India
| | - Priyanka Maurya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P. 226025. India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P. 226025. India
| |
Collapse
|
9
|
Characterization and biodistribution of Au nanoparticles loaded in PLGA nanocarriers using an original encapsulation process. Colloids Surf B Biointerfaces 2021; 205:111875. [PMID: 34058691 DOI: 10.1016/j.colsurfb.2021.111875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 11/20/2022]
Abstract
Due to their imaging and radiosensitizing properties, ultrasmall gadolinium chelate-coated gold nanoparticles (AuNP) represent a promising approach in the diagnosis and the treatment of tumors. However, their poor pharmacokinetic profile, especially their rapid renal clearance prevents from an efficient exploitation of their potential for medical applications. The present study focuses on a strategy which resides in the encapsulation of AuNP in large polymeric NP to avoid the glomerular filtration and then to prolong the vascular residence time. An original encapsulation procedure using the polyethyleneimine (PEI) was set up to electrostatically entrap AuNP in biodegradable poly(lactic-co-glycolic acid) (PLGA) and polyethylene glycol -PLGA (PLGA-PEG) NP. Hydrodynamic diameters of NP were dependent of the PEI/Au ratio and comprised between 115 and 196 nm for ratios equal or superior to 4. Encapsulation yield was close to 90 % whereas no loading was observed without PEI. No toxicity was observed after 24 h exposure in hepatocyte cell-lines. Entrapement of AuNP in polymeric nanocarriers facilitated the passive uptake in cancer cells after only 2 h incubation. In healthy rat, the encapsulation allowed increasing the gold concentration in the blood within the first hour after intravenous administration. Polymeric nanoparticles were sequestered in the liver and the spleen rather than the kidneys. T1-weighted magnetic resonance demonstrated that encapsulation process did not alter the contrast agent properties of gadolinium. The encapsulation of the gold nanoparticles in PLGA particles paves the way to innovative imaging-guided anticancer therapies in personalized medicine.
Collapse
|
10
|
Sheeraz Z, Chow JC. Evaluation of dose enhancement with gold nanoparticles in kilovoltage radiotherapy using the new EGS geometry library in Monte Carlo simulation. AIMS BIOPHYSICS 2021. [DOI: 10.3934/biophy.2021027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
<abstract><sec>
<title>Purpose</title>
<p>This study compared the dose enhancement predicted in kilovoltage gold nanoparticle-enhanced radiotherapy using the newly developed EGS lattice and the typical gold-water mixture method in Monte Carlo simulation. This new method considered the gold nanoparticle-added volume consisting of solid nanoparticles instead of a gold-water mixture. In addition, this particle method is more realistic in simulation.</p>
</sec><sec>
<title>Methods</title>
<p>A heterogeneous phantom containing bone and water was irradiated by the 105 and 220 kVp x-ray beams. Gold nanoparticles were added to the tumour volume with concentration varying from 3–40 mg/mL in the phantom. The dose enhancement ratio (DER), defined as the ratio of dose at the tumour with and without adding gold nanoparticles, was calculated by the gold-water mixture and particle method using Monte Carlo simulation for comparison.</p>
</sec><sec>
<title>Results</title>
<p>It is found that the DER was 1.44–4.71 (105 kVp) and 1.27–2.43 (220 kVp) for the gold nanoparticle concentration range of 3–40 mg/mL, when they were calculated by the gold-water mixture method. The DER was slightly larger and equal to 1.47–4.84 (105 kVp) and 1.29–2.5 (220 kVp) for the same concentration range, when the particle method was used. Moreover, the DER predicted by both methods increased with an increase of nanoparticle concentration, and a decrease of x-ray beam energy.</p>
</sec><sec>
<title>Conclusion</title>
<p>The deviation of DER determined by the particle and gold-water mixture method was insignificant when considering the uncertainty in the calculation of DER (2%) in the nanoparticle concentration range of 3–40 mg/mL. It is therefore concluded that the gold-water mixture method could predict the dose enhancement as accurate as the newly developed particle method.</p>
</sec></abstract>
Collapse
|
11
|
Schuemann J, Bagley AF, Berbeco R, Bromma K, Butterworth KT, Byrne HL, Chithrani BD, Cho SH, Cook JR, Favaudon V, Gholami YH, Gargioni E, Hainfeld JF, Hespeels F, Heuskin AC, Ibeh UM, Kuncic Z, Kunjachan S, Lacombe S, Lucas S, Lux F, McMahon S, Nevozhay D, Ngwa W, Payne JD, Penninckx S, Porcel E, Prise KM, Rabus H, Ridwan SM, Rudek B, Sanche L, Singh B, Smilowitz HM, Sokolov KV, Sridhar S, Stanishevskiy Y, Sung W, Tillement O, Virani N, Yantasee W, Krishnan S. Roadmap for metal nanoparticles in radiation therapy: current status, translational challenges, and future directions. Phys Med Biol 2020; 65:21RM02. [PMID: 32380492 DOI: 10.1088/1361-6560/ab9159] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This roadmap outlines the potential roles of metallic nanoparticles (MNPs) in the field of radiation therapy. MNPs made up of a wide range of materials (from Titanium, Z = 22, to Bismuth, Z = 83) and a similarly wide spectrum of potential clinical applications, including diagnostic, therapeutic (radiation dose enhancers, hyperthermia inducers, drug delivery vehicles, vaccine adjuvants, photosensitizers, enhancers of immunotherapy) and theranostic (combining both diagnostic and therapeutic), are being fabricated and evaluated. This roadmap covers contributions from experts in these topics summarizing their view of the current status and challenges, as well as expected advancements in technology to address these challenges.
Collapse
Affiliation(s)
- Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ivošev V, Sánchez GJ, Stefancikova L, Haidar DA, González Vargas CR, Yang X, Bazzi R, Porcel E, Roux S, Lacombe S. Uptake and excretion dynamics of gold nanoparticles in cancer cells and fibroblasts. NANOTECHNOLOGY 2020; 31:135102. [PMID: 31783387 DOI: 10.1088/1361-6528/ab5d82] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Radiotherapy is one of the main treatments used to fight cancer. A major limitation of this modality is the lack of selectivity between cancerous and healthy tissues. One of the most promising strategies proposed in this last decade is the addition of nanoparticles with high-atomic number to enhance radiation effects in tumors. Gold nanoparticles (AuNPs) are considered as one of the best candidates because of their high radioenhancing property, simple synthesis and low toxicity. Ultra small AuNPs (core size of 2.4 nm and hydrodynamic diameter of 4.5 nm) covered with dithiolated diethylenetriaminepentaacetic acid (Au@DTDTPA) are of high interest because of their properties to bind MRI active or PET active compounds at their surface, to concentrate in some tumors and be eliminated via renal clearance thanks to their small size. These key figures make Au@DTDTPA the best candidate to develop image-guided radiotherapy. Surprisingly the capacity of the nanoparticles to penetrate cells, an important issue to predict radioenhancement, has not been established yet. Here, we report the uptake dynamics, internalization routes and excretion dynamics of Au@DTDTPA nanoparticles in various cancer cell lines including glioblastoma (U87-MG), chordoma (UM-Chor1), cervix (HeLa), prostate (PC3), and pancreatic (BxPC-3) cell lines as well as fibroblasts (Dermal fibroblasts). This study demonstrates a strong cell line dependence of the nanoparticle uptake and excretion dynamics. Different pathways of cell internalization evidenced here explain this dependence. As a major finding, the retention of Au@DTDTPA nanoparticles was found to be higher in cancer cells than in fibroblasts. This result strengthens the strategy of using nanoagents to improve tumor selectivity of radiation treatments. In particular Au@DTDTPA nanoparticles are good candidates to improve the treatment of radioresitant gliobastoma, pancreatic and prostate cancer in particular. In conclusion, the variability of cell-to-nanoparticle interaction is a new parameter to consider in the choice of nanoagents in a combined treatment.
Collapse
Affiliation(s)
- Vladimir Ivošev
- ISMO (UMR 8214), University Paris-Saclay, University Paris Sud, CNRS, F-91405 Orsay Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lara P, Palma-Florez S, Salas-Huenuleo E, Polakovicova I, Guerrero S, Lobos-Gonzalez L, Campos A, Muñoz L, Jorquera-Cordero C, Varas-Godoy M, Cancino J, Arias E, Villegas J, Cruz LJ, Albericio F, Araya E, Corvalan AH, Quest AFG, Kogan MJ. Gold nanoparticle based double-labeling of melanoma extracellular vesicles to determine the specificity of uptake by cells and preferential accumulation in small metastatic lung tumors. J Nanobiotechnology 2020; 18:20. [PMID: 31973696 PMCID: PMC6979068 DOI: 10.1186/s12951-020-0573-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background Extracellular vesicles (EVs) have shown great potential for targeted therapy, as they have a natural ability to pass through biological barriers and, depending on their origin, can preferentially accumulate at defined sites, including tumors. Analyzing the potential of EVs to target specific cells remains challenging, considering the unspecific binding of lipophilic tracers to other proteins, the limitations of fluorescence for deep tissue imaging and the effect of external labeling strategies on their natural tropism. In this work, we determined the cell-type specific tropism of B16F10-EVs towards cancer cell and metastatic tumors by using fluorescence analysis and quantitative gold labeling measurements. Surface functionalization of plasmonic gold nanoparticles was used to promote indirect labeling of EVs without affecting size distribution, polydispersity, surface charge, protein markers, cell uptake or in vivo biodistribution. Double-labeled EVs with gold and fluorescent dyes were injected into animals developing metastatic lung nodules and analyzed by fluorescence/computer tomography imaging, quantitative neutron activation analysis and gold-enhanced optical microscopy. Results We determined that B16F10 cells preferentially take up their own EVs, when compared with colon adenocarcinoma, macrophage and kidney cell-derived EVs. In addition, we were able to detect the preferential accumulation of B16F10 EVs in small metastatic tumors located in lungs when compared with the rest of the organs, as well as their precise distribution between tumor vessels, alveolus and tumor nodules by histological analysis. Finally, we observed that tumor EVs can be used as effective vectors to increase gold nanoparticle delivery towards metastatic nodules. Conclusions Our findings provide a valuable tool to study the distribution and interaction of EVs in mice and a novel strategy to improve the targeting of gold nanoparticles to cancer cells and metastatic nodules by using the natural properties of malignant EVs.
Collapse
Affiliation(s)
- Pablo Lara
- Departamento de Química Farmacológica Y Toxicológica, Universidad de Chile, Santos Dumont 964, 8380494, Santiago, Chile.,Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), University of Chile, Av. Independencia 1027, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone 1007, Santiago, Chile
| | - Sujey Palma-Florez
- Departamento de Química Farmacológica Y Toxicológica, Universidad de Chile, Santos Dumont 964, 8380494, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone 1007, Santiago, Chile
| | - Edison Salas-Huenuleo
- Departamento de Química Farmacológica Y Toxicológica, Universidad de Chile, Santos Dumont 964, 8380494, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone 1007, Santiago, Chile
| | - Iva Polakovicova
- Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone 1007, Santiago, Chile.,Laboratory of Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Portugal 61, Santiago, Chile
| | - Simón Guerrero
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), University of Chile, Av. Independencia 1027, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone 1007, Santiago, Chile.,Instituto de investigación Interdisciplinar en Ciencias biomédicas, Universidad SEK (I3CBSEK). Facultad Ciencias de La Salud, Fernando Manterola 0789, Santiago, Chile
| | - Lorena Lobos-Gonzalez
- Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone 1007, Santiago, Chile.,Centro de Medicina Regenerativa, Facultad de Medicina-Clinica Alemana, Universidad Del Desarrollo, Avenida las condes 12438, lo Barnechea, Santiago, Chile
| | - America Campos
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), University of Chile, Av. Independencia 1027, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone 1007, Santiago, Chile
| | - Luis Muñoz
- Laboratorio de Análisis Por Activación Neutrónica, Comisión Chilena de Energía Nuclear, Nueva Bilbao, 12501, Santiago, Chile
| | - Carla Jorquera-Cordero
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), University of Chile, Av. Independencia 1027, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone 1007, Santiago, Chile
| | - Manuel Varas-Godoy
- Centro de Biología Celular Y Biomedicina (CEBICEM), Facultad de Medicina Y Ciencia, Universidad San Sebastián, Lota 2465, Santiago, Chile
| | - Jorge Cancino
- Centro de Biología Celular Y Biomedicina (CEBICEM), Facultad de Medicina Y Ciencia, Universidad San Sebastián, Lota 2465, Santiago, Chile
| | - Eloísa Arias
- Centro de Biología Celular Y Biomedicina (CEBICEM), Facultad de Medicina Y Ciencia, Universidad San Sebastián, Lota 2465, Santiago, Chile
| | - Jaime Villegas
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Republica 440, Santiago, Chile
| | - Luis J Cruz
- Translational Nanobiomaterials and Imaging (TNI) Group, Radiology Department, Leiden University Medical Center, Albinusdreef 2, Leiden, The Netherlands
| | - Fernando Albericio
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, 08028, Barcelona, Spain
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Universidad Andres Bello, Republica 275, 8370146, Santiago, Chile
| | - Alejandro H Corvalan
- Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone 1007, Santiago, Chile.,Laboratory of Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Portugal 61, Santiago, Chile
| | - Andrew F G Quest
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), University of Chile, Av. Independencia 1027, Santiago, Chile. .,Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone 1007, Santiago, Chile.
| | - Marcelo J Kogan
- Departamento de Química Farmacológica Y Toxicológica, Universidad de Chile, Santos Dumont 964, 8380494, Santiago, Chile. .,Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone 1007, Santiago, Chile.
| |
Collapse
|
14
|
Perry HL, Botnar RM, Wilton-Ely JDET. Gold nanomaterials functionalised with gadolinium chelates and their application in multimodal imaging and therapy. Chem Commun (Camb) 2020; 56:4037-4046. [DOI: 10.1039/d0cc00196a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An overview of recent progress in the design of gadolinium-functionalised gold nanoparticles for use in MRI, multimodal imaging and theranostics.
Collapse
Affiliation(s)
- Hannah L. Perry
- Molecular Sciences Research Hub
- Department of Chemistry
- White City Campus
- Imperial College London
- London
| | - René M. Botnar
- School of Biomedical Engineering and Imaging Sciences
- King's College London
- London
- UK
| | - James D. E. T. Wilton-Ely
- Molecular Sciences Research Hub
- Department of Chemistry
- White City Campus
- Imperial College London
- London
| |
Collapse
|
15
|
Loiseau A, Boudon J, Oudot A, Moreau M, Boidot R, Chassagnon R, Mohamed Saïd N, Roux S, Mirjolet C, Millot N. Titanate Nanotubes Engineered with Gold Nanoparticles and Docetaxel to Enhance Radiotherapy on Xenografted Prostate Tumors. Cancers (Basel) 2019; 11:cancers11121962. [PMID: 31817706 PMCID: PMC6966691 DOI: 10.3390/cancers11121962] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022] Open
Abstract
Nanohybrids based on titanate nanotubes (TiONts) were developed to fight prostate cancer by intratumoral (IT) injection, and particular attention was paid to their step-by-step synthesis. TiONts were synthesized by a hydrothermal process. To develop the custom-engineered nanohybrids, the surface of TiONts was coated beforehand with a siloxane (APTES), and coupled with both dithiolated diethylenetriaminepentaacetic acid-modified gold nanoparticles (Au@DTDTPA NPs) and a heterobifunctional polymer (PEG3000) to significantly improve suspension stability and biocompatibility of TiONts for targeted biomedical applications. The pre-functionalized surface of this scaffold had reactive sites to graft therapeutic agents, such as docetaxel (DTX). This novel combination, aimed at retaining the AuNPs inside the tumor via TiONts, was able to enhance the radiation effect. Nanohybrids have been extensively characterized and were detectable by SPECT/CT imaging through grafted Au@DTDTPA NPs, radiolabeled with 111In. In vitro results showed that TiONts-AuNPs-PEG3000-DTX had a substantial cytotoxic activity on human PC-3 prostate adenocarcinoma cells, unlike initial nanohybrids without DTX (Au@DTDTPA NPs and TiONts-AuNPs-PEG3000). Biodistribution studies demonstrated that these novel nanocarriers, consisting of AuNP- and DTX-grafted TiONts, were retained within the tumor for at least 20 days on mice PC-3 xenografted tumors after IT injection, delaying tumor growth upon irradiation.
Collapse
Affiliation(s)
- Alexis Loiseau
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université Bourgogne Franche Comté, BP 47870, 21078 Dijon Cedex, France; (A.L.); (R.C.)
| | - Julien Boudon
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université Bourgogne Franche Comté, BP 47870, 21078 Dijon Cedex, France; (A.L.); (R.C.)
- Correspondence: (J.B.); (C.M.); (N.M.)
| | - Alexandra Oudot
- Preclinical Imaging Platform, Nuclear Medicine Department, Georges-Francois Leclerc Cancer Center, 21079 Dijon Cedex, France;
| | - Mathieu Moreau
- Institut de Chimie Moléculaire de l’Université Bourgogne, UMR 6302, CNRS-Université Bourgogne Franche Comté, 21078 Dijon Cedex, France;
| | - Romain Boidot
- Department of Biology and Pathology of Tumors, Georges-François Leclerc Cancer Center–UNICANCER, 21079 Dijon Cedex, France;
| | - Rémi Chassagnon
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université Bourgogne Franche Comté, BP 47870, 21078 Dijon Cedex, France; (A.L.); (R.C.)
| | - Nasser Mohamed Saïd
- Institut UTINAM, UMR 6213, CNRS-Université Bourgogne Franche-Comté, 25030 Besançon Cedex, France; (N.M.S.); (S.R.)
| | - Stéphane Roux
- Institut UTINAM, UMR 6213, CNRS-Université Bourgogne Franche-Comté, 25030 Besançon Cedex, France; (N.M.S.); (S.R.)
| | - Céline Mirjolet
- INSERM LNC UMR 1231, 21078 Dijon Cedex, France
- Radiotherapy Department, Georges-Francois Leclerc Cancer Center, 21079 Dijon Cedex, France
- Correspondence: (J.B.); (C.M.); (N.M.)
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université Bourgogne Franche Comté, BP 47870, 21078 Dijon Cedex, France; (A.L.); (R.C.)
- Correspondence: (J.B.); (C.M.); (N.M.)
| |
Collapse
|
16
|
Salado-Leza D, Traore A, Porcel E, Dragoe D, Muñoz A, Remita H, García G, Lacombe S. Radio-Enhancing Properties of Bimetallic Au:Pt Nanoparticles: Experimental and Theoretical Evidence. Int J Mol Sci 2019; 20:ijms20225648. [PMID: 31718091 PMCID: PMC6888691 DOI: 10.3390/ijms20225648] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/28/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022] Open
Abstract
The use of nanoparticles, in combination with ionizing radiation, is considered a promising method to improve the performance of radiation therapies. In this work, we engineered mono- and bimetallic core-shell gold–platinum nanoparticles (NPs) grafted with poly (ethylene glycol) (PEG). Their radio-enhancing properties were investigated using plasmids as bio-nanomolecular probes and gamma radiation. We found that the presence of bimetallic Au:Pt-PEG NPs increased by 90% the induction of double-strand breaks, the signature of nanosize biodamage, and the most difficult cell lesion to repair. The radio-enhancement of Au:Pt-PEG NPs were found three times higher than that of Au-PEG NPs. This effect was scavenged by 80% in the presence of dimethyl sulfoxide, demonstrating the major role of hydroxyl radicals in the damage induction. Geant4-DNA Monte Carlo simulations were used to elucidate the physical processes involved in the radio-enhancement. We predicted enhancement factors of 40% and 45% for the induction of nanosize damage, respectively, for mono- and bimetallic nanoparticles, which is attributed to secondary electron impact processes. This work contributed to a better understanding of the interplay between energy deposition and the induction of nanosize biomolecular damage, being Monte Carlo simulations a simple method to guide the synthesis of new radio-enhancing agents.
Collapse
Affiliation(s)
- Daniela Salado-Leza
- Institut des Sciences Moléculaires d’Orsay (UMR 8214) CNRS, Université Paris-Saclay, Université Paris Sud, 91405 Orsay, France; (D.S.-L.); (E.P.)
- Cátedras CONACyT, Universidad Autónoma de San Luis Potosí, Facultad de Ciencias Químicas, Av. Dr. Manuel Nava 6, Zona Universitaria, San Luis Potosí 78210, S.L.P., Mexico
| | - Ali Traore
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006 Madrid, Spain; (A.T.); (G.G.)
| | - Erika Porcel
- Institut des Sciences Moléculaires d’Orsay (UMR 8214) CNRS, Université Paris-Saclay, Université Paris Sud, 91405 Orsay, France; (D.S.-L.); (E.P.)
| | - Diana Dragoe
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (UMR 8182) CNRS, Université Paris Saclay, Université Paris Sud, 91405 Orsay, France;
| | - Antonio Muñoz
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 22, 28040 Madrid, Spain;
| | - Hynd Remita
- Laboratoire de Chimie Physique (UMR 8000) CNRS, Université Paris Saclay, Université Paris Sud, 91405 Orsay, France;
| | - Gustavo García
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (CSIC), Serrano 113-bis, 28006 Madrid, Spain; (A.T.); (G.G.)
| | - Sandrine Lacombe
- Institut des Sciences Moléculaires d’Orsay (UMR 8214) CNRS, Université Paris-Saclay, Université Paris Sud, 91405 Orsay, France; (D.S.-L.); (E.P.)
- Correspondence: ; Tel.: +33-(1)-6915-8263
| |
Collapse
|
17
|
Quality control of gold nanoparticles as pharmaceutical ingredients. Int J Pharm 2019; 569:118583. [DOI: 10.1016/j.ijpharm.2019.118583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 11/19/2022]
|
18
|
Bolotsky A, Butler D, Dong C, Gerace K, Glavin NR, Muratore C, Robinson JA, Ebrahimi A. Two-Dimensional Materials in Biosensing and Healthcare: From In Vitro Diagnostics to Optogenetics and Beyond. ACS NANO 2019; 13:9781-9810. [PMID: 31430131 DOI: 10.1021/acsnano.9b03632] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Since the isolation of graphene in 2004, there has been an exponentially growing number of reports on layered two-dimensional (2D) materials for applications ranging from protective coatings to biochemical sensing. Due to the exceptional, and often tunable, electrical, optical, electrochemical, and physical properties of these materials, they can serve as the active sensing element or a supporting substrate for diverse healthcare applications. In this review, we provide a survey of the recent reports on the applications of 2D materials in biosensing and other emerging healthcare areas, ranging from wearable technologies to optogenetics to neural interfacing. Specifically, this review provides (i) a holistic evaluation of relevant material properties across a wide range of 2D systems, (ii) a comparison of 2D material-based biosensors to the state-of-the-art, (iii) relevant material synthesis approaches specifically reported for healthcare applications, and (iv) the technological considerations to facilitate mass production and commercialization.
Collapse
Affiliation(s)
| | | | - Chengye Dong
- State Key Lab of Electrical Insulation and Power Equipment , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , People's Republic of China
| | | | - Nicholas R Glavin
- Materials and Manufacturing Directorate , Air Force Research Laboratory , WPAFB , Ohio 45433 , United States
| | - Christopher Muratore
- Department of Chemical and Materials Engineering , University of Dayton , Dayton , Ohio 45469 , United States
| | | | | |
Collapse
|
19
|
Fluorescent Radiosensitizing Gold Nanoparticles. Int J Mol Sci 2019; 20:ijms20184618. [PMID: 31540386 PMCID: PMC6770707 DOI: 10.3390/ijms20184618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 01/26/2023] Open
Abstract
Ultrasmall polyaminocarboxylate-coated gold nanoparticles (NPs), Au@DTDTPA and Au@TADOTAGA, that have been recently developed exhibit a promising potential for image-guided radiotherapy. In order to render the radiosensitizing effect of these gold nanoparticles even more efficient, the study of their localization in cells is required to better understand the relation between the radiosensitizing properties of the agents and their localization in cells and in tumors. To achieve this goal, post-functionalization of Au@DTDTPA nanoparticles by near-infrared (NIF) organic dyes (aminated derivative of cyanine 5, Cy5-NH2) was performed. The immobilization of organic Cy5-NH2 dyes onto the gold nanoparticles confers to these radiosensitizers fluorescence properties which can be exploited for monitoring their internalization in cancerous cells, for determining their localization in cells by fluorescence microscopy (a common and powerful imaging tool in biology), and for following up on their accumulation in tumors after intravenous injection.
Collapse
|
20
|
Sarkis M, Ghanem E, Rahme K. Jumping on the Bandwagon: A Review on the Versatile Applications of Gold Nanostructures in Prostate Cancer. Int J Mol Sci 2019; 20:E970. [PMID: 30813391 PMCID: PMC6412201 DOI: 10.3390/ijms20040970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/21/2019] [Indexed: 01/09/2023] Open
Abstract
Prostate cancer (PCa) has remarkably emerged as a prominent disease in the face of the male population. Conventional treatments like prostatectomy or radiation can be curative only if PCa is diagnosed at an early stage. In the field of targeted therapy, a bevy of novel therapeutic approaches have left a landmark in PCa treatment and have proven to extend survival via distinct modes of actions. Nanotherapy has started to take root and has become the hype of the century by virtue of its abundant advantages. Scientists have invested a great deal of interest in the development of nanostructures such as gold nanoparticles (AuNPs), which hold particularly great hope for PCa theranostics. In this article, we present an overview of the studies published after 1998 that involve the use of different functionalized AuNPs to treat and diagnose PCa. Special reference is given to various in vitro and in vivo methods employed to shuttle AuNPs to PCa cells. Major studies show an enhancement of either detection or treatment of PCa when compared to their non-targeted counterparts, especially when AuNPs are tagged with specific ligands, such as antibodies, tea natural extracts, folate, anisamide, receptor inhibitors, and chitosan. Future approaches of treatment are dependent on those worthy multifunctional molecules, and are dictated by their ability to achieve a more versatile cancer therapeutic approach.
Collapse
Affiliation(s)
- Monira Sarkis
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, ZoukMosbeh P.O.Box:72, Lebanon.
| | - Esther Ghanem
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, ZoukMosbeh P.O.Box:72, Lebanon.
| | - Kamil Rahme
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, ZoukMosbeh P.O.Box:72, Lebanon.
| |
Collapse
|
21
|
Silva CO, Pinho JO, Lopes JM, Almeida AJ, Gaspar MM, Reis C. Current Trends in Cancer Nanotheranostics: Metallic, Polymeric, and Lipid-Based Systems. Pharmaceutics 2019; 11:E22. [PMID: 30625999 PMCID: PMC6359642 DOI: 10.3390/pharmaceutics11010022] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/28/2018] [Accepted: 01/01/2019] [Indexed: 02/07/2023] Open
Abstract
Theranostics has emerged in recent years to provide an efficient and safer alternative in cancer management. This review presents an updated description of nanotheranostic formulations under development for skin cancer (including melanoma), head and neck, thyroid, breast, gynecologic, prostate, and colon cancers, brain-related cancer, and hepatocellular carcinoma. With this focus, we appraised the clinical advantages and drawbacks of metallic, polymeric, and lipid-based nanosystems, such as low invasiveness, low toxicity to the surrounding healthy tissues, high precision, deeper tissue penetration, and dosage adjustment in a real-time setting. Particularly recognizing the increased complexity and multimodality in this area, multifunctional hybrid nanoparticles, comprising different nanomaterials and functionalized with targeting moieties and/or anticancer drugs, present the best characteristics for theranostics. Several examples, focusing on their design, composition, imaging and treatment modalities, and in vitro and in vivo characterization, are detailed herein. Briefly, all studies followed a common trend in the design of these theranostics modalities, such as the use of materials and/or drugs that share both inherent imaging (e.g., contrast agents) and therapeutic properties (e.g., heating or production reactive oxygen species). This rationale allows one to apparently overcome the heterogeneity, complexity, and harsh conditions of tumor microenvironments, leading to the development of successful targeted therapies.
Collapse
Affiliation(s)
- Catarina Oliveira Silva
- iMedUlisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Jacinta Oliveira Pinho
- iMedUlisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Joana Margarida Lopes
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - António J Almeida
- iMedUlisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Maria Manuela Gaspar
- iMedUlisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Catarina Reis
- iMedUlisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
- IBEB, Faculty of Sciences, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
22
|
Le Goas M, Paquirissamy A, Gargouri D, Fadda G, Testard F, Aymes-Chodur C, Jubeli E, Pourcher T, Cambien B, Palacin S, Renault JP, Carrot G. Irradiation Effects on Polymer-Grafted Gold Nanoparticles for Cancer Therapy. ACS APPLIED BIO MATERIALS 2018; 2:144-154. [DOI: 10.1021/acsabm.8b00484] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | | | | | | | - Caroline Aymes-Chodur
- Laboratoire Matériaux et Santé EA 401, Université Paris Sud, UFR de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay, France
| | - Emile Jubeli
- Laboratoire Matériaux et Santé EA 401, Université Paris Sud, UFR de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay, France
| | - Thierry Pourcher
- Laboratoire TIRO, UMRE 4320, Université de Nice-Sophia Antipolis, CEA, 06107 Nice, France
| | - Béatrice Cambien
- Laboratoire TIRO, UMRE 4320, Université de Nice-Sophia Antipolis, CEA, 06107 Nice, France
| | | | | | | |
Collapse
|
23
|
Ghahremani F, Kefayat A, Shahbazi-Gahrouei D, Motaghi H, Mehrgardi MA, Haghjooy-Javanmard S. AS1411 aptamer-targeted gold nanoclusters effect on the enhancement of radiation therapy efficacy in breast tumor-bearing mice. Nanomedicine (Lond) 2018; 13:2563-2578. [PMID: 30334677 DOI: 10.2217/nnm-2018-0180] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AIM Herein, the AS1411 aptamer-targeted ultrasmall gold nanoclusters (GNCs) were assessed at different aspects as a radiosensitizer. MATERIALS & METHODS AS1411 aptamer-conjugated gold nanoclusters (Apt-GNCs) efficacy was evaluated at cancer cells targeting, radiosensitizing effect, tumor targeting, and biocompatibility in breast tumor-bearing mice. RESULTS Flow cytometry and fluorescence microscopy exhibited more cellular uptake for Apt-GNCs in comparison with GNCs. In addition, inductively coupled plasma optical emission spectrometry results demonstrated its effective tumor targeting as the tumors' gold content for GNCs and Apt-GNCs were 8.53 and 15.33 μg/g, respectively. Apt-GNCs significantly enhanced radiotherapy efficacy as mean tumors' volume decreased about 39% and 9 days increase in the mice survival was observed. Both GNCs and Apt-GNCs were biocompatible. CONCLUSION The Apt-GNCs is a novel and efficient radiosensitizer.
Collapse
Affiliation(s)
- Fatemeh Ghahremani
- Department of Medical Physics & Radiotherapy, Arak University of Medical Sciences, Arak 38481-76941, Iran.,Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Amirhosein Kefayat
- Department of Oncology, Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.,Department of Oncology, Seyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Daryoush Shahbazi-Gahrouei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Hasan Motaghi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Masoud A Mehrgardi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Shaghayegh Haghjooy-Javanmard
- Department of Physiology, Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan 81746-73461, Iran
| |
Collapse
|
24
|
De Crozals G, Kryza D, Sánchez GJ, Roux S, Mathé D, Taleb J, Dumontet C, Janier M, Chaix C. Granulocyte Colony-Stimulating Factor Nanocarriers for Stimulation of the Immune System (Part I): Synthesis and Biodistribution Studies. Bioconjug Chem 2017; 29:795-803. [DOI: 10.1021/acs.bioconjchem.7b00605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gabriel De Crozals
- Institut des Sciences Analytiques, UMR CNRS 5280/Université Claude Bernard Lyon 1/ENS de Lyon, 5, rue de la Doua, 69100 Villeurbanne, France
| | - David Kryza
- UNIV Lyon - Université Claude Bernard Lyon 1, LAGEP UMR 5007 CNRS, 69622 Villeurbanne, France
- Hospices Civils de Lyon, plateforme Imthernat, Hôpital Edouard Herriot, 69437 Lyon, France
| | - Gloria Jiménez Sánchez
- Institut UTINAM, UMR CNRS 6213-Université de Bourgogne Franche-Comté, 25030 Besançon, France
| | - Stéphane Roux
- Institut UTINAM, UMR CNRS 6213-Université de Bourgogne Franche-Comté, 25030 Besançon, France
| | - Doriane Mathé
- Cancer Research Center of Lyon, INSERM 1052/CNRS 5286/University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Jacqueline Taleb
- UNIV Lyon - Université Claude Bernard Lyon 1, LAGEP UMR 5007 CNRS, 69622 Villeurbanne, France
| | - Charles Dumontet
- Cancer Research Center of Lyon, INSERM 1052/CNRS 5286/University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Marc Janier
- UNIV Lyon - Université Claude Bernard Lyon 1, LAGEP UMR 5007 CNRS, 69622 Villeurbanne, France
- Hospices Civils de Lyon, plateforme Imthernat, Hôpital Edouard Herriot, 69437 Lyon, France
| | - Carole Chaix
- Institut des Sciences Analytiques, UMR CNRS 5280/Université Claude Bernard Lyon 1/ENS de Lyon, 5, rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
25
|
Unraveling the cell-type dependent radiosensitizing effects of gold through the development of a multifunctional gold nanoparticle. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:439-449. [PMID: 29196180 DOI: 10.1016/j.nano.2017.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/02/2017] [Accepted: 11/20/2017] [Indexed: 01/18/2023]
Abstract
The radiosensitizing efficacy of gold is well established, however, there remain several significant barriers to the successful clinical translation of nano-sized gold particles (AuNPs). These barriers include: retaining stability in relevant biological sera, demonstrating effectiveness at clinically relevant AuNP concentrations and identifying the biological context where significant benefit is most likely to be achieved. Herein we have developed a AuNP preparation, stress-tested to provide effective protection from salt and serum mediated agglomeration. Furthermore, the core AuNP is co-functionalized with two biologically derived peptides designed to enhance endocytosis and promote endosomal escape, thus maximizing intracellular AuNP surface area. In summary, these investigations demonstrate restored AuNP internalization using the co-functionalized preparation that generated significant radiosensitization, in both in vitro and in vivo models, at clinically viable treatment concentrations. Furthermore, we have identified an underpinning biological mechanism in the inherent radical scavenging capacity that could be used to predict radiosensitizing efficacy.
Collapse
|
26
|
Si-Mohamed S, Cormode DP, Bar-Ness D, Sigovan M, Naha PC, Langlois JB, Chalabreysse L, Coulon P, Blevis I, Roessl E, Erhard K, Boussel L, Douek P. Evaluation of spectral photon counting computed tomography K-edge imaging for determination of gold nanoparticle biodistribution in vivo. NANOSCALE 2017; 9:18246-18257. [PMID: 28726968 PMCID: PMC5709229 DOI: 10.1039/c7nr01153a] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Spectral photon counting computed tomography (SPCCT) is an emerging medical imaging technology. SPCCT scanners record the energy of incident photons, which allows specific detection of contrast agents due to measurement of their characteristic X-ray attenuation profiles. This approach is known as K-edge imaging. Nanoparticles formed from elements such as gold, bismuth or ytterbium have been reported as potential contrast agents for SPCCT imaging. Furthermore, gold nanoparticles have many applications in medicine, such as adjuvants for radiotherapy and photothermal ablation. In particular, longitudinal imaging of the biodistribution of nanoparticles would be highly attractive for their clinical translation. We therefore studied the capabilities of a novel SPCCT scanner to quantify the biodistribution of gold nanoparticles in vivo. PEGylated gold nanoparticles were used. Phantom imaging showed that concentrations measured on gold images correlated well with known concentrations (slope = 0.94, intercept = 0.18, RMSE = 0.18, R2 = 0.99). The SPCCT system allowed repetitive and quick acquisitions in vivo, and follow-up of changes in the AuNP biodistribution over time. Measurements performed on gold images correlated with the inductively coupled plasma-optical emission spectrometry (ICP-OES) measurements in the organs of interest (slope = 0.77, intercept = 0.47, RMSE = 0.72, R2 = 0.93). TEM results were in agreement with the imaging and ICP-OES in that much higher concentrations of AuNPs were observed in the liver, spleen, bone marrow and lymph nodes (mainly in macrophages). In conclusion, we found that SPCCT can be used for repetitive and non-invasive determination of the biodistribution of gold nanoparticles in vivo.
Collapse
Affiliation(s)
- Salim Si-Mohamed
- Radiology Department, Centre Hospitalier Universitaire, Lyon, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Koger B, Kirkby C. Dosimetric effects of polyethylene glycol surface coatings on gold nanoparticle radiosensitization. ACTA ACUST UNITED AC 2017; 62:8455-8469. [DOI: 10.1088/1361-6560/aa8e12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Chan YC, Hsiao M. Protease-activated nanomaterials for targeted cancer theranostics. Nanomedicine (Lond) 2017; 12:2153-2159. [PMID: 28814163 DOI: 10.2217/nnm-2017-0068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cancer metastasis accompanies irreversible proteolysis. Malignant cells that abnormally express extracellular proteases usually lead to a poor outcome during cancer progression. The development of protease-activated drugs is an important goal. Moreover, the specific proteolytic mechanism can be used as a diagnostic strategy. Currently, nanotechnology for use in medication has been extensively developed to exploit the physical and chemical properties of nanoparticles. For example, to improve the efficacy of cancer therapy drugs, targeted delivery has been attempted by combining a targeting ligand with a nanoparticle. Multifunctional nanoparticles have been prepared for cancer therapy and diagnosis because of their advantages such as stable physical properties, drug carrying ability and potential specific targeting ability. In this review, we present reports on protease-activated nanoparticle design for cancer theranostics. We further describe recent protease-activated metalloprotease-based and cathepsin-based nanomaterials used in cancer nanotheranostics. Innovative protease-activated nanomaterials have significant potential for designing personalized treatment.
Collapse
Affiliation(s)
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
29
|
Russo M, Ponsiglione AM, Forte E, Netti PA, Torino E. Hydrodenticity to enhance relaxivity of gadolinium-DTPA within crosslinked hyaluronic acid nanoparticles. Nanomedicine (Lond) 2017; 12:2199-2210. [PMID: 28816102 DOI: 10.2217/nnm-2017-0098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIM The efficacy of gadolinium (Gd) chelates as contrast agents for magnetic resonance imaging remains limited owing to poor relaxivity and toxic effects. Here, the effect of the hydration of the hydrogel structure on the relaxometric properties of Gd-DTPA is explained for the first time and called Hydrodenticity. RESULTS The ability to tune the hydrogel structure is proved through a microfluidic flow-focusing approach able to produce crosslinked hyaluronic acid nanoparticles, analyzed regarding the crosslink density and mesh size, and connected to the characteristic correlation times of the Gd-DTPA. CONCLUSION Hydrodenticity explains the boosting (12-times) of the Gd-DTPA relaxivity by tuning hydrogel structural parameters, potentially enabling the reduction of the administration dosage as approved for clinical use. [Formula: see text].
Collapse
Affiliation(s)
- Maria Russo
- Department of Chemical, Materials & Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy.,Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Alfonso Maria Ponsiglione
- Department of Chemical, Materials & Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy.,Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Ernesto Forte
- IRCCS SDN, Via E. Gianturco 113, 80143 Naples, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials & Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy.,Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy.,Interdisciplinary Research Center on Biomaterials, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Enza Torino
- Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy.,Interdisciplinary Research Center on Biomaterials, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
30
|
Zheng XJ, Chow JCL. Radiation dose enhancement in skin therapy with nanoparticle addition: A Monte Carlo study on kilovoltage photon and megavoltage electron beams. World J Radiol 2017; 9:63-71. [PMID: 28298966 PMCID: PMC5334503 DOI: 10.4329/wjr.v9.i2.63] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/04/2016] [Accepted: 12/09/2016] [Indexed: 02/07/2023] Open
Abstract
AIM To investigated the dose enhancement due to the incorporation of nanoparticles in skin therapy using the kilovoltage (kV) photon and megavoltage (MV) electron beams. Monte Carlo simulations were used to predict the dose enhancement when different types and concentrations of nanoparticles were added to skin target layers of varying thickness.
METHODS Clinical kV photon beams (105 and 220 kVp) and MV electron beams (4 and 6 MeV), produced by a Gulmay D3225 orthovoltage unit and a Varian 21 EX linear accelerator, were simulated using the EGSnrc Monte Carlo code. Doses at skin target layers with thicknesses ranging from 0.5 to 5 mm for the photon beams and 0.5 to 10 mm for the electron beams were determined. The skin target layer was added with the Au, Pt, I, Ag and Fe2O3 nanoparticles with concentrations ranging from 3 to 40 mg/mL. The dose enhancement ratio (DER), defined as the dose at the target layer with nanoparticle addition divided by the dose at the layer without nanoparticle addition, was calculated for each nanoparticle type, nanoparticle concentration and target layer thickness.
RESULTS It was found that among all nanoparticles, Au had the highest DER (5.2-6.3) when irradiated with kV photon beams. Dependence of the DER on the target layer thickness was not significant for the 220 kVp photon beam but it was for 105 kVp beam for Au nanoparticle concentrations higher than 18 mg/mL. For other nanoparticles, the DER was dependent on the atomic number of the nanoparticle and energy spectrum of the photon beams. All nanoparticles showed an increase of DER with nanoparticle concentration during the photon beam irradiations regardless of thickness. For electron beams, the Au nanoparticles were found to have the highest DER (1.01-1.08) when the beam energy was equal to 4 MeV, but this was drastically lower than the DER values found using photon beams. The DER was also found affected by the depth of maximum dose of the electron beam and target thickness. For other nanoparticles with lower atomic number, DERs in the range of 0.99-1.02 were found using the 4 and 6 MeV electron beams.
CONCLUSION In nanoparticle-enhanced skin therapy, Au nanoparticle addition can achieve the highest dose enhancement with 105 kVp photon beams. Electron beams, while popular for skin therapy, did not produce as high dose enhancements as kV photon beams. Additionally, the DER is dependent on nanoparticle type, nanoparticle concentration, skin target thickness and energies of the photon and electron beams.
Collapse
|
31
|
Azzawi M, Seifalian A, Ahmed W. Nanotechnology for the diagnosis and treatment of diseases. Nanomedicine (Lond) 2016; 11:2025-7. [DOI: 10.2217/nnm-2016-8000] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- May Azzawi
- School of Healthcare Science, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK
| | - Alexander Seifalian
- Centre for Nanotechnology & Regenerative Medicine, UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - Waqar Ahmed
- School of Medicine, University of Central Lancashire, Preston, Lancashire, UK
| |
Collapse
|