1
|
McGale J, Khurana S, Howell H, Nakhla A, Roa T, Doshi P, Shirini D, Huang A, Duong P, Backhaus P, Liao M, Kaur H, Fontani AM, Hung I, Pandit-Taskar N, Haberkorn U, Gulati A, Naim A, Sinigaglia M, Bebawy M, Girard A, Seban RD, Dercle L. FAP-Targeted SPECT/CT and PET/CT Imaging for Breast Cancer Patients. Clin Nucl Med 2025; 50:e138-e145. [PMID: 39780367 DOI: 10.1097/rlu.0000000000005617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2025]
Abstract
ABSTRACT Breast cancer presents a significant global health challenge, necessitating continued innovation in diagnostic and therapeutic approaches. Recent advances have led to the identification of cancer-associated fibroblasts, which are highly prevalent in breast cancers and express fibroblast activation proteins (FAPs), as critical targets. FAP-specific radiotracers, when used with PET/CT and SPECT/CT, have significant potential for improving early breast cancer detection, staging, treatment response monitoring, and therapeutic intervention. This review provides insight into FAP-targeted molecular imaging, exploring advanced techniques for protein status assessment, development of early-phase targeted therapies, and other emerging applications. The advent of FAP-targeted imaging stands to significantly enhance personalized oncologic care, leading to improved breast cancer management and overall patient outcomes.
Collapse
Affiliation(s)
- Jeremy McGale
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Sakshi Khurana
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Harrison Howell
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Abanoub Nakhla
- Department of Surgery, Maimonides Medical Center, New York, NY
| | - Tina Roa
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Parth Doshi
- Department of Internal Medicine, Lewis Katz School of Medicine, Philadelphia, PA
| | - Dorsa Shirini
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alice Huang
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Phuong Duong
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Philipp Backhaus
- European Institute for Molecular Imaging, University of Münster, Münster, Germany and Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Matthew Liao
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Harleen Kaur
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | | | | | - Neeta Pandit-Taskar
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Uwe Haberkorn
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Amit Gulati
- Department of Internal Medicine, Maimonides Medical Center, New York, NY
| | - Asmâa Naim
- Université Mohammed VI des Sciences et de la Santé, Casablanca, Morocco
| | | | - Maria Bebawy
- Morristown Medical Center, OBGYN Department, Morristown, NJ
| | - Antoine Girard
- Department of Nuclear Medicine, CHU Amiens-Picardie, Amiens, France
| | - Romain-David Seban
- Department of Nuclear Medicine and Endocrine Oncology, Institut Curie, Saint-Cloud, France and Laboratory of Translational Imaging in Oncology, Paris Sciences et Lettres (PSL) Research University, Institut Curie, Orsay, France
| | - Laurent Dercle
- From the Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| |
Collapse
|
2
|
Takamiya S, Malvea A, Ishaque AH, Pedro K, Fehlings MG. Advances in imaging modalities for spinal tumors. Neurooncol Adv 2024; 6:iii13-iii27. [PMID: 39430391 PMCID: PMC11485884 DOI: 10.1093/noajnl/vdae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/22/2024] Open
Abstract
The spinal cord occupies a narrow region and is tightly surrounded by osseous and ligamentous structures; spinal tumors can damage this structure and deprive patients of their ability to independently perform activities of daily living. Hence, imaging is vital for the prompt detection and accurate diagnosis of spinal tumors, as well as determining the optimal treatment and follow-up plan. However, many clinicians may not be familiar with the imaging characteristics of spinal tumors due to their rarity. In addition, spinal surgeons might not fully utilize imaging for the surgical planning and management of spinal tumors because of the complex heterogeneity of these lesions. In the present review, we focus on conventional and advanced spinal tumor imaging techniques. These imaging modalities include computed tomography, positron emission tomography, digital subtraction angiography, conventional and microstructural magnetic resonance imaging, and high-resolution ultrasound. We discuss the advantages and disadvantages of conventional and emerging imaging modalities, followed by an examination of cutting-edge medical technology to complement current needs in the field of spinal tumors. Moreover, machine learning and artificial intelligence are anticipated to impact the application of spinal imaging techniques. Through this review, we discuss the importance of conventional and advanced spinal tumor imaging, and the opportunity to combine advanced technologies with conventional modalities to better manage patients with these lesions.
Collapse
Affiliation(s)
- Soichiro Takamiya
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Anahita Malvea
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Abdullah H Ishaque
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Karlo Pedro
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Alqahtani MM. Whole-Body SPECT/CT: Protocol Variation and Technical Consideration-A Narrative Review. Diagnostics (Basel) 2024; 14:1827. [PMID: 39202315 PMCID: PMC11353707 DOI: 10.3390/diagnostics14161827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Introducing a hybrid imaging approach, such as single-photon emission computerized tomography with X-ray computed tomography (SPECT)/CT, improves diagnostic accuracy and patient management. The ongoing advancement of SPECT hardware and software has resulted in the clinical application of novel approaches. For example, whole-body SPECT/CT (WB-SPECT/CT) studies cover multiple consecutive bed positions, similar to positron emission tomography-computed tomography (PET/CT). WB-SPECT/CT proves to be a helpful tool for evaluating bone metastases (BM), reducing equivocal findings, and enhancing user confidence, displaying effective performance in contrast to planar bone scintigraphy (PBS). Consequently, it is increasingly utilized and might substitute PBS, which leads to new questions and issues concerning the acquisition protocol, patient imaging time, and workflow process. Therefore, this review highlights various aspects of WB-SPECT/CT acquisition protocols that need to be considered to help understand WB-SPECT/CT workflow processes and optimize imaging protocols.
Collapse
Affiliation(s)
- Mansour M. Alqahtani
- Department of Radiology and Medical Imaging, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
- Discipline of Medical Imaging Science, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Chen X, Liu C. Deep-learning-based methods of attenuation correction for SPECT and PET. J Nucl Cardiol 2023; 30:1859-1878. [PMID: 35680755 DOI: 10.1007/s12350-022-03007-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/18/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Attenuation correction (AC) is essential for quantitative analysis and clinical diagnosis of single-photon emission computed tomography (SPECT) and positron emission tomography (PET). In clinical practice, computed tomography (CT) is utilized to generate attenuation maps (μ-maps) for AC of hybrid SPECT/CT and PET/CT scanners. However, CT-based AC methods frequently produce artifacts due to CT artifacts and misregistration of SPECT-CT and PET-CT scans. Segmentation-based AC methods using magnetic resonance imaging (MRI) for PET/MRI scanners are inaccurate and complicated since MRI does not contain direct information of photon attenuation. Computational AC methods for SPECT and PET estimate attenuation coefficients directly from raw emission data, but suffer from low accuracy, cross-talk artifacts, high computational complexity, and high noise level. The recently evolving deep-learning-based methods have shown promising results in AC of SPECT and PET, which can be generally divided into two categories: indirect and direct strategies. Indirect AC strategies apply neural networks to transform emission, transmission, or MR images into synthetic μ-maps or CT images which are then incorporated into AC reconstruction. Direct AC strategies skip the intermediate steps of generating μ-maps or CT images and predict AC SPECT or PET images from non-attenuation-correction (NAC) SPECT or PET images directly. These deep-learning-based AC methods show comparable and even superior performance to non-deep-learning methods. In this article, we first discussed the principles and limitations of non-deep-learning AC methods, and then reviewed the status and prospects of deep-learning-based methods for AC of SPECT and PET.
Collapse
Affiliation(s)
- Xiongchao Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Chi Liu
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale University, PO Box 208048, New Haven, CT, 06520, USA.
| |
Collapse
|
5
|
Chen L, Lyu Y, Zhang X, Zheng L, Li Q, Ding D, Chen F, Liu Y, Li W, Zhang Y, Huang Q, Wang Z, Xie T, Zhang Q, Sima Y, Li K, Xu S, Ren T, Xiong M, Wu Y, Song J, Yuan L, Yang H, Zhang XB, Tan W. Molecular imaging: design mechanism and bioapplications. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/09/2023]
|
6
|
Bartoli F, Eckelman WC, Boyd M, Mairs RJ, Erba PA. Principles of Molecular Targeting for Radionuclide Therapy. NUCLEAR ONCOLOGY 2022:41-93. [DOI: 10.1007/978-3-031-05494-5_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2025]
|
7
|
Jones MA, MacCuaig WM, Frickenstein AN, Camalan S, Gurcan MN, Holter-Chakrabarty J, Morris KT, McNally MW, Booth KK, Carter S, Grizzle WE, McNally LR. Molecular Imaging of Inflammatory Disease. Biomedicines 2021; 9:152. [PMID: 33557374 PMCID: PMC7914540 DOI: 10.3390/biomedicines9020152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory diseases include a wide variety of highly prevalent conditions with high mortality rates in severe cases ranging from cardiovascular disease, to rheumatoid arthritis, to chronic obstructive pulmonary disease, to graft vs. host disease, to a number of gastrointestinal disorders. Many diseases that are not considered inflammatory per se are associated with varying levels of inflammation. Imaging of the immune system and inflammatory response is of interest as it can give insight into disease progression and severity. Clinical imaging technologies such as computed tomography (CT) and magnetic resonance imaging (MRI) are traditionally limited to the visualization of anatomical information; then, the presence or absence of an inflammatory state must be inferred from the structural abnormalities. Improvement in available contrast agents has made it possible to obtain functional information as well as anatomical. In vivo imaging of inflammation ultimately facilitates an improved accuracy of diagnostics and monitoring of patients to allow for better patient care. Highly specific molecular imaging of inflammatory biomarkers allows for earlier diagnosis to prevent irreversible damage. Advancements in imaging instruments, targeted tracers, and contrast agents represent a rapidly growing area of preclinical research with the hopes of quick translation to the clinic.
Collapse
Affiliation(s)
- Meredith A. Jones
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (M.A.J.); (W.M.M.); (A.N.F.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
| | - William M. MacCuaig
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (M.A.J.); (W.M.M.); (A.N.F.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
| | - Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (M.A.J.); (W.M.M.); (A.N.F.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
| | - Seda Camalan
- Department of Internal Medicine, Wake Forest Baptist Health, Winston-Salem, NC 27157, USA; (S.C.); (M.N.G.)
| | - Metin N. Gurcan
- Department of Internal Medicine, Wake Forest Baptist Health, Winston-Salem, NC 27157, USA; (S.C.); (M.N.G.)
| | - Jennifer Holter-Chakrabarty
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Katherine T. Morris
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Molly W. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
| | - Kristina K. Booth
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Steven Carter
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Lacey R. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| |
Collapse
|
8
|
Costelloe CM, Lin PP, Chuang HH, Amini B, Chainitikun S, Yu TK, Ueno NT, Murphy WA, Madewell JE. Bone Metastases: Mechanisms of the Metastatic Process, Imaging and Therapy. Semin Ultrasound CT MR 2020; 42:164-183. [PMID: 33814103 DOI: 10.1053/j.sult.2020.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Abstract
The mechanisms by which tumors metastasize to bone are complex. Upon the successful establishment of metastatic deposits in the skeleton, detection of the disease becomes essential for therapeutic planning. The roles of CT, skeletal scintigraphy, SPECT/CT, MRI, PET/CT and PET/MRI will be reviewed. Therapeutic response criteria specifically designed to evaluate bone metastases (MD Anderson/MDA criteria) can guide image interpretation. Knowledge of therapeutic strategies such as systemic therapy with bisphosphonates or radiopharmaceuticals, radiation therapy, surgery, and percutaneous interventions such as vertebroplasty and radiofrequency ablation can help the radiologist produce reports that will provide maximum benefit to clinicians and patients.
Collapse
Affiliation(s)
- Colleen M Costelloe
- Department of Musculoskeletal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Patrick P Lin
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hubert H Chuang
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Behrang Amini
- Department of Musculoskeletal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sudpreeda Chainitikun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Tse-Kuan Yu
- Radiation Oncology, Houston Precision Cancer Center, Houston, TX
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - William A Murphy
- Department of Musculoskeletal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - John E Madewell
- Department of Musculoskeletal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
9
|
Tsuchiya M, Masui T, Katayama M, Hayashi Y, Yamada T, Terauchi K, Kawamura K, Ishikawa R, Mizobe H, Yamamichi J, Sakahara H, Goshima S. Temporal subtraction of low-dose and relatively thick-slice CT images with large deformation diffeomorphic metric mapping and adaptive voxel matching for detection of bone metastases: A STARD-compliant article. Medicine (Baltimore) 2020; 99:e19538. [PMID: 32195958 PMCID: PMC7220493 DOI: 10.1097/md.0000000000019538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022] Open
Abstract
To evaluate the improvement of radiologist performance in detecting bone metastases at follow up low-dose computed tomography (CT) by using a temporal subtraction (TS) technique based on an advanced nonrigid image registration algorithm.Twelve patients with bone metastases (males, 5; females, 7; mean age, 64.8 ± 7.6 years; range 51-81 years) and 12 control patients without bone metastases (males, 5; females, 7; mean age, 64.8 ± 7.6 years; 51-81 years) were included, who underwent initial and follow-up CT examinations between December 2005 and July 2016. Initial CT images were registered to follow-up CT images by the algorithm, and TS images were created. Three radiologists independently assessed the bone metastases with and without the TS images. The reader averaged jackknife alternative free-response receiver operating characteristics figure of merit was used to compare the diagnostic accuracy.The reader-averaged values of the jackknife alternative free-response receiver operating characteristics figures of merit (θ) significantly improved from 0.687 for the readout without TS and 0.803 for the readout with TS (P value = .031. F statistic = 5.24). The changes in the absolute value of CT attenuations in true-positive lesions were significantly larger than those in false-negative lesions (P < .001). Using TS, segment-based sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of the readout with TS were 66.7%, 98.9%, 94.4%, 90.9%, and 94.8%, respectively.The TS images can significantly improve the radiologist's performance in the detection of bone metastases on low-dose and relatively thick-slice CT.
Collapse
Affiliation(s)
- Mitsuteru Tsuchiya
- Department of Diagnostic Radiology and Nuclear Medicine, Graduate School of Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku
| | - Takayuki Masui
- Department of Radiology, Seirei Hamamatsu General Hospital, 2-12-12, Sumiyoshi, Naka-ku, Hamamatsu City, Shizuoka
| | - Motoyuki Katayama
- Department of Radiology, Seirei Hamamatsu General Hospital, 2-12-12, Sumiyoshi, Naka-ku, Hamamatsu City, Shizuoka
| | - Yuki Hayashi
- Department of Radiology, Seirei Hamamatsu General Hospital, 2-12-12, Sumiyoshi, Naka-ku, Hamamatsu City, Shizuoka
| | - Takahiro Yamada
- Department of Radiology, Seirei Hamamatsu General Hospital, 2-12-12, Sumiyoshi, Naka-ku, Hamamatsu City, Shizuoka
| | - Kazuma Terauchi
- Department of Radiology, Seirei Hamamatsu General Hospital, 2-12-12, Sumiyoshi, Naka-ku, Hamamatsu City, Shizuoka
| | - Kenshi Kawamura
- Department of Radiology, Seirei Hamamatsu General Hospital, 2-12-12, Sumiyoshi, Naka-ku, Hamamatsu City, Shizuoka
| | - Ryo Ishikawa
- Medical Imaging Information Technology Development Department Canon Inc.70-1, Yanagi-cho, Saiwai-ku, Kawasaki-shi, Kanagawa
| | - Hideaki Mizobe
- Medical Imaging Information Technology Development Department Canon Inc.70-1, Yanagi-cho, Saiwai-ku, Kawasaki-shi, Kanagawa
| | - Junta Yamamichi
- Medical Imaging Information Technology Development Department Canon Inc.70-1, Yanagi-cho, Saiwai-ku, Kawasaki-shi, Kanagawa
| | - Harumi Sakahara
- Department of Diagnostic Radiology and Nuclear Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka, Japan
| | - Satoshi Goshima
- Department of Diagnostic Radiology and Nuclear Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka, Japan
| |
Collapse
|
10
|
Jabeen N, Rasheed R, Rafique A, Murtaza G. The Established Nuclear Medicine Modalities for Imaging of Bone Metastases. Curr Med Imaging 2019; 15:819-830. [DOI: 10.2174/1573405614666180327122548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2017] [Revised: 02/28/2018] [Accepted: 03/19/2018] [Indexed: 12/22/2022]
Abstract
Background:
The skeleton is one of the frequent site of metastases in advanced cancer.
Prostate, breast and renal cancers mostly metastasize to bone.
Discussion:
Malignant tumors lead to significant morbidity and mortality. Identification of bone
lesions is a crucial step in diagnosis of disease at early stage, monitoring of disease progression and
evaluation of therapy. Diagnosis of cancer metastases is based on uptake of bone-targeted radioactive
tracer at different bone remodeling sites.
Conclusion:
This manuscript summarizes already established and evolving nuclear medicine modalities
(e.g. bone scan, SPECT, SPECT/CT, PET, PET/CT) for imaging of bone metastases.
Collapse
Affiliation(s)
- Nazish Jabeen
- Department of Pharmacy, COMSATS Institute of Information Technology Abbottabad, Abbottabad, Pakistan
| | - Rashid Rasheed
- Institute of Nuclear Medicines, Oncology and Radiations (INOR), Ayub Medical Hospital, Abbottabad, Pakistan
| | - Asma Rafique
- Department of Pharmacy, COMSATS Institute of Information Technology Abbottabad, Abbottabad, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS Institute of Information Technology Abbottabad, Abbottabad, Pakistan
| |
Collapse
|
11
|
Guerriero KA, Wilson SR, Sinusas AJ, Saperstein L, Zeiss AJ. Single-photon Emission Computed Tomography-Computed Tomography Using 99mTc-labeled Leukocytes for Evaluating Infection Associated with a Cranial Implant in a Rhesus Macaque ( Macaca mulatta). Comp Med 2019; 69:249-256. [PMID: 30935441 DOI: 10.30802/aalas-cm-18-000123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/05/2022]
Abstract
An adult male rhesus macaque (Macaca mulatta) that was enrolled in a study evaluating cognition and memory presented with suppurative exudate along the margins of a long-standing cranial implant that included a stainless-steel head post, plastic left-sided recording cylinder, and acrylic over a previously placed right-sided recording cylinder. Both cylinders were located at the level of the prefrontal cortex. After treatment comprising systemic antibiotics and daily cleaning with povidone-iodine for several months, the macaque underwent single-photon emission computed tomography-computed tomography (SPECT-CT) in which his neutrophils were labeled with 99mTc-hexamethylpropylene amine oxime ( 99m Tc-HMPAO) to evalu- ate for active infection below the implant. Soft tissue inflammation and osteomyelitis were found at the site of the previous right-sided recording cylinder. Cephalosporin and tetracycline antibiotics were administered for 12 wk. Follow-up SPECT-CT imaging was then performed to evaluate response to medical treatment. Results indicated no change in the degrees of soft tissue inflammation and osteomyelitis associated with the right-sided recording cylinder site. SPECT-CT imaging was used to guide the surgical removal of the implant and debridement of the infected tissue. On removal of the entire cranial implant, the osteomyelitis and soft tissue inflammation observed on the pre- and posttreatment SPECT-CT scans were confirmed. In addition, a large cavitary defect through the calvarium with suppurative exudate was discovered below the base of the head post. Infection in this defect was not apparent on SPECT; however, the bony defect was confirmed on reevaluation of the CT images. We concluded that the infection in this defect was silent on SPECT due to the limited vascularization of the sur-rounding bone and the chronicity of the infection. This case study is the first to describe the use of SPECT-CT for evaluating soft tissue inflammation and osteomyelitis beneath a cranial implant in a NHP.
Collapse
Affiliation(s)
| | | | - Albert J Sinusas
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Departments of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Lawrence Saperstein
- Departments of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
12
|
Abstract
Bone is the most common site of metastases from advanced breast cancer. Whole-body bone scintigraphy has been most frequently used in the process of managing cancer patients; its advantage is that it provides rapid whole-body imaging for screening of osteoblastic or sclerotic/mixed bone metastases at reasonable cost. Recent advanced techniques, such as single-photon emission computed tomography (SPECT)/CT, quantitative analysis, and bone scan index, contribute to better understanding of the disease state. More recent advances in machines and PET drugs improve the staging of the skeleton with higher sensitivity and specificity.
Collapse
|
13
|
Gajjala SR, Hulikal N, Kadiyala S, Kottu R, Kalawat T. Whole-body 18F-fluorodeoxyglucose positron emission tomography-computed tomography ( 18F-FDG PET/CT) for staging locally advanced breast cancer: A prospective study from a tertiary cancer centre in south India. Indian J Med Res 2018; 147:256-262. [PMID: 29923514 PMCID: PMC6022380 DOI: 10.4103/ijmr.ijmr_1368_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/17/2023] Open
Abstract
Background & objectives: Locally advanced breast cancer (LABC) is associated with substantial risk of occult metastases. The patients with LABC have high rate of systemic relapse, suggesting inadequacy of the current conventional staging in detecting the occult metastatic spread. 18F-fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET/CT) is a new modality in the staging of breast cancer patients. Hence, this study was conducted to evaluate the role of 18F-FDG PET/CT in initial staging of LABC and to compare it with conventional methods. Methods: This prospective study included biopsy-confirmed female patients diagnosed with LABC meeting the selection criteria and attending surgical, medical and radiation oncology departments of a tertiary care centre in south India, from April 2013 to December 2014. Conventional workup included serum chemistry, mammogram, bone scan, contrast-enhanced CT (CECT) chest and upper abdomen and ultrasound abdomen and pelvis. All patients following conventional workup underwent 18F-FDG PET/CT. Results: In this study, 61 women with LABC underwent both conventional workup and 18F-FGD PET/CT. The 18F-FDG PET/CT, in comparison to conventional workup, revealed unsuspected N3 nodal disease in 11 more patients, revealed distant metastasis in seven more patients and also detected extra sites of metastasis in five patients. The sensitivity, specificity, positive predictive value, negative predictive value and accuracy of PET/CT to detect distant metastasis were 95, 98, 95, 98 and 97 per cent, respectively, whereas the sensitivity, specificity, positive predictive value, negative predictive value and accuracy of conventional imaging to detect distant metastasis were 65, 93, 81, 84 and 84 per cent, respectively. Interpretation & conclusions: The 18F-FDG PET/CT was found to be more accurate than conventional imaging for staging and modified stage and treatment in 30 and 38 per cent of patients, respectively. It was particularly useful in detecting occult distant metastasis and N3 nodal disease with an added advantage of examining whole body in single session. However, CECT chest was superior over 18F-FDG PET/CT for detecting pulmonary metastasis.
Collapse
Affiliation(s)
- Sivanath Reddy Gajjala
- Department of Surgical Oncology, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| | - Narendra Hulikal
- Department of Surgical Oncology, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| | - Silpa Kadiyala
- Department of Radiology, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| | - Radhika Kottu
- Department of Pathology, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| | - Tekchand Kalawat
- Department of Nuclear Medicine, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| |
Collapse
|
14
|
Cook GJ, Goh V. Functional and Hybrid Imaging of Bone Metastases. J Bone Miner Res 2018; 33:961-972. [PMID: 29665140 PMCID: PMC7616187 DOI: 10.1002/jbmr.3444] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/10/2018] [Revised: 04/02/2018] [Accepted: 04/06/2018] [Indexed: 12/21/2022]
Abstract
Bone metastases are common, cause significant morbidity, and impact on healthcare resources. Although radiography, computed tomography (CT), magnetic resonance imaging (MRI), and bone scintigraphy have frequently been used for staging the skeleton, these methods are insensitive and nonspecific for monitoring treatment response in a clinically relevant time frame. We summarize several recent reports on new functional and hybrid imaging methods including single photon emission CT/CT, positron emission tomography/CT, and whole-body MRI with diffusion-weighted imaging. These modalities generally show improvements in diagnostic accuracy for staging and response assessment over standard imaging methods, with the ability to quantify biological processes related to the bone microenvironment as well as tumor cells. As some of these methods are now being adopted into routine clinical practice and clinical trials, further evaluation with comparative studies is required to guide optimal and cost-effective clinical management of patients with skeletal metastases. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Gary Jr Cook
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom
- King's College London and Guy's & St Thomas' PET Centre, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Vicky Goh
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom
- Radiology Department, Guy's & St Thomas' Hospitals, London SE1 7EH, United Kingdom
| |
Collapse
|
15
|
Jafari SH, Saadatpour Z, Salmaninejad A, Momeni F, Mokhtari M, Nahand JS, Rahmati M, Mirzaei H, Kianmehr M. Breast cancer diagnosis: Imaging techniques and biochemical markers. J Cell Physiol 2018; 233:5200-5213. [PMID: 29219189 DOI: 10.1002/jcp.26379] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022]
Abstract
Breast cancer is a complex disease which is found as the second cause of cancer-associated death among women. Accumulating of evidence indicated that various factors (i.e., gentical and envirmental factors) could be associated with initiation and progression of breast cancer. Diagnosis of breast cancer patients in early stages is one of important aspects of breast cancer treatment. Among of various diagnosis platforms, imaging techniques are main diagnosis approaches which could provide valuable data on patients with breast cancer. It has been showed that various imaging techniques such as mammography, magnetic resonance imaging (MRI), positron-emission tomography (PET), Computed tomography (CT), and single-photon emission computed tomography (SPECT) could be used for diagnosis and monitoring patients with breast cancer in various stages. Beside, imaging techniques, utilization of biochemical biomarkers such as proteins, DNAs, mRNAs, and microRNAs could be employed as new diagnosis and therapeutic tools for patients with breast cancer. Here, we summarized various imaging techniques and biochemical biomarkers could be utilized as diagnosis of patients with breast cancer. Moreover, we highlighted microRNAs and exosomes as new diagnosis and therapeutic biomarkers for monitoring patients with breast cancer.
Collapse
Affiliation(s)
- Seyed Hamed Jafari
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Saadatpour
- Radiology Specialist at Bozorgmehr Imaging Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
| | - Fatemeh Momeni
- General Practitioner, Medical Researcher, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojgan Mokhtari
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javid Sadri Nahand
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Rahmati
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Kianmehr
- Department of Medical Physics, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
16
|
Drude N, Tienken L, Mottaghy FM. Theranostic and nanotheranostic probes in nuclear medicine. Methods 2017; 130:14-22. [PMID: 28698069 DOI: 10.1016/j.ymeth.2017.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2017] [Revised: 06/01/2017] [Accepted: 07/05/2017] [Indexed: 12/28/2022] Open
|
17
|
Solinas C, Porcu M, Hlavata Z, De Silva P, Puzzoni M, Willard-Gallo K, Scartozzi M, Saba L. Critical features and challenges associated with imaging in patients undergoing cancer immunotherapy. Crit Rev Oncol Hematol 2017; 120:13-21. [PMID: 29198327 DOI: 10.1016/j.critrevonc.2017.09.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2017] [Revised: 09/13/2017] [Accepted: 09/30/2017] [Indexed: 01/03/2023] Open
Abstract
Manipulating an individual's immune system through immune checkpoint blockade is revolutionizing the paradigms of cancer treatment. Peculiar patterns and kinetics of response have been observed with these new drugs, rendering the assessment of tumor burden particularly challenging in cancer immunotherapy. The mechanisms of action for immune checkpoint blockade, based upon engagement of the adaptive immune system, can generate unusual response patterns, including pseudoprogression, hyperprogression, atypical and delayed responses. In patients treated with immune checkpoint blockade and radiotherapy, a reduction in tumor burden at metastatic sites distant from the irradiation field (abscopal effect) has been observed, with synergistic systemic immune effects provoked by this combination. New toxicities have also been observed, due to excessive immune activity in several organs, including lung, colon, liver and endocrine glands. Efforts to standardize assessment of cancer immunotherapy responses include novel consensus guidelines derived by modifying World Health Organization (WHO) and Response Evaluation Criteria In Solid Tumors (RECIST) criteria. The aim of this review is to evaluate imaging techniques currently used routinely in the clinic and those being used as investigational tools in immunotherapy clinical trials.
Collapse
Affiliation(s)
- Cinzia Solinas
- Molecular Immunology Unit, Institut Jules Bordet and Université Libre de Bruxelles, Boulevard de Waterloo, n. 127, Brussels, Belgium
| | - Michele Porcu
- Department of Radiology, Azienda Ospedaliero Universitaria of Cagliari, SS 554 Monserrato, CA, Italy.
| | - Zuzana Hlavata
- Department of Medical Oncology, CHR Mons - Hainaut, Avenue Baudouin de Constantinople, n. 5, Mons, Hainaut, Belgium
| | - Pushpamali De Silva
- Molecular Immunology Unit, Institut Jules Bordet and Université Libre de Bruxelles, Boulevard de Waterloo, n. 127, Brussels, Belgium
| | - Marco Puzzoni
- Department of Medical Oncology, Azienda Ospedaliero Universitaria of Cagliari, SS 554 Monserrato, CA, Italy
| | - Karen Willard-Gallo
- Molecular Immunology Unit, Institut Jules Bordet and Université Libre de Bruxelles, Boulevard de Waterloo, n. 127, Brussels, Belgium
| | - Mario Scartozzi
- Department of Medical Oncology, Azienda Ospedaliero Universitaria of Cagliari, SS 554 Monserrato, CA, Italy
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria of Cagliari, SS 554 Monserrato, CA, Italy
| |
Collapse
|
18
|
Bone metastases from breast cancer: associations between morphologic CT patterns and glycolytic activity on PET and bone scintigraphy as well as explorative search for influential factors. Ann Nucl Med 2017; 31:719-725. [PMID: 28864931 PMCID: PMC5691120 DOI: 10.1007/s12149-017-1202-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/04/2017] [Accepted: 08/29/2017] [Indexed: 11/28/2022]
Abstract
Background This study aimed to compare the detection of bone metastases from breast cancer on F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and bone scintigraphy (BS). An explorative search for factors influencing the sensitivity or uptake of BS and FDG-PET was also performed. Methods Eighty-eight patients with bone metastases from breast cancer were eligible for this study. Histological confirmation of bone metastases was obtained in 31 patients. The bone metastases were visually classified into four types based on their computed tomography (CT) appearance: osteoblastic, osteolytic, mixed, and negative. The sensitivity of BS and FDG-PET were obtained regarding CT type, adjuvant therapy, and the primary tumor characteristics. The FDG maximum standardized uptake value (SUVmax) was analyzed. Results The sensitivities of the three modalities (CT, BS, and FDG-PET) were 77, 89, and 94%, respectively. The sensitivity of FDG-PET for the osteoblastic type (69%) was significantly lower than that for the other types (P < 0.001), and the sensitivity of BS for the negative type (70%) was significantly lower than that for the others. Regarding tumor characteristics, the sensitivity of FDG-PET significantly differed between nuclear grade (NG)1 and NG2–3 (P = 0.032). The SUVmax of the osteoblastic type was significantly lower than that of the other types (P = 0.009). The SUVmax of NG1 was also significantly lower than that of NG2–3 (P = 0.011). No significant difference in FDG uptake (SUVmax) was detected between different histological types. Conclusion Although FDG-PET is superior to BS for the detection of bone metastases from breast cancer, this technique has limitations in depicting osteoblastic bone metastases and NG1.
Collapse
|
19
|
Abstract
OBJECTIVE The aim of the study was to compare the detectability rate of bone metastases in breast cancer patients using whole-body single-photon emission computed tomography (WB-SPECT) performed with a half-time acquisition algorithm with that of planar ± selected field-of-view SPECT [standard bone scintigraphy (BS)]. MATERIALS AND METHODS Ninety-two consecutive breast cancer patients (age range 35-74 years) underwent planar BS followed by WB-SPECT (acquisition time 28 min). Clinical and imaging follow-up data from BS, 18F-FDG-PET/CT and CT were used as composite reference standards. Institutional review board approval was obtained. For a review of standard BS results, data from a selected SPECT field-of-view were extracted from the WB-SPECT when requested by the readers. Diagnostic confidence of interpretation criteria were defined using a five-point level-of-confidence grading scale of lesions. RESULTS Bone metastases were diagnosed in 34 of 92 studies (37%). On patient-based analysis, the detectability rate of standard BS was 97% (33/34 patients) as compared with 100% for WB-SPECT (P=NS). On a lesion-based analysis, 268 foci were detected, including 124 metastases. Standard BS detected 195 lesions (73%; 99 metastases and 96 benign) and missed 73 lesions (25 metastases and 48 benign). WB-SPECT detected 266 lesions (99%; 124 metastases and 142 benign) and missed two benign foci because of SPECT reconstruction artefacts. The lesion-based detectability rate of metastases for standard BS was 80% compared with 100% for WB-SPECT (P<0.001). WB-SPECT was associated with a higher level of confidence compared with standard BS for both benign (P<0.01) and malignant lesions (P<0.05). CONCLUSION WB-SPECT is a useful tool for skeletal assessment, showing good performance in comparison with standard BS in breast cancer patients, and may eliminate the need for an initial planar scan.
Collapse
|
20
|
Van den Wyngaert T, Strobel K, Kampen WU, Kuwert T, van der Bruggen W, Mohan HK, Gnanasegaran G, Delgado-Bolton R, Weber WA, Beheshti M, Langsteger W, Giammarile F, Mottaghy FM, Paycha F. The EANM practice guidelines for bone scintigraphy. Eur J Nucl Med Mol Imaging 2016; 43:1723-38. [PMID: 27262701 PMCID: PMC4932135 DOI: 10.1007/s00259-016-3415-4] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 11/24/2022]
Abstract
PURPOSE The radionuclide bone scan is the cornerstone of skeletal nuclear medicine imaging. Bone scintigraphy is a highly sensitive diagnostic nuclear medicine imaging technique that uses a radiotracer to evaluate the distribution of active bone formation in the skeleton related to malignant and benign disease, as well as physiological processes. METHODS The European Association of Nuclear Medicine (EANM) has written and approved these guidelines to promote the use of nuclear medicine procedures of high quality. CONCLUSION The present guidelines offer assistance to nuclear medicine practitioners in optimizing the diagnostic procedure and interpreting bone scintigraphy. These guidelines describe the protocols that are currently accepted and used routinely, but do not include all existing procedures. They should therefore not be taken as exclusive of other nuclear medicine modalities that can be used to obtain comparable results. It is important to remember that the resources and facilities available for patient care may vary.
Collapse
Affiliation(s)
- T Van den Wyngaert
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, 2650, Edegem, Belgium
- Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - K Strobel
- Department of Radiology and Nuclear Medicine, Lucerne Cantonal Hospital, Lucerne, Switzerland
| | - W U Kampen
- Nuclear Medicine Spitalerhof, Spitalerstraße 8, 20095, Hamburg, Germany
| | - T Kuwert
- Clinic of Nuclear Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - W van der Bruggen
- Department of Radiology and Nuclear Medicine, Slingeland Hospital, Doetinchem, The Netherlands
| | - H K Mohan
- Department of Nuclear Medicine, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - G Gnanasegaran
- Department of Nuclear Medicine, Royal Free London NHS Foundation Trust, London, UK
| | - R Delgado-Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, San Pedro Hospital and Centre for Biomedical Research of La Rioja (CIBIR), University of La Rioja, Logroño, La Rioja, Spain
| | - W A Weber
- Department of Radiology, Memorial Sloan Kettering Center, New York, NY, USA
| | - M Beheshti
- PET-CT Center Linz, Department of Nuclear Medicine and Endocrinology, St Vincent's Hospital, Seilerstaette 4, 4020, Linz, Austria
| | - W Langsteger
- PET-CT Center Linz, Department of Nuclear Medicine and Endocrinology, St Vincent's Hospital, Seilerstaette 4, 4020, Linz, Austria
| | - F Giammarile
- Department of Nuclear Medicine, Centre Hospitalier Universitaire de Lyon, Lyon, France
| | - F M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
- Department of Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - F Paycha
- Department of Nuclear Medicine, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, 2 rue Ambroise Paré, 75010, Paris, France.
| |
Collapse
|
21
|
Azad GK, Cook GJ. Multi-technique imaging of bone metastases: spotlight on PET-CT. Clin Radiol 2016; 71:620-31. [PMID: 26997430 DOI: 10.1016/j.crad.2016.01.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2015] [Revised: 12/30/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022]
Abstract
There is growing evidence that molecular imaging of bone metastases with positron-emission tomography (PET) can improve diagnosis and treatment response assessment over current conventional standard imaging methods, although cost-effectiveness has not been assessed. In most cancer types, 2-[(18)F]-fluoro-2-deoxy-d-glucose ((18)F-FDG)-PET is an accurate method for detecting bone metastases. For example, in breast cancer, combined (18)F-FDG-PET and computed tomography (CT) is more sensitive at detecting bone metastases than (99m)technetium (Tc)-labelled diphosphonate planar bone scintigraphy (BS) and there is increasing evidence to support the use of serial (18)F-FDG-PET for the assessment of osseous response to treatment. Preliminary data suggest improved diagnostic accuracy of (18)F-FDG-PET-CT in a number of other malignancies including lung, thyroid, head and neck, gastro-oesophageal cancers, and osteosarcoma. As a bone-specific tracer, there is accumulating evidence to support the use of sodium (18)F-fluoride ((18)F-NaF) PET-CT in the diagnosis of skeletal metastases in breast and prostate cancer, although relatively little data are available to support its use for assessment of treatment response. In prostate cancer, (11)C-choline and (18)F-choline PET-CT have better specificities than (18)F-NaF-PET-CT, but equivalent sensitivities in the detection of bone metastases. We review the current literature for staging and response assessment of bone metastases in different cancers.
Collapse
Affiliation(s)
- Gurdip K Azad
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, King's College London, St Thomas' Hospital, London, UK
| | - Gary J Cook
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, King's College London, St Thomas' Hospital, London, UK; Clinical PET Centre, St Thomas' Hospital, London, UK.
| |
Collapse
|
22
|
Clinical relevance of 18F-FDG-negative osteoblastic metastatic bone lesions noted on PET/CT in breast cancer patients. Nucl Med Commun 2016; 37:593-601. [DOI: 10.1097/mnm.0000000000000481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
|
23
|
Eubank WB, Lee JH, Mankoff DA. Disease Restaging and Diagnosis of Recurrent and Metastatic Disease Following Primary Therapy with FDG-PET Imaging. PET Clin 2016; 4:299-312. [PMID: 20161481 DOI: 10.1016/j.cpet.2009.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
|
24
|
Capitanio S, Bongioanni F, Piccardo A, Campus C, Gonella R, Tixi L, Naseri M, Pennone M, Altrinetti V, Buschiazzo A, Bossert I, Fiz F, Bruno A, DeCensi A, Sambuceti G, Morbelli S. Comparisons between glucose analogue 2-deoxy-2-( 18F)fluoro-D-glucose and 18F-sodium fluoride positron emission tomography/computed tomography in breast cancer patients with bone lesions. World J Radiol 2016; 8:200-209. [PMID: 26981229 PMCID: PMC4770182 DOI: 10.4329/wjr.v8.i2.200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/28/2015] [Revised: 10/08/2015] [Accepted: 12/11/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To compare 2-deoxy-2-(18F)fluoro-D-glucose(18F-FDG) and 18F-sodium (18F-NaF) positron emission tomography/computed tomography (PET/CT) accuracy in breast cancer patients with clinically/radiologically suspected or known bone metastases.
METHODS: A total of 45 consecutive patients with breast cancer and the presence or clinical/biochemical or radiological suspicion of bone metastatic disease underwent 18F-FDG and 18F-fluoride PET/CT. Imaging results were compared with histopathology when available, or clinical and radiological follow-up of at least 1 year. For each technique we calculated: Sensitivity (Se), specificity (Sp), overall accuracy, positive and negative predictive values, error rate, and Youden’s index. McNemar’s χ2 test was used to test the difference in sensitivity and specificity between the two diagnostic methods. All analyses were computed on a patient basis, and then on a lesion basis, with consideration ofthe density of independent lesions on the co-registered CT (sclerotic, lytic, mixed, no-lesions) and the divergent site of disease (skull, spine, ribs, extremities, pelvis). The impact of adding 18F-NaF PET/CT to the work-up of patients was also measured in terms of change in their management due to 18F-NaF PET/CT findings.
RESULTS: The two imaging methods of 18F-FDG and 18F-fluoride PET/CT were significantly different at the patient-based analysis: Accuracy was 86.7% and 84.4%, respectively (McNemar’s χ2 = 6.23, df = 1, P = 0.01). Overall, 244 bone lesions were detected in our analysis. The overall accuracy of the two methods was significantly different at lesion-based analysis (McNemar’s χ2 = 93.4, df = 1, P < 0.0001). In the lesion density-based and site-based analysis, 18F-FDG PET/CT provided more accurate results in the detection of CT-negative metastasis (P < 0.002) and vertebral localizations (P < 0.002); 18F-NaF PET/CT was more accurate in detecting sclerotic (P < 0.005) and rib lesions (P < 0.04). 18F-NaF PET/CT led to a change of management in 3 of the 45 patients (6.6%) by revealing findings that were not detected at 18F-FDG PET/CT.
CONCLUSION: 18F-FDG PET/CT is a reliable imaging tool in the detection of bone metastasis in most cases, with a diagnostic accuracy that is slightly, but significantly, superior to that of 18F-NaF PET/CT in the general population of breast cancer patients. However, the extremely high sensitivity of 18F-fluoride PET/CT can exploit its diagnostic potential in specific clinical settings (i.e., small CT-evident sclerotic lesions, high clinical suspicious of relapse, and negative 18F-FDG PET and conventional imaging).
Collapse
|
25
|
Abstract
Bone metastases are common in patients with advanced breast cancer. Given the significant associated morbidity, the introduction of new, effective systemic therapies, and the improvement in survival time, early detection and response assessment of skeletal metastases have become even more important. Although planar bone scanning has recognized limitations, in particular, poor specificity in staging and response assessment, it continues to be the main method in current clinical practice for staging of the skeleton in patients at risk of bone metastases. However, the accuracy of bone scanning can be improved with the addition of SPECT/CT. There have been reported improvements in sensitivity and specificity for staging of the skeleton with either bone-specific PET/CT tracers, such as (18)F-NaF, or tumor-specific tracers, such as (18)F-FDG, although these methods are less widely available and more costly. There is a paucity of data on the use of (18)F-NaF PET/CT for response assessment in breast cancer, but there is increasing evidence that (18)F-FDG PET/CT may improve on current methods in this regard. At the same time, interest and experience in using whole-body morphologic MRI augmented with diffusion-weighted imaging for both staging and response assessment in the skeleton have been increasing. However, data on comparisons of these methods with PET methods to determine the best technique for current clinical practice or for clinical trials are insufficient. There are early data supporting the use (18)F-FDG PET/MRI to assess malignant disease in the skeleton, with the possibility of taking advantage of the synergies offered by combining morphologic, physiologic, and metabolic imaging.
Collapse
Affiliation(s)
- Gary J R Cook
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, Kings College London, London, England
| | - Gurdip K Azad
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, Kings College London, London, England
| | - Vicky Goh
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, Kings College London, London, England
| |
Collapse
|
26
|
Azad GK, Taylor B, Rubello D, Colletti PM, Goh V, Cook GJ. Molecular and Functional Imaging of Bone Metastases in Breast and Prostate Cancers: An Overview. Clin Nucl Med 2016; 41:e44-50. [PMID: 26402127 DOI: 10.1097/rlu.0000000000000993] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/19/2023]
Abstract
Our ability to accurately assess the skeleton for metastases in breast and prostate cancers has improved significantly in recent years with hybrid imaging methods. Nevertheless, no consensus has been reached on the best imaging modality for diagnosis and treatment response assessment of skeletal disease. Hybrid SPECT/CT has low false-positive and false-negative rates compared with planar bone scintigraphy (BS) or BS augmented with SPECT in breast and prostate cancers. In breast cancer, 18F-FDG PET is more sensitive and accurate at detecting bone metastases than BS. Currently, little evidence has accrued to support the superiority of 18F-fluoride (18F-NaF) PET in diagnosing osseous metastases or monitoring treatment response in breast cancer when compared with conventional imaging. In prostate cancer, the sensitivities of 18F-NaF PET/CT, 18F-fluorocholine (18F-choline), or 11C-choline PET/CT are equivalent, although 11C-/18F-choline PET/CT scans are more specific. Whole-body MRI, using anatomical sequences complemented by diffusion-weighted MRI, shows early evidence of utility for diagnosis and monitoring therapy response. We review the literature for staging and response assessment in metastatic breast and prostate cancer. While staging accuracy has significantly improved with hybrid imaging, optimal methods for assessing early treatment response have not been determined, and this is an area of active research.
Collapse
|
27
|
Minamimoto R, Loening A, Jamali M, Barkhodari A, Mosci C, Jackson T, Obara P, Taviani V, Gambhir SS, Vasanawala S, Iagaru A. Prospective Comparison of 99mTc-MDP Scintigraphy, Combined 18F-NaF and 18F-FDG PET/CT, and Whole-Body MRI in Patients with Breast and Prostate Cancer. J Nucl Med 2015; 56:1862-8. [DOI: 10.2967/jnumed.115.162610] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/23/2015] [Accepted: 09/10/2015] [Indexed: 12/27/2022] Open
|
28
|
Abstract
Background Single-photon emission computed tomography-computed tomography (SPECT-CT) is a highly sensitive tool for detecting bone metabolism. We determined whether subchondral bone metabolism, as indicated by SPECT-CT in the patellofemoral (PF) joint, predicts response to conservative management in middle-aged patients with chronic anterior knee pain (AKP), and whether SPECT-CT results correlate with arthroscopic assessments of chondral lesions in the PF joint. Methods The study group comprised 74 middle-aged patients with chronic AKP. All of the patients underwent SPECT-CT, and the results were graded along a scale of 0 to 3°. After 8 weeks of conservative management, they were grouped as responders (n = 40) or non-responders (n = 34) according to symptom improvement. We compared the median scintigraphic uptake of the PF joint between the two groups, and evaluated the positive predictive value (PPV) of uptake for treatment response in each patient. In non-responders, cartilage condition was assessed during arthroscopy, and the correlation of scintigraphic uptake with severity of the chondral lesion was assessed. Results The median scintigraphic uptake in the patella was higher in non-responders than in responders (2 vs. 1). Among patients with higher patella uptake (grade 2 or 3), the PPV for non-response to conservative therapy was 62–67 %, whereas it was 24–25 % in patients with lower uptake (grade 0 or 1). Patella uptake corresponded strongly with arthroscopic assessment of patellar chondral lesions; the correlation was less strong for the femoral trochlea. Conclusions Increased subchondral bone metabolism in the patella is associated with responsiveness to conservative therapy. SPECT-CT can benefit clinicians by predicting the treatment response from conservative management.
Collapse
Affiliation(s)
- Du Hyun Ro
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, South Korea.
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam-si, South Korea.
| | - Chong Bum Chang
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, South Korea. .,Department of Orthopaedic Surgery, SMG-SNU Boramae Medical Center, Seoul, South Korea.
| | - Seung-Baik Kang
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, South Korea. .,Department of Orthopaedic Surgery, SMG-SNU Boramae Medical Center, Seoul, South Korea.
| |
Collapse
|
29
|
Abstract
The aim of this guideline is to provide minimum standards for the performance and interpretation of (18)F-NaF PET/CT scans. Standard acquisition and interpretation of nuclear imaging modalities will help to provide consistent data acquisition and numeric values between different platforms and institutes and to promote the use of PET/CT modality as an established diagnostic modality in routine clinical practice. This will also improve the value of scientific work and its contribution to evidence-based medicine.
Collapse
|
30
|
Abstract
Bone scintigraphy (BS) is an imaging tool commonly used for screening patients with cancer, especially those with high prevalence of osseous metastases including the breast, prostate, lung, thyroid, and kidney, which account for 80% of osseous metastasis. BS has been shown to be of value in the initial and subsequent treatment strategy of various malignancies. The purpose of this article is to evaluate the technical and imaging aspects of BS and to examine the present research into improved detection of osseous metastasis.
Collapse
Affiliation(s)
- Diego Davila
- Russel H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD
| | - Alexander Antoniou
- Russel H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD
| | - Muhammad A Chaudhry
- Russel H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD; Tawam Molecular Imaging Center, Al Ain, UAE.
| |
Collapse
|
31
|
Dashevsky BZ, Goldman DA, Parsons M, Gönen M, Corben AD, Jochelson MS, Hudis CA, Morrow M, Ulaner GA. Appearance of untreated bone metastases from breast cancer on FDG PET/CT: importance of histologic subtype. Eur J Nucl Med Mol Imaging 2015; 42:1666-1673. [PMID: 25971426 DOI: 10.1007/s00259-015-3080-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/20/2015] [Accepted: 04/28/2015] [Indexed: 12/26/2022]
Abstract
PURPOSE To determine if the histology of a breast malignancy influences the appearance of untreated osseous metastases on FDG PET/CT. METHODS This retrospective study was performed under IRB waiver. Our Hospital Information System was screened for breast cancer patients who presented with osseous metastases, who underwent FDG PET/CT prior to systemic therapy or radiotherapy from 2009 to 2012. Patients with invasive ductal carcinoma (IDC), invasive lobular carcinoma (ILC), or mixed ductal/lobular (MDL) histology were included. Patients with a history of other malignancies were excluded. PET/CT was evaluated, blinded to histology, to classify osseous metastases on a per-patient basis as sclerotic, lytic, mixed lytic/sclerotic, or occult on CT, and to record SUVmax for osseous metastases on PET. RESULTS Following screening, 95 patients who met the inclusion criteria (74 IDC, 13 ILC, and 8 MDL) were included. ILC osseous metastases were more commonly sclerotic and demonstrated lower SUVmax than IDC metastases. In all IDC and MDL patients with osseous metastases, at least one was FDG-avid. For ILC, all patients with lytic or mixed osseous metastases demonstrated at least one FDG-avid metastasis; however, in only three of seven patients were sclerotic osseous metastases apparent on FDG PET. CONCLUSION The histologic subtype of breast cancer affects the appearance of untreated osseous metastases on FDG PET/CT. In particular, non-FDG-avid sclerotic osseous metastases were more common in patients with ILC than in patients with IDC. Breast cancer histology should be considered when interpreting non-FDG-avid sclerotic osseous lesions on PET/CT, which may be more suspicious for metastases (rather than benign lesions) in patients with ILC.
Collapse
Affiliation(s)
| | - Debra A Goldman
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Molly Parsons
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Mithat Gönen
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Adriana D Corben
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Maxine S Jochelson
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Clifford A Hudis
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Monica Morrow
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Gary A Ulaner
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
32
|
Gunalp B, Oner AO, Ince S, Alagoz E, Ayan A, Arslan N. Evaluation of radiographic and metabolic changes in bone metastases in response to systemic therapy with (18)FDG-PET/CT. Radiol Oncol 2015; 49:115-20. [PMID: 26029021 PMCID: PMC4387986 DOI: 10.1515/raon-2015-0012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/18/2014] [Accepted: 02/09/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The aim of the study was to retrospectively evaluate radiographic and metabolic changes in bone metastases in response to systemic therapy with (18)FDG-PET/CT and determine their roles on the evaluation of therapy response. PATIENTS AND METHODS We retrospectively evaluated radiographic and metabolic characteristics of bone metastases in 30 patients who were referred for the evaluation of response to systemic therapy with (18)FDG-PET/CT. All patients underwent integrated (18)FDG-PET/CT before and after treatment. RESULTS The baseline radiographic patterns of the target lesions in responders group were lytic, sclerotic, mixed and CT negative; after treatment the radiographic patterns of all target lesions changed to a sclerotic pattern and attenuation increased (p = 0.012) and metabolic activity decreased (p = 0.012). A correlation was found between decreasing metabolic activity and increasing attenuation of the target lesions (r = -0.55) (p = 0.026). However, in nonresponders group, the baseline radiologic patterns of the target lesions were lytic, blastic, mixed and CT negative; after treatment all lytic target lesions remained the same and one CT negative lesion turned to lytic pattern and the attenuation of the target lesions decreased (p ± 0.12) and metabolic activity increased (p = 0.012). A correlation was found between increasing metabolic activity and decreasing attenuation (r = -0.65) (p = 0.032). An exception of this rule was seen in baseline blastic metastases which progressed with increasing in size, metabolic activity and attenuation. CONCLUSIONS This study shows that the metabolic activity of lesions is a more reliable parameter than the radiographic patterns for the evaluation of therapy response.
Collapse
Affiliation(s)
- Bengul Gunalp
- Gulhane Military Medical Academy and Faculty, Department of Nuclear Medicine, Ankara, Turkey
| | - Ali Ozan Oner
- Kocatepe University Medical Faculty, Department of Nuclear Medicine, Afyon, Turkey
| | - Semra Ince
- Gulhane Military Medical Academy and Faculty, Department of Nuclear Medicine, Ankara, Turkey
| | - Engin Alagoz
- Gulhane Military Medical Academy and Faculty, Department of Nuclear Medicine, Ankara, Turkey
| | - Aslı Ayan
- Gulhane Military Medical Academy and Faculty, Department of Nuclear Medicine, Ankara, Turkey
| | - Nuri Arslan
- Gulhane Military Medical Academy and Faculty, Department of Nuclear Medicine, Ankara, Turkey
| |
Collapse
|
33
|
Petriev VM, Tishchenko VK, Siruk OV, Smoryzanova OA, Skvortsov VG. Pharmacokinetic Study of the New Diagnostic Radiopharmaceutical 99mTc-Pentaphosphonic Acid in Rats with an Experimental Bone-Fracture Model. Pharm Chem J 2014. [DOI: 10.1007/s11094-014-1110-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/24/2022]
|
34
|
Molecular imaging in oncology: (18)F-sodium fluoride PET imaging of osseous metastatic disease. AJR Am J Roentgenol 2014; 203:263-71. [PMID: 25055258 DOI: 10.2214/ajr.13.12158] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE This literature review details the history, pharmacokinetics, and utility of (18)F-sodium fluoride (Na(18)F) PET/CT in detecting osseous metastases compared with the current standard of care, technetium-99m methylene diphosphonate ((99m)Tc-MDP) bone scintigraphy. Additional discussion highlights solutions to impediments for broader implementation of this modality and insight into the complementary roles of (18)F-FDG PET/CT and Na(18)F PET/CT in oncology imaging, including preliminary data for combined Na(18)F and FDG PET/CT. CONCLUSION Na(18)F PET/CT is the most comprehensive imaging modality for the evaluation of osseous metastatic disease. Although further data acquisition is necessary to expand cost-benefit analyses of this imaging agent, emerging data reinforce its diagnostic advantage, suggest methods to mitigate impediments to broader utilization of Na(18)F PET/CT, and introduce a potentially viable technique for single-session combined Na(18)F and FDG PET/CT staging of soft-tissue and osseous disease.
Collapse
|
35
|
Pires AO, Borges US, Lopes-Costa PV, Gebrim LH, da Silva BB. Evaluation of bone metastases from breast cancer by bone scintigraphy and positron emission tomography/computed tomography imaging. Eur J Obstet Gynecol Reprod Biol 2014; 180:138-41. [PMID: 25037283 DOI: 10.1016/j.ejogrb.2014.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2014] [Revised: 06/03/2014] [Accepted: 06/19/2014] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The aim of this study was to compare bone scintigraphy (BS) and positron emission tomography/computed tomography (PET/CT) for the detection of bone metastases from breast cancer. STUDY DESIGN Twenty patients with breast cancer and bone pain were submitted to both bone scintigraphy and 18-F-fluorodeoxyglucose PET/CT imaging between July 2012 and June 2013. Scintigraphy was performed following an intravenous injection of technetium-99m-methylene diphosphonate (99mTc-MDP) around 10 days before the PET/CT scan, performed using an intravenous injection of 18-F-fluorodeoxyglucose followed by whole-body computed tomography (CT) to characterize metastases by both methods. Student's t-test for paired samples was used in the comparative data analysis, with significance at p<0.05. RESULTS CT identified 429 metastatic implants in the 20 patients, with scintigraphy showing 244 of these lesions (57%) and PET/CT showing 307 (72%); however, there was no statistically significant difference between the mean number of lesions detected per patient with the two imaging modalities (p=0.367). CONCLUSION In the present study, no difference was found between PET/CT and bone scintigraphy in the detection of bone metastases from breast cancer.
Collapse
Affiliation(s)
- Ary O Pires
- Department of Gynecology, Mastology Division, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Umbelina S Borges
- Department of Gynecology, Mastology Division, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Pedro V Lopes-Costa
- Department of Gynecology, Mastology Division, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Luiz H Gebrim
- Department of Mastology, Federal University of São Paulo, São Paulo, Brazil
| | - Benedito B da Silva
- Department of Gynecology, Mastology Division, Federal University of Piauí, Teresina, Piauí, Brazil.
| |
Collapse
|
36
|
Clinical significance of FDG-PET/CT at the postoperative surveillance in the breast cancer patients. Breast Cancer 2014; 23:141-148. [PMID: 24872087 DOI: 10.1007/s12282-014-0542-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/06/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
Abstract
AIM We evaluated the clinical role of [(18)F]-2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (FDG-PET/CT) compared with conventional imaging (CI) to detect locoregional recurrence or distant metastasis during postoperative surveillance of patients with breast cancer. MATERIALS AND METHODS We included 1,819 examinations of 1,161 patients, who underwent FDG-PET/CT and CI, including mammography, breast ultrasound, whole-body bone scintigraphy, and chest radiography for postoperative surveillance. All patients had a history of surgery with or without adjuvant treatment due to more than stage II breast cancer between November 2003 and November 2009. We evaluated the diagnostic performance of CI, FDG-PET/CT, and combined CI and FDG-PET/CT for detecting locoregional recurrence, distant metastasis, and incidental cancer. We also analyzed false-positive and false-negative results in both FDG-PET/CT and CI. RESULTS Sensitivity, specificity, positive predictive value, and negative predictive value of CI were 75.4, 98.7, 93.4, and 94.3 %. Those of FDG-PET/CT were 97.5, 98.8, 95.4, and 99.4 %. Those of the combined results were 98.6, 98.2, 96.7, and 99.7 %. Sensitivity of FDG-PET/CT was significantly higher than that of CI (P < 0.05). Sensitivity of combined CI and FDG-PET/CT results improved, but they were not significantly different from those of FDG-PET/CT alone (P = 0.43). Seventeen false-positive and nine false-negative cases were detected with FDG-PET/CT, and 19 false-positive and 88 false-negative cases were detected with CI. CONCLUSION FDG-PET/CT is considered as an acceptable diagnostic imaging modality for postoperative surveillance of patients with breast cancer.
Collapse
|
37
|
Ota S, Uno M, Kato M, Ishiguro M, Natsume T, Kikukawa K, Tadokoro M, Ichihara T, Toyama H. 89Sr bremsstrahlung single photon emission computed tomography using a gamma camera for bone metastases. Ann Nucl Med 2013; 28:112-9. [DOI: 10.1007/s12149-013-0788-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/26/2013] [Accepted: 11/03/2013] [Indexed: 10/26/2022]
|
38
|
Place de l'imagerie nucléaire et de ses évolutions pour le diagnostic et le suivi des métastases osseuses. Bull Cancer 2013; 100:1115-24. [DOI: 10.1684/bdc.2013.1847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
|
39
|
Abstract
This article presents an overview of positron emission tomography combined with computed tomography (PET/CT) imaging of bone tumors for the practicing radiologist. The clinical roles and utility of (18)F-labeled fluorodeoxyglucose PET/CT in patients with primary bone tumors, osseous metastases, and multiple myeloma are reviewed. The clinical and research data supporting the utility of PET/CT in the evaluation of skeletal malignancies continues to grow.
Collapse
Affiliation(s)
- Patrick J Peller
- Nuclear Radiology, Mayo Clinic, 200 1st Street Southwest, Rochester, MN 55905, USA; Department of Radiology, College of Medicine, Mayo Clinic, 200 1st Street Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
40
|
Pilot Prospective Evaluation of 99mTc-MDP Scintigraphy, 18F NaF PET/CT, 18F FDG PET/CT and Whole-Body MRI for Detection of Skeletal Metastases. Clin Nucl Med 2013; 38:e290-6. [DOI: 10.1097/rlu.0b013e3182815f64] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/24/2023]
|
41
|
Value of baseline and follow-up whole-body bone scans in detecting bone metastasis in high-risk breast cancer patients. Nucl Med Commun 2013; 34:577-81. [DOI: 10.1097/mnm.0b013e328360d6d5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
|
42
|
Lee SJ, Lee WW, Kim SE. Bone positron emission tomography with or without CT is more accurate than bone scan for detection of bone metastasis. Korean J Radiol 2013; 14:510-9. [PMID: 23690722 PMCID: PMC3655309 DOI: 10.3348/kjr.2013.14.3.510] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/16/2012] [Accepted: 12/26/2012] [Indexed: 11/15/2022] Open
Abstract
Objective Na18F bone positron emission tomography (bone PET) is a new imaging modality which is useful for the evaluation of bone diseases. Here, we compared the diagnostic accuracies between bone PET and bone scan for the detection of bone metastasis (BM). Materials and Methods Sixteen cancer patients (M:F = 10:6, mean age = 60 ± 12 years) who underwent both bone PET and bone scan were analyzed. Bone PET was conducted 30 minutes after the injection of 370 MBq Na18F, and a bone scan was performed 3 hours after the injection of 1295 MBq 99mTc-hydroxymethylene diphosphonate. Results In the patient-based analysis (8 patients with BM and 8 without BM), the sensitivities of bone PET (100% = 8/8) and bone scan (87.5% = 7/8) were not significantly different (p > 0.05), whereas the specificity of bone PET (87.5% = 7/8) was significantly greater than that of the bone scan (25% = 2/8) (p < 0.05). In the lesion-based analysis (43 lesions in 14 patients; 31 malignant and 12 benign), the sensitivity of bone PET (100% = 31/31) was significantly greater than that of bone scan (38.7% = 12/31) (p < 0.01), and the specificity of bone PET (75.0% = 9/12) was also significantly higher than that of bone scan (8.3% = 1/12) (p < 0.05). The receiver operating characteristic curve analysis showed that bone PET was significantly more accurate than the bone scan in the patient (p = 0.0306) and lesion (p = 0.0001) based analyses. Conclusion Na18F bone PET is more accurate than bone scan for BM evaluation.
Collapse
Affiliation(s)
- Soo Jin Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 463-707, Korea
| | | | | |
Collapse
|
43
|
Damle NA, Bal C, Bandopadhyaya GP, Kumar L, Kumar P, Malhotra A, Lata S. The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn J Radiol 2013; 31:262-9. [PMID: 23377765 DOI: 10.1007/s11604-013-0179-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2012] [Accepted: 01/06/2013] [Indexed: 12/19/2022]
Abstract
OBJECTIVES We aimed to compare the role of (18)F-fluoride PET/CT, FDG PET/CT and (99m)Tc-MDP bone scans in the detection of bone metastases in patients with lung, breast and prostate carcinoma. METHODS This was a prospective study including patients for staging (S) and restaging (R). Seventy-two patients (23S, 49R) with infiltrating ductal breast carcinoma, 49 patients (25S, 24R) with prostate adenocarcinoma and 30 patients (17S, 13R) with non-small-cell lung carcinoma (NSCLC), without known bone metastases but with high risk/clinical suspicion for the same, underwent a (99m)Tc-MDP bone scan, FDG PET/CT and (18)F-fluoride PET/CT within 2 weeks. All scans were reviewed by two experienced nuclear medicine physicians, and the findings were correlated with MRI/thin-slice CT/skeletal survey. Histological verification was done wherever feasible. RESULTS Sensitivity and negative predictive value (NPV) of (18)F-fluoride PET/CT was 100 % in all three malignancies, while that of FDG PET/CT was 79 % and 73 % in NSCLC, 73 % and 80 % in breast cancer and 72 and 65 % in prostate cancer. Specificity and positive predictive value (PPV) of FDG PET/CT were 100 % in NSCLC and prostate and 97 % and 96 % in breast cancer. As compared to the (99m)Tc-MDP bone scan, all parameters were superior for (18)F-fluoride PET/CT in prostate and breast cancer, but sensitivity and NPV were equal in NSCLC. The MDP bone scan had superior sensitivity and NPV compared to FDG PET/CT but had low specificity and PPV. CONCLUSION To rule out bone metastases in cases where there is a high index of suspicion, (18)F-fluoride PET/CT is the most reliable investigation. (18)F-fluoride PET/CT has the potential to replace the (99m)Tc-MDP bone scan for the detection of bone metastases.
Collapse
Affiliation(s)
- Nishikant Avinash Damle
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Room no. 59 A, New Delhi, 110029, India.
| | | | | | | | | | | | | |
Collapse
|
44
|
The IGR-CaP1 xenograft model recapitulates mixed osteolytic/blastic bone lesions observed in metastatic prostate cancer. Neoplasia 2012; 14:376-87. [PMID: 22745584 DOI: 10.1593/neo.12308] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2012] [Revised: 04/18/2012] [Accepted: 04/18/2012] [Indexed: 12/19/2022] Open
Abstract
Bone metastases have a devastating impact on quality of life and bone pain in patients with prostate cancer and decrease survival. Animal models are important tools in investigating the pathogenesis of the disease and in developing treatment strategies for bone metastases, but few animal models recapitulate spontaneous clinical bone metastatic spread. In the present study, IGR-CaP1, a new cell line derived from primary prostate cancer, was stably transduced with a luciferase-expressing viral vector to monitor tumor growth in mice using bioluminescence imaging. The IGR-CaP1 tumors grew when subcutaneously injected or when orthotopically implanted, reconstituted the prostate adenocarcinoma with glandular acini-like structures, and could disseminate to the liver and lung. Bone lesions were detected using bioluminescence imaging after direct intratibial or intracardiac injections. Anatomic bone structure assessed using high-resolution computed tomographic scans showed both lytic and osteoblastic lesions. Technetium Tc 99m methylene diphosphonate micro single-photon emission computed tomography confirmed the mixed nature of the lesions and the intensive bone remodeling. We also identified an expression signature for responsiveness of IGR-CaP1 cells to the bone microenvironment, namely expression of CXCR4, MMP-9, Runx2, osteopontin, osteoprotegerin, ADAMTS14, FGFBP2, and HBB. The IGR-CaP1 cell line is a unique model derived from a primary tumor, which can reconstitute human prostate adenocarcinoma in animals and generate experimental bone metastases, providing a novel means for understanding the mechanisms of bone metastasis progression and allowing preclinical testing of new therapies.
Collapse
|
45
|
Prospective evaluation of (99m)Tc MDP scintigraphy, (18)F NaF PET/CT, and (18)F FDG PET/CT for detection of skeletal metastases. Mol Imaging Biol 2012; 14:252-9. [PMID: 21479710 DOI: 10.1007/s11307-011-0486-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Technetium (Tc) methylene diphosphonate (MDP) has been the standard method for bone scintigraphy for three decades. (18)F sodium fluoride ((18)F NaF) positron emission tomography (PET)/computed tomography (CT) has better resolution and is considered superior. The role of 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F FDG) PET/CT is proven in a variety of cancers, for which it has changed the practice of oncology. There are few prospective studies comparing these three methods of detection of skeletal metastases. Thus, we were prompted to initiate this prospective pilot trial. METHODS This is a prospective study (Sep 2007-Dec 2010) of 52 patients with proven malignancy referred for evaluation of skeletal metastases. There were 37 men and 15 women, 19-84 years old (average, 55.6 ± 15.9). Technetium-99m ((99m)Tc) MDP bone scintigraphy, (18)F NaF PET/CT, and (18)F FDG PET/CT were subsequently performed within 1 month. RESULTS Skeletal lesions were detected by (99m)Tc MDP bone scintigraphy in 22 of 52 patients, by (18)F NaF PET/CT in 24 of 52 patients, and by (18)F FDG PET/CT in 16 of 52 patients. The image quality and evaluation of extent of disease were superior by (18)F NaF PET/CT over (99m)Tc MDP scintigraphy in all 22 patients with skeletal lesions on both scans and over (18)F FDG PET/CT in 11 of 16 patients with skeletal metastases on (18)F FDG PET/CT. In two patients, (18)F NaF PET/CT showed skeletal metastases not seen on either of the other two scans. Extraskeletal lesions were identified by (18)F FDG PET/CT in 28 of 52 subjects. CONCLUSION Our prospective pilot-phase trial demonstrates superior image quality and evaluation of skeletal disease extent with (18)F NaF PET/CT over (99m)Tc MDP scintigraphy and (18)F FDG PET/CT. At the same time, (18)F FDG PET detects extraskeletal disease that can significantly change disease management. As such, a combination of (18)F FDG PET/CT and (18)F NaF PET/CT may be necessary for cancer detection. Additional evaluation with larger cohorts is required to confirm these preliminary findings.
Collapse
|
46
|
Abstract
Bone imaging continues to be the second greatest-volume nuclear imaging procedure, offering the advantage of total body examination, low cost, and high sensitivity. Its power rests in the physiological uptake and pathophysiologic behavior of 99m technetium (99m-Tc) diphosphonates. The diagnostic utility, sensitivity, specificity, and predictive value of 99m-Tc bone imaging for benign conditions and tumors was established when only planar imaging was available. Currently, nearly all bone scans are performed as a planar study (whole-body, 3-phase, or regional), with the radiologist often adding single-photon emission computed tomography (SPECT) imaging. Here we review many current indications for planar bone imaging, highlighting indications in which the planar data are often diagnostically sufficient, although diagnosis may be enhanced by SPECT. (18)F sodium fluoride positron emission tomography (PET) is also re-emerging as a bone agent, and had been considered interchangeable with 99m-Tc diphosphonates in the past. In addition to SPECT, new imaging modalities, including (18)F fluorodeoxyglucose, PET/CT, CT, magnetic resonance, and SPECT/CT, have been developed and can aid in evaluating benign and malignant bone disease. Because (18)F fluorodeoxyglucose is taken up by tumor cells and Tc diphosphonates are taken up in osteoblastic activity or osteoblastic healing reaction, both modalities are complementary. CT and magnetic resonance may supplement, but do not replace, bone imaging, which often detects pathology before anatomic changes are appreciated. We also stress the importance of dose reduction by reducing the dose of 99m-Tc diphosphonates and avoiding unnecessary CT acquisitions. In addition, we describe an approach to image interpretation that emphasizes communication with referring colleagues and correlation with appropriate history to significantly improve our impact on patient care.
Collapse
Affiliation(s)
- Arnold I Brenner
- Staten Island University Hospital, Staten Island, NY 10305, USA.
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Katayama T, Kubota K, Machida Y, Toriihara A, Shibuya H. Evaluation of sequential FDG-PET/CT for monitoring bone metastasis of breast cancer during therapy: correlation between morphological and metabolic changes with tumor markers. Ann Nucl Med 2012; 26:426-35. [DOI: 10.1007/s12149-012-0595-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2011] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
|
49
|
Adak S, Bhalla R, Vijaya Raj KK, Mandal S, Pickett R, Luthra SK. Radiotracers for SPECT imaging: current scenario and future prospects. ACTA ACUST UNITED AC 2012. [DOI: 10.1524/ract.2011.1891] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
Abstract
Abstract
Single photon emission computed tomography (SPECT) has been the cornerstone of nuclear medicine and today it is widely used to detect molecular changes in cardiovascular, neurological and oncological diseases. While SPECT has been available since the 1980s, advances in instrumentation hardware, software and the availability of new radiotracers that are creating a revival in SPECT imaging are reviewed in this paper.
The biggest change in the last decade has been the fusion of CT with SPECT, which has improved attenuation correction and image quality. Advances in collimator design, replacement of sodium iodide crystals in the detectors with cadmium zinc telluride (CZT) detectors as well as advances in software and reconstruction algorithms have all helped to retain SPECT as a much needed and used technology.
Today, a wide spectrum of radiotracers is available for use in cardiovascular, neurology and oncology applications. The development of several radiotracers for neurological disorders is briefly described in this review, including [123I]FP-CIT (DaTSCANTM) available for Parkinson's disease. In cardiology, while technetium-99m labeled tetrofosmin and technetium-99m labeled sestamibi have been well known for myocardial perfusion imaging, we describe a recently completed multicenter clinical study on the use of [123I]mIBG (AdreViewTM) for imaging in chronic heart failure patients. For oncology, while bone scanning has been prevalent, newer radiotracers that target cancer mechanisms are being developed. Technetium-99m labeled RGD peptides have been reported in the literature that can be used for imaging angiogenesis, while technetium-99m labeled duramycin has been used to image apoptosis.
While PET/CT is considered to be the more advanced technology particularly for oncology applications, SPECT continues to be the modality of choice and the workhorse in many hospitals and nuclear medicine centers. The cost of SPECT instruments also makes them more attractive in developing countries where the cost of a scan is still prohibitive for many patients.
Collapse
Affiliation(s)
| | - R. Bhalla
- GE Healthcare Medical Diagnostics, The Grove Centre, Amersham HP7 9LL, Großbritannien
| | - K. K. Vijaya Raj
- GE Healthcare Medical Diagnostics, John F Welch Technology Center, Bangalore, Indien
| | - S. Mandal
- GE Healthcare Medical Diagnostics, John F Welch Technology Center, Bangalore, Indien
| | - R. Pickett
- GE Healthcare Medical Diagnostics, The Grove Centre, Amersham HP7 9LL, Großbritannien
| | - S. K. Luthra
- GE Healthcare Medical Diagnostics, The Grove Centre, Amersham HP7 9LL, Großbritannien
| |
Collapse
|
50
|
Li Y, Schiepers C, Lake R, Dadparvar S, Berenji GR. Clinical utility of (18)F-fluoride PET/CT in benign and malignant bone diseases. Bone 2012; 50:128-39. [PMID: 22001678 DOI: 10.1016/j.bone.2011.09.053] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/05/2011] [Revised: 09/26/2011] [Accepted: 09/28/2011] [Indexed: 10/16/2022]
Abstract
(18)F labeled sodium fluoride is a positron-emitting, bone seeking agent with more favorable skeletal kinetics than conventional phosphate and diphosphonate compounds. With the expanding clinical usage of PET/CT, there is renewed interest in using (18)F-fluoride PET/CT for imaging bone diseases. Growing evidence indicates that (18)F fluoride PET/CT offers increased sensitivity, specificity, and diagnostic accuracy in evaluating metastatic bone disease compared to (99m)Tc based bone scintigraphy. National Oncologic PET Registry (NOPR) has expanded coverage for (18)F sodium fluoride PET scans since February 2011 for the evaluation of osseous metastatic disease. In this article, we reviewed the pharmacological characteristics of sodium fluoride, as well as the clinical utility of PET/CT using (18)F-fluoride in both benign and malignant bone disorders.
Collapse
Affiliation(s)
- Yuxin Li
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | | | | | | | | |
Collapse
|