1
|
Li M, Tian Y, Shen L, Li G, Zhao L, Chen X, Xu S, Li M, Huang P, Dai J. Dose rate correction for the novel 2D diode array MapCHECK 3. J Appl Clin Med Phys 2024; 25:e14471. [PMID: 39102876 PMCID: PMC11466491 DOI: 10.1002/acm2.14471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
PURPOSE To investigate the dose rate dependence of MapCHECK3 and its influence on measurement accuracy, as well as the effect of dose rate correction. MATERIALS AND METHODS The average and instantaneous dose rate dependence of MapCHECK2 and MapCHECK3 were studied. The accuracy of measurements was investigated where the dose rate differed significantly between dose calibration of the MapCHECK and the measurement. Measurements investigated include: the central axis dose for different fields at different depths, off-axis doses outside the field, and off-axis doses along the wedge direction. Measurements using an ion chamber were taken as the reference. Exponential functions were fit to account for average and instantaneous dose rate dependence for MapCHECK3 and used for dose rate correction. The effect of the dose rate correction was studied by comparing the differences between the measurements for MapCHECK (with and without the correction) and the reference. RESULTS The maximum dose rate dependence of MapCHECK3 is greater than 2.5%. If the dose calibration factor derived from a 10 × 10 cm2 open field at 10 cm depth was used for measurements, the average differences in central diode dose were 0.8% ± 1.0% and 1.0% ± 0.8% for the studied field sizes and measurement depths, respectively. The introduction of wedge would not only induce -1.8% ± 1.3% difference in central diode dose, but also overestimate the effective wedge angle. After the instantaneous dose rate correction, above differences can be changed to 1.9% ± 8.1%, 0.2% ± 0.1%, and 0.0% ± 0.9%. The pass rate can be improved from 98.4% to 98.8%, 98.3%-100.0%, and 96.3%-100.0%, respectively. CONCLUSION Compared with MapCHECK2 (SunPoint1 diodes), the more pronounced dose rate dependence of MapCHECK3 (SunPoint2 diodes) should be carefully considered. To ensure highly accurate measurement, it is suggested to perform the dose calibration at the same condition where measurement will be performed. Otherwise, the dose rate correction should be applied.
Collapse
Affiliation(s)
- Mengyang Li
- Radiation Oncology Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical SciencesBeijingChina
- Radiation Oncology Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital (Langfang campus), Chinese Academy of Medical SciencesLangfangChina
| | - Yuan Tian
- Radiation Oncology Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical SciencesBeijingChina
- Radiation Oncology Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital (Langfang campus), Chinese Academy of Medical SciencesLangfangChina
| | - Linyi Shen
- Radiation Oncology Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical SciencesBeijingChina
- Radiation Oncology Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital (Langfang campus), Chinese Academy of Medical SciencesLangfangChina
| | - Guiyuan Li
- Radiation Oncology Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical SciencesBeijingChina
- Radiation Oncology Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital (Langfang campus), Chinese Academy of Medical SciencesLangfangChina
| | - Liang Zhao
- Radiation Oncology Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical SciencesBeijingChina
- Radiation Oncology Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital (Langfang campus), Chinese Academy of Medical SciencesLangfangChina
| | - Xinyuan Chen
- Radiation Oncology Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical SciencesBeijingChina
- Radiation Oncology Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital (Langfang campus), Chinese Academy of Medical SciencesLangfangChina
| | - Shouping Xu
- Radiation Oncology Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical SciencesBeijingChina
- Radiation Oncology Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital (Langfang campus), Chinese Academy of Medical SciencesLangfangChina
| | - Minghui Li
- Radiation Oncology Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical SciencesBeijingChina
| | - Peng Huang
- Radiation Oncology Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical SciencesBeijingChina
| | - Jianrong Dai
- Radiation Oncology Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
2
|
Haghparast M, Parwaie W, Bakhshandeh M, Tuncel N, Rabi Mahdavi S. Evaluation of Perkin Elmer Amorphous Silicon Electronic Portal Imaging Device for Small Photon Field Dosimetry. J Biomed Phys Eng 2024; 14:347-356. [PMID: 39175562 PMCID: PMC11336047 DOI: 10.31661/jbpe.v0i0.2112-1445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/29/2022] [Indexed: 08/24/2024]
Abstract
Background Electronic portal imaging devices (EPIDs) are applied to measure the dose and verify patients' position. Objective The present study aims to evaluate the performance of EPID for measuring dosimetric parameters in small photon fields. Material and Methods In this experimental study, the output factors and beam profiles were obtained using the amorphous silicon (a-Si) EPID for square field sizes ranging from 1×1 to 10×10 cm2 at energies 6 and 18 mega-voltage (MV). For comparison, the dosimetric parameters were measured with the pinpoint, diode, and Semiflex dosimeters. Additionally, the Monaco treatment planning system was selected to calculate the output factors and beam profiles. Results There was a significant difference between the output factors measured using the EPID and that measured with the other dosimeters for field sizes lower than 8×8 cm2. In the energy of 6 MV, the gamma passing rates (3%/3 mm) between EPID and diode profile were 98%, 98%, 95%, 94%, 93%, and 94% for 1×1, 2×2, 3×3, 4×4, 5×5, and 10×10 cm2, respectively. The measured penumbra width with EPID was higher compared to that measured by the diode dosimeter for both energies. Conclusion The EPID can measure the dosimetric parameters in small photon fields, especially for beam profiles and penumbra measurements.
Collapse
Affiliation(s)
- Mohammad Haghparast
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Radiology, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandare-Abbas, Iran
| | - Wrya Parwaie
- Department of Medical Physics, Faculty of Paramedical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohsen Bakhshandeh
- Department of Radiology Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Nina Tuncel
- Radiation Oncology Department, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Seied Rabi Mahdavi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Karger CP, Elter A, Dorsch S, Mann P, Pappas E, Oldham M. Validation of complex radiotherapy techniques using polymer gel dosimetry. Phys Med Biol 2024; 69:06TR01. [PMID: 38330494 DOI: 10.1088/1361-6560/ad278f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
Modern radiotherapy delivers highly conformal dose distributions to irregularly shaped target volumes while sparing the surrounding normal tissue. Due to the complex planning and delivery techniques, dose verification and validation of the whole treatment workflow by end-to-end tests became much more important and polymer gel dosimeters are one of the few possibilities to capture the delivered dose distribution in 3D. The basic principles and formulations of gel dosimetry and its evaluation methods are described and the available studies validating device-specific geometrical parameters as well as the dose delivery by advanced radiotherapy techniques, such as 3D-CRT/IMRT and stereotactic radiosurgery treatments, the treatment of moving targets, online-adaptive magnetic resonance-guided radiotherapy as well as proton and ion beam treatments, are reviewed. The present status and limitations as well as future challenges of polymer gel dosimetry for the validation of complex radiotherapy techniques are discussed.
Collapse
Affiliation(s)
- Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Alina Elter
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, D-69120 Heidelberg, Germany
| | - Stefan Dorsch
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Philipp Mann
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Evangelos Pappas
- Radiology & Radiotherapy Sector, Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Mark Oldham
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
4
|
Small field output factor measurement and verification for CyberKnife robotic radiotherapy and radiosurgery system using 3D polymer gel, ionization chamber, diode, diamond and scintillator detectors, Gafchromic film and Monte Carlo simulation. Appl Radiat Isot 2023; 192:110576. [PMID: 36473319 DOI: 10.1016/j.apradiso.2022.110576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
The dosimetry of small fields has become tremendously important with the advent of intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery, where small field segments or very small fields are used to treat tumors. With high dose gradients in the stereotactic radiosurgery or radiotherapy treatment, small field dosimetry becomes challenging due to the lack of lateral electronic equilibrium in the field, x-ray source occlusion, and detector volume averaging. Small volume and tissue-equivalent detectors are recommended to overcome the challenges. With the lack of a perfect radiation detector, studies on available detectors are ongoing with reasonable disagreement and uncertainties. The joint IAEA and AAPM international code of practice (CoP) for small field dosimetry, TRS 483 (Alfonso et al., 2017) provides guidelines and recommendations for the dosimetry of small static fields in external beam radiotherapy. The CoP provides a methodology for field output factor (FOF) measurements and use of field output correction factors for a series of small field detectors and strongly recommends additional measurements, data collection and verification for CyberKnife (CK) robotic stereotactic radiotherapy/radiosurgery system using the listed detectors and more new detectors so that the FOFs can be implemented clinically. The present investigation is focused on using 3D gel along with some other commercially available detectors for the measurement and verification of field output factors (FOFs) for the small fields available in the CK system. The FOF verification was performed through a comparison with published data and Monte Carlo simulation. The results of this study have proved the suitability of an in-house developed 3D polymer gel dosimeter, several commercially available detectors, and Gafchromic films as a part of small field dosimetric measurements for the CK system.
Collapse
|
5
|
Li J, Zhang X, Pan Y, Zhuang H, Wang J, Yang R. Assessment of Delivery Quality Assurance for Stereotactic Radiosurgery With Cyberknife. Front Oncol 2021; 11:751922. [PMID: 34868957 PMCID: PMC8635503 DOI: 10.3389/fonc.2021.751922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose The purpose of this study is to establish and assess a practical delivery quality assurance method for stereotactic radiosurgery with Cyberknife by analyzing the geometric and dosimetric accuracies obtained using a PTW31016 PinPoint ionization chamber and EBT3 films. Moreover, this study also explores the relationship between the parameters of plan complexity, target volume, and deliverability parameters and provides a valuable reference for improving plan optimization and validation. Methods One hundred fifty cases of delivery quality assurance plans were performed on Cyberknife to assess point dose and planar dose distribution, respectively, using a PTW31016 PinPoint ionization chamber and Gafchromic EBT3 films. The measured chamber doses were compared with the planned mean doses in the sensitive volume of the chamber, and the measured planar doses were compared with the calculated dose distribution using gamma index analysis. The gamma passing rates were evaluated using the criteria of 3%/1 mm and 2%/2 mm. The statistical significance of the correlations between the complexity metrics, target volume, and the gamma passing rate were analyzed using Spearman’s rank correlation coefficient. Results For point dose comparison, the averaged dose differences (± standard deviations) were 1.6 ± 0.73% for all the cases. For planar dose distribution, the mean gamma passing rate for 3%/1 mm, and 2%/2 mm evaluation criteria were 94.26% ± 1.89%, and 93.86% ± 2.16%, respectively. The gamma passing rates were higher than 90% for all the delivery quality assurance plans with the criteria of 3%/1 mm and 2%/2 mm. The difference in point dose was lowly correlated with volume of PTV, number of beams, and treatment time for 150 DQA plans, and highly correlated with volume of PTV for 18 DQA plans of small target. DQA gamma passing rate (2%/2 mm) was a moderate significant correlation for the number of nodes, number of beams and treatment time, and a low correlation with MU. Conclusion PTW31016 PinPoint ionization chamber and EBT3 film can be used for routine Cyberknife delivery quality assurance. The point dose difference should be within 3%. The gamma passing rate should be higher than 90% for the criteria of 3%/1 mm and 2%/2 mm. In addition, the plan complexity and PTV volume were found to have some influence on the plan deliverability.
Collapse
Affiliation(s)
- Jun Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Xile Zhang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Yuxi Pan
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Hongqing Zhuang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Ruijie Yang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
6
|
Pérez P, Torres PR, Bruna A, Brunetto M, Aon E, Franco D, Mattea F, Figueroa R, Santibáñez M, Valente M. Fricke gel xylenol orange dosimeter layers for stereotactic radiosurgery: A preliminary approach. Appl Radiat Isot 2021; 178:109936. [PMID: 34592691 DOI: 10.1016/j.apradiso.2021.109936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022]
Abstract
Investigations regarding the feasibility, reliability, and accuracy of Fricke gel dosimeter layers for stereotactic radiosurgery are presented. A representative radiosurgery plan consisting of two targets has been investigated. Absorbed dose distributions measured using radiochromic films and gelatin Fricke Gel dosimetry in layers have been compared with dose distributions calculated by using a treatment planning system and Monte Carlo simulations. The different dose distributions have been compared by means of the gamma index demonstrating that gelatin Fricke gel dosimeter layers showed agreements of 100%, 100%, and 93%, with dose and distance tolerances of 2% and 2 mm, with respect to film dosimetry, treatment planning system and Monte Carlo simulations, respectively. The capability of the developed system for three-dimensional dose mapping was shown, obtaining promising results when compared with well-established dosimetry methods. The obtained results support the viability of Fricke gel dosimeter layers analyzed by optical methods for stereotactic radiosurgery.
Collapse
Affiliation(s)
- P Pérez
- Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes de Rayos X (LIIFAMIR(x)), Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto de Física Enrique Gaviola (IFEG), CONICET, Córdoba, Argentina.
| | - P Rico Torres
- Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes de Rayos X (LIIFAMIR(x)), Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto Venezolano de Investigaciones Científicas, Venezuela
| | - A Bruna
- FiMe - Física Médica SRL, Argentina
| | - M Brunetto
- Centro Médico Privado Deán Funes, Córdoba, Argentina
| | - E Aon
- Centro Médico Privado Deán Funes, Córdoba, Argentina
| | - D Franco
- Centro Médico Privado Deán Funes, Córdoba, Argentina
| | - F Mattea
- Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes de Rayos X (LIIFAMIR(x)), Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba, Argentina; Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina; Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET, Córdoba, Argentina
| | - R Figueroa
- Centro de excelencia de Física e Ingeniería en Salud (CFIS), Universidad de la Frontera, Temuco, Chile; Departamento de Ciencias Físicas, Universidad de la Frontera, Temuco, Chile
| | - M Santibáñez
- Departamento de Ciencias Físicas, Universidad de la Frontera, Temuco, Chile
| | - M Valente
- Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes de Rayos X (LIIFAMIR(x)), Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto de Física Enrique Gaviola (IFEG), CONICET, Córdoba, Argentina; Centro de excelencia de Física e Ingeniería en Salud (CFIS), Universidad de la Frontera, Temuco, Chile; Departamento de Ciencias Físicas, Universidad de la Frontera, Temuco, Chile.
| |
Collapse
|
7
|
De Martin E, Alhujaili S, Fumagalli ML, Ghielmetti F, Marchetti M, Gallo P, Aquino D, Padelli F, Davis J, Alnaghy S, Carrara M, Fariselli L, Rosenfeld AB, Petasecca M. On the evaluation of edgeless diode detectors for patient-specific QA in high-dose stereotactic radiosurgery. Phys Med 2021; 89:20-28. [PMID: 34343763 DOI: 10.1016/j.ejmp.2021.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE In this work, the potential of an innovative "edgeless" silicon diode was evaluated as a response to the still unmet need of a reliable tool for plan dosimetry verification of very high dose, non-coplanar, patient-specific radiosurgery treatments. In order to prove the effectiveness of the proposed technology, we focused on radiosurgical treatments for functional disease like tremor or pain. METHODS The edgeless diodes response has been validated with respect to clinical practice standard detectors by reproducing the reference dosimetry data adopted for the Treatment Planning System. In order to evaluate the potential for radiosurgery patient-specific treatment plan verification, the anthropomorphic phantom Alderson RANDO has been adopted along with three edgeless sensors, one placed in the centre of the Planning Target Volume, one superiorly and one inferiorly. RESULTS The reference dosimetry data obtained from the edgeless detectors are within 2.6% for output factor, off-axis ratio and well within 2% for tissue phantom ratio when compared to PTW 60,018 diode. The edgeless detectors measure a dose discrepancy of approximately 3.6% from the mean value calculated by the TPS. Larger discrepancies are obtained in very steep gradient dose regions when the sensors are placed outside the PTV. CONCLUSIONS The angular independent edgeless diode is proposed as an innovative dosimeter for patient quality assurance of brain functional disorders and other radiosurgery treatments. The comparison of the diode measurements with TPS calculations confirms that edgeless diodes are suitable candidates for patient-specific dosimetric verification in very high dose ranges delivered by non-isocentric stereotactic radiosurgery modalities.
Collapse
Affiliation(s)
- Elena De Martin
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Health Department, Via Giovanni Celoria 11, 20133 Milan, Italy.
| | - Sultan Alhujaili
- Centre for Medical Radiation Physics, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; Medical Imaging Department, College of Applied Medical Sciences, Aljouf University, Aljouf 72388, Saudi Arabia.
| | - Maria Luisa Fumagalli
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Health Department, Via Giovanni Celoria 11, 20133 Milan, Italy.
| | - Francesco Ghielmetti
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Health Department, Via Giovanni Celoria 11, 20133 Milan, Italy.
| | - Marcello Marchetti
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Radiotherapy Unit, Department of Neurosurgery, Via Giovanni Celoria 11, 20133 Milan, Italy.
| | - Pasqualina Gallo
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Health Department, Via Giovanni Celoria 11, 20133 Milan, Italy.
| | - Domenico Aquino
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Neuroradiology Unit, Via Giovanni Celoria 11, 20133 Milan, Italy.
| | - Francesco Padelli
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Neuroradiology Unit, Via Giovanni Celoria 11, 20133 Milan, Italy.
| | - Jeremy Davis
- Centre for Medical Radiation Physics, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| | - Saree Alnaghy
- Centre for Medical Radiation Physics, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| | - Mauro Carrara
- Fondazione IRCCS Istituto Nazionale Dei Tumori, s.s.d. di Fisica Medica, Dipartimento di Diagnostica per Immagini e Radioterapia, Via Giacomo Venezian 1, 20133 Milan, Italy.
| | - Laura Fariselli
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Radiotherapy Unit, Department of Neurosurgery, Via Giovanni Celoria 11, 20133 Milan, Italy.
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| |
Collapse
|
8
|
Alyahyawi A, Dimitriadis A, Nisbet A, Bradley D. GeB flat fibre TL dosimeters for in-vivo measurements in radiosurgery. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.108973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Lam S, Bradley D, Khandaker M. Small-field radiotherapy photon beam output evaluation: Detectors reviewed. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.108950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Point dose verification of Cranial Stereotactic Radiosurgery using micro Ionization Chamber and EBT3 film for 6MV FF and FFF beams in Varian TrueBeam ® LINAC. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2020. [DOI: 10.2478/pjmpe-2020-0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Introduction: Achieving high positional and dosimetric accuracy in small fields is very challenging due to the imbalance of charged particle equilibrium (CPE), occlusion of the primary radiation source, and overlapping penumbra regions. These factors make the choice of the detector for Stereotactic Radiosurgery (SRS) patient-specific quality assurance (PSQA) difficult. The aim of the study is to compare the suitability of EBT3 Gafchromic film against CC01 pinpoint chamber for the purpose of SRS and stereotactic Radiotherapy (SRT) dose verification.
Material and Method: EBT3 Gafchromic film was calibrated against Treatment Planning System (TPS) doses (1 Gy – 35 Gy). CC01 pinpoint chamber and EBT3 film was used to verify Patient-Specific point doses of 21 intracranial lesions each planned with Static, Dynamic Conformal Arc (DCA), and Volumetric Arc Therapy (VMAT) using Varian TrueBeam Accelerator 6MV Flattening Filter (FF) and 6MV Flattening Filter Free (FFF) beams. The lesion sizes varied from 0.4 cc to 2.9 cc. The lesions were categorized into <1cc, 1cc-2cc and 2cc-3cc.
Results: High variations in measured doses from TPS calculated dose were observed with small lesion volumes irrespective of the dosimeter. As the sizes decreased high uncertainty was observed in ion chamber results. CC01 was observed under-responding to film in small lesion sizes (<1cc), where nearly 50% of results under-responded in comparison with Film results. Film results were more or less consistent for static and DCA plans. Static and DCA plans were consistent passing more than 73% of the plans of the smallest lesion size category. VMAT showed very poor PSQA agreement for all three volumes (32.1% for <1cc, 14.3% for 2cc-3cc and 39.3% for 2cc-3cc). No significant difference was observed between 6MVFF and 6MVFFF beams from the chi-squared test.
Conclusion: EBT3 Film was observed to be a more suitable detector for small lesion sizes less than 1cc, compared to CC01. As the volume increases, the response of CC01 and EBT3 film have no significant difference in performing PSQA for intracranial SRS/SRT. VMAT techniques for intra cranial SRS shows deviation from TPS planned dose for both EBT3 film and CC01 and should not be preferred choice of verification tools.
Collapse
|
11
|
Rosenfeld AB, Biasi G, Petasecca M, Lerch MLF, Villani G, Feygelman V. Semiconductor dosimetry in modern external-beam radiation therapy. Phys Med Biol 2020; 65:16TR01. [PMID: 32604077 DOI: 10.1088/1361-6560/aba163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
12
|
Parwaie W, Geraily G, Shirazi A, Yarahmadi M, Shakeri A, Ardekani MA. Evaluation of lung heterogeneity effects on dosimetric parameters in small photon fields using MAGIC polymer gel, Gafchromic film, and Monte Carlo simulation. Appl Radiat Isot 2020; 166:109233. [PMID: 32836165 DOI: 10.1016/j.apradiso.2020.109233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/20/2020] [Accepted: 05/17/2020] [Indexed: 10/23/2022]
Abstract
In this work, the performance of MAGIC polymer gel in measuring dosimetric parameters beyond lung heterogeneity in small fields was investigated. All data were obtained using MAGIC, EBT2, and MC in four small field sizes. The maximum local differences between MAGIC and MC were less than 5.1, 3.9, 3.1, and 2.6% for PDD values behind lung heterogeneity at 5, 10, 20, and 30 mm field sizes, respectively. The findings showed that MAGIC is a suitable tool for dosimetry behind low-density heterogeneity.
Collapse
Affiliation(s)
- Wrya Parwaie
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Geraily
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Shirazi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehran Yarahmadi
- Department of Medical Physics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ahmad Shakeri
- Valiasr Radiotherapy Oncology Center, Valiasr Hospital, Qom, Iran
| | - Mahdieh Afkhami Ardekani
- Department of Radiology, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
13
|
Bayatiani MR, Aliasgharzadeh A, Seif F, Mohaghegh F, Fallahi F. Comparison of dosimetric parameters of small-field electron beams between Advanced Markus, Semiflex 3D, and Diode E responses. Radiol Phys Technol 2020; 13:296-305. [PMID: 32691343 DOI: 10.1007/s12194-020-00577-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/11/2020] [Accepted: 05/21/2020] [Indexed: 10/23/2022]
Abstract
The usage of dosimetry of small fields in radiotherapy to measure radiation dose is difficult because of high-dose gradients, lateral electronic disequilibrium, and detector volume effects. In this study, three dosimeters namely, Markus, Semiflex 3D, and Diode E were tested using the Elekta-accelerator electron beams. The electron beam parameters, penumbra, and output factor were determined using these dosimeters for each field size and energy. According to the results, Diode E and Advanced Markus exhibited the greatest difference in Rq among the electron beam parameters. Furthermore, the greatest difference in penumbra was observed between Diode E and Advanced Markus for the field size of 3 cm2 at 10 MeV. In terms of output factor, three dosimeters exhibited the greatest difference between Diode E and Advanced Markus for the field size of 3 cm2 at 10 MeV. The findings indicate that the Semiflex 3D can be regarded as an appropriate dosimeter for electron small-field dosimetry.
Collapse
Affiliation(s)
- Mohammad Reza Bayatiani
- Department of Medical Physics and Radiotherapy, Arak University of Medical Sciences and Khansari Hospital, Arāk, Iran
| | - Akbar Aliasgharzadeh
- Department of Medical Physics, School of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Seif
- Department of Medical Physics and Radiotherapy, Arak University of Medical Sciences and Khansari Hospital, Arāk, Iran
| | - Fatholah Mohaghegh
- Department of Medical Physics and Radiotherapy, Arak University of Medical Sciences and Khansari Hospital, Arāk, Iran
| | - Fatemeh Fallahi
- Department of Medical Physics, School of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
14
|
Skorupa A, Woźnica A, Ciszek M, Staniszewski M, Kijonka M, Kozicki M, Woźniak B, Orlef A, Polański A, Boguszewicz Ł, Sokół M. Application of high field magnetic resonance microimaging in polymer gel dosimetry. Med Phys 2020; 47:3600-3613. [PMID: 32301510 PMCID: PMC7496647 DOI: 10.1002/mp.14186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 03/11/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose The purpose of this work was to examine the suitability of VIPARnd polymer gel–9.4 T magnetic resonance microimaging system for high spatial resolution dose distribution measurements. Methods The VIPARnd samples (3 cm in outside diameter and 12 cm in height) were exposed to ionizing radiation by using a linear accelerator (Varian TrueBeam, USA; 6 MV x‐ray beam). In the calibration stage, nine gel dosimeter vials were irradiated in a water phantom homogenously to the doses from 1.5 to 30 Gy in order to obtain R2‒dose relation. In the verification stage, two gel dosimeter vials were irradiated in the half beam penumbra area of 10 × 10 cm radiation field using the amount of monitor units appropriate to deliver 20 Gy at the field center. The gels were imaged on a vertical 9.4 T magnetic resonance (MR) microimaging scanner using single slice and multislice (9 slices) multiecho (90 × 7 ms) sequences at the spatial resolutions of 0.2–0.4 × 0.2–0.4 × 3 mm3 and 0.2–0.4 × 0.2–0.4 × 1 mm3 respectively. The gels were subjected to microimaging during the period of two weeks after irradiation. The reference data consisted of the dose profiles measured using the diode dosimetry, radiochromic film, ionization chamber, and the water phantom system. Results The VIPARnd‒9.4 T MR microimaging system was characterized by the dose sensitivity of 0.067 ± 0.002 Gy−1 s−1 at day 3 after irradiation. The dose resolution at 10 Gy (at P = 95%) was equal to 0.42 Gy at day 3 after irradiation using a single slice sequence (0.2 × 0.2 × 3 mm3) and 2.0 Gy at day 4 after irradiation using a multislice sequence (0.2 × 0.2 × 1 mm3) for one signal acquisition (measurement time: 15 min). These values were improved by ~1.4‐fold when using four signal acquisitions in the single slice sequence, and by ~2.78‐fold for 12 signal acquisitions in the multislice sequence. Furthermore, decreasing the in‐plane resolution from 0.2 × 0.2 mm2 to 0.4 × 0.4 mm2 resulted in a dose resolution of 0.3 Gy and 1 Gy at 10 Gy (at P = 95%) for one signal acquisition in the single slice and multislice sequences respectively (measurement time: 7.5 min). As reveals from the gamma index analysis the dose distributions measured at days 3–4 postirradiation using both VIPARnd verification phantoms agree with the data obtained using a silicon diode, assuming 1 mm/5% criterion. A good interphantom reproducibility of the polymer gel dosimetry was proved by monitoring of two phantoms up to 10 days after irradiation. However, the agreement between the dose distributions measured using the diode and polymer gel started to get worse from day 5 after irradiation. Conclusion The VIPARnd–9.4T MR microimaging system allows to obtain dose resolution of 0.42 Gy at 10 Gy (at P = 95%) for a spatial resolution of 0.2 × 0.2 × 3 mm3 (acquisition time: 15 min). Further studies are required to improve a temporal stability of the gel‐derived dose distribution.
Collapse
Affiliation(s)
- Agnieszka Skorupa
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-101, Poland
| | - Aleksandra Woźnica
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-101, Poland
| | - Mateusz Ciszek
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-101, Poland
| | - Michał Staniszewski
- Institute of Informatics, Silesian University of Technology, Akademicka 16, Gliwice, 44-100, Poland
| | - Marek Kijonka
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-101, Poland
| | - Marek Kozicki
- Department of Mechanical Engineering, Informatics and Chemistry of Polymer Materials, Lodz University of Technology, Żeromskiego 116, A33, Lodz, 90-924, Poland.,GeVero Co., Tansmana 2/11, Lodz, 92-548, Poland
| | - Bożena Woźniak
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-101, Poland
| | - Andrzej Orlef
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-101, Poland
| | - Andrzej Polański
- Institute of Informatics, Silesian University of Technology, Akademicka 16, Gliwice, 44-100, Poland
| | - Łukasz Boguszewicz
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-101, Poland
| | - Maria Sokół
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-101, Poland
| |
Collapse
|
15
|
Rose MS, Tirpak L, Van Casteren K, Zack J, Simon T, Schoenfeld A, Simon W. Multi‐institution validation of a new high spatial resolution diode array for SRS and SBRT plan pretreatment quality assurance. Med Phys 2020; 47:3153-3164. [DOI: 10.1002/mp.14153] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/20/2020] [Accepted: 03/12/2020] [Indexed: 12/31/2022] Open
Affiliation(s)
- Mark S. Rose
- Sun Nuclear Corporation 3275 Suntree Blvd Melbourne Florida 32940 USA
| | - Lena Tirpak
- Sun Nuclear Corporation 3275 Suntree Blvd Melbourne Florida 32940 USA
| | | | - Jeff Zack
- Sun Nuclear Corporation 3275 Suntree Blvd Melbourne Florida 32940 USA
| | - Tom Simon
- Sun Nuclear Corporation 3275 Suntree Blvd Melbourne Florida 32940 USA
| | | | - William Simon
- Sun Nuclear Corporation 3275 Suntree Blvd Melbourne Florida 32940 USA
| |
Collapse
|
16
|
Alhujaili SF, Biasi G, Alzorkany F, Grogan G, Al Kafi MA, Lane J, Hug B, Aldosari AH, Alshaikh S, Farzad PR, Ebert MA, Moftah B, Rosenfeld AB, Petasecca M. Quality assurance of Cyberknife robotic stereotactic radiosurgery using an angularly independent silicon detector. J Appl Clin Med Phys 2018; 20:76-88. [PMID: 30565856 PMCID: PMC6333148 DOI: 10.1002/acm2.12496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 11/06/2022] Open
Abstract
Purpose The aim of this work was to evaluate the use of an angularly independent silicon detector (edgeless diodes) developed for dosimetry in megavoltage radiotherapy for Cyberknife in a phantom and for patient quality assurance (QA). Method The characterization of the edgeless diodes has been performed on Cyberknife with fixed and IRIS collimators. The edgeless diode probes were tested in terms of basic QA parameters such as measurements of tissue‐phantom ratio (TPR), output factor and off‐axis ratio. The measurements were performed in both water and water‐equivalent phantoms. In addition, three patient‐specific plans have been delivered to a lung phantom with and without motion and dose measurements have been performed to verify the ability of the diodes to work as patient‐specific QA devices. The data obtained by the edgeless diodes have been compared to PTW 60016, SN edge, PinPoint ionization chamber, Gafchromic EBT3 film, and treatment planning system (TPS). Results The TPR measurement performed by the edgeless diodes show agreement within 2.2% with data obtained with PTW 60016 diode for all the field sizes. Output factor agrees within 2.6% with that measured by SN EDGE diodes corrected for their field size dependence. The beam profiles’ measurements of edgeless diodes match SN EDGE diodes with a measured full width half maximum (FWHM) within 2.3% and penumbra widths within 0.148 mm. Patient‐specific QA measurements demonstrate an agreement within 4.72% in comparison with TPS. Conclusion The edgeless diodes have been proved to be an excellent candidate for machine and patient QA for Cyberknife reproducing commercial dosimetry device measurements without need of angular dependence corrections. However, further investigation is required to evaluate the effect of their dose rate dependence on complex brain cancer dose verification.
Collapse
Affiliation(s)
- Sultan Fahad Alhujaili
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.,Radiology and Medical Imaging Department, College of Applied Medical Sciences, Aljouf University, Aljouf, Saudi Arabia
| | - Giordano Biasi
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Faisal Alzorkany
- Biomedical Physics Department, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Garry Grogan
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Muhammed A Al Kafi
- Biomedical Physics Department, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Jonathan Lane
- Department of Medical Physics and Clinical Engineering, Oxford University Hospitals NHS Foundation Trust (Churchill Hospital), Oxford, UK
| | - Benjamin Hug
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia.,School of Physics and Astrophysics, University of Western Australia, Perth, WA, Australia
| | | | | | - Pejman Rowshan Farzad
- School of Physics and Astrophysics, University of Western Australia, Perth, WA, Australia
| | - Martin A Ebert
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.,Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia.,School of Physics and Astrophysics, University of Western Australia, Perth, WA, Australia
| | - Belal Moftah
- Biomedical Physics Department, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
17
|
Biasi G, Petasecca M, Guatelli S, Martin EA, Grogan G, Hug B, Lane J, Perevertaylo V, Kron T, Rosenfeld AB. CyberKnife ® fixed cone and Iris™ defined small radiation fields: Assessment with a high-resolution solid-state detector array. J Appl Clin Med Phys 2018; 19:547-557. [PMID: 29998618 PMCID: PMC6123130 DOI: 10.1002/acm2.12414] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/13/2018] [Accepted: 06/18/2018] [Indexed: 11/18/2022] Open
Abstract
Purpose The challenges of accurate dosimetry for stereotactic radiotherapy (SRT) with small unflattened radiation fields have been widely reported in the literature. In this case, suitable dosimeters would have to offer a submillimeter spatial resolution. The CyberKnife® (Accuray Inc., Sunnyvale, CA, USA) is an SRT‐dedicated linear accelerator (linac), which can deliver treatments with submillimeter positional accuracy using circular fields. Beams are delivered with the desired field size using fixed cones, the InCise™ multileaf collimator or a dynamic variable‐aperture Iris™ collimator. The latter, allowing for field sizes to be varied during treatment delivery, has the potential to decrease treatment time, but its reproducibility in terms of output factors (OFs) and dose profiles (DPs) needs to be verified. Methods A 2D monolithic silicon array detector, the “Octa”, was evaluated for dosimetric quality assurance (QA) for a CyberKnife system. OFs, DPs, percentage depth‐dose (PDD) and tissue maximum ratio (TMR) were investigated, and results were benchmarked against the PTW SRS diode. Cross‐plane, in‐plane and 2 diagonal dose profiles were measured simultaneously with high spatial resolution (0.3 mm). Monte Carlo (MC) simulations with a GEANT4 (GEometry ANd Tracking 4) tool‐kit were added to the study to support the experimental characterization of the detector response. Results For fixed cones and the Iris, for all field sizes investigated in the range between 5 and 60 mm diameter, OFs, PDDs, TMRs, and DPs in terms of FWHM measured by the Octa were accurate within 3% when benchmarked against the SRS diode and MC calculations. Conclusions The Octa was shown to be an accurate dosimeter for measurements with a 6 MV FFF beam delivered with a CyberKnife system. The detector enabled real‐time dosimetric verification for the variable aperture Iris collimator, yielding OFs and DPs consistent with those obtained with alternative methods.
Collapse
Affiliation(s)
- Giordano Biasi
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, 2522 NSW, Australia
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, 2522 NSW, Australia
| | - Susanna Guatelli
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, 2522 NSW, Australia
| | - Ebert A Martin
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, 2522 NSW, Australia.,Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,School of Physics and Astrophysics, University of Western Australia, Crawley, WA, Australia
| | - Garry Grogan
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Benjamin Hug
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,School of Physics and Astrophysics, University of Western Australia, Crawley, WA, Australia
| | - Jonathan Lane
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | | | - Tomas Kron
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, 2522 NSW, Australia.,Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Cancer Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, 2522 NSW, Australia
| |
Collapse
|
18
|
Parwaie W, Refahi S, Ardekani MA, Farhood B. Different Dosimeters/Detectors Used in Small-Field Dosimetry: Pros and Cons. JOURNAL OF MEDICAL SIGNALS & SENSORS 2018; 8:195-203. [PMID: 30181968 PMCID: PMC6116321 DOI: 10.4103/jmss.jmss_3_18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
With the advent of complex and precise radiation therapy techniques, the use of relatively small fields is needed. Using such field sizes can cause uncertainty in dosimetry; therefore, special attention is required both in dose calculations and measurements. There are several challenges in small-field dosimetry such as the steep gradient of the radiation field, volume averaging effect, lack of charged particle equilibrium, partial occlusion of radiation source, beam alignment, and unable to use a reference dosimeter. Due to these challenges, special dosimeters are needed for small-field dosimetry, and this review article discusses this topic.
Collapse
Affiliation(s)
- Wrya Parwaie
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Refahi
- Department of Medical Physics, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahdieh Afkhami Ardekani
- Department of Radiology, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Bagher Farhood
- Department of Radiology and Medical Physics, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
19
|
Duncan M, Newall MK, Caillet V, Booth JT, Keall PJ, Lerch M, Perevertaylo V, Rosenfeld AB, Petasecca M. Real-time high spatial resolution dose verification in stereotactic motion adaptive arc radiotherapy. J Appl Clin Med Phys 2018; 19:173-184. [PMID: 29873185 PMCID: PMC6036363 DOI: 10.1002/acm2.12364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/08/2018] [Accepted: 04/18/2018] [Indexed: 12/25/2022] Open
Abstract
Purpose Radiation treatments delivered with real‐time multileaf collimator (MLC) tracking currently lack fast pretreatment or real‐time quality assurance. The purpose of this study is to test a 2D silicon detector, MagicPlate‐512 (MP512), in a complex clinical environment involving real‐time reconfiguration of the MLC leaves during target tracking. Methods MP512 was placed in the center of a solid water phantom and mounted on a motion platform used to simulate three different patient motions. Electromagnetic target tracking was implemented using the Calypso system (Varian Medical Systems, Palo Alto, CA, USA) and an MLC tracking software. A two‐arc VMAT plan was delivered and 2D dose distributions were reconstructed by MP512, EBT3 film, and the Eclipse treatment planning system (TPS). Dose maps were compared using gamma analysis with 2%/2 mm and 3%/3 mm acceptance criteria. Dose profiles were generated in sup‐inf and lateral directions to show the agreement of MP512 to EBT3 and to highlight the efficacy of the MLC tracking system in mitigating the effect of the simulated patient motion. Results Using a 3%/3 mm acceptance criterion for 2D gamma analysis, MP512 to EBT3 film agreement was 99% and MP512 to TPS agreement was 100%. For a 2%/2 mm criterion, the agreement was 95% and 98%, respectively. Full width at half maximum and 80%/20% penumbral width of the MP512 and EBT3 dose profiles agreed within 1 mm and 0.5 mm, respectively. Patient motion increased the measured dose profile penumbral width by nearly 2 mm (with respect to the no‐motion case); however, the MLC tracking strategy was able to mitigate 80% of this effect. Conclusions MP512 is capable of high spatial resolution 2D dose reconstruction during adaptive MLC tracking, including arc deliveries. It shows potential as an effective tool for 2D small field dosimetry and pretreatment quality assurance for MLC tracking modalities. These results provide confidence that detector‐based pretreatment dosimetry is clinically feasible despite fast real‐time MLC reconfigurations.
Collapse
Affiliation(s)
- Mitchell Duncan
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Matthew K Newall
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Vincent Caillet
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Jeremy T Booth
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St. Leonards, NSW, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, NSW, Australia
| | - Paul J Keall
- Radiation Physics Laboratory, School of Medicine, University of Sydney, NSW, Australia
| | - Michael Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | | | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
20
|
Gargett M, Oborn B, Alnaghy SJ, Causer T, Petasecca M, Rosenfeld AB, Metcalfe P. A high resolution 2D array detector system for small-field MRI-linac applications. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aabd08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Khan M, Heilemann G, Kuess P, Georg D, Berg A. The impact of the oxygen scavenger on the dose-rate dependence and dose sensitivity of MAGIC type polymer gels. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1361-6560/aab00b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Webb LK, Inness EK, Charles PH. A comparative study of three small-field detectors for patient specific stereotactic arc dosimetry. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2018; 41:217-223. [PMID: 29446004 DOI: 10.1007/s13246-018-0622-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 01/24/2018] [Indexed: 12/31/2022]
Abstract
This paper examines the difference in patient specific dosimetry using three different detectors of varying active volume, density and composition, for quality assurance of stereotactic treatments. A PTW 60017 unshielded electron diode, an Exradin W1 scintillator, and a PTW 31014 PinPoint small volume ionisation chamber were setup in a Lucy 3D QA phantom, and were positioned at the isocentre of an Elekta Axesse, with beam modulator collimator, using Exactrac and a HexaPODTM couch. Dose measurements were acquired for 43 stereotactic arcs, and compared to BrainLAB iPlan version 3.0.0 treatment planning system (TPS) calculations using a pencil beam algorithm. It was found that for arcs with field sizes [Formula: see text] mm, the properties of a detector have minimal impact on the measured doses, with all three detectors agreeing with the TPS (to within 5%). However, for field sizes [Formula: see text] mm, only the scintillator was found to yield results to within 5% of the TPS. The dose discrepancies were found to increase with decreasing field size. It is recommended that for field sizes [Formula: see text] mm, a water equivalent dosimeter like the Exradin W1 scintillator be used in order to minimise detector composition perturbations in the measured doses.
Collapse
Affiliation(s)
- Luke K Webb
- Radiation Oncology, Princess Alexandra Hospital, Brisbane, Australia.
| | - Emma K Inness
- Radiation Oncology, Princess Alexandra Hospital, Brisbane, Australia
| | - Paul H Charles
- Radiation Oncology, Princess Alexandra Hospital, Brisbane, Australia.,Science & Engineering Faculty, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
23
|
Dosimetric evaluation of small IMRT beamlets in the presence of bone inhomogeneity using NIPAM polymer gel and Monte Carlo simulation. RADIAT MEAS 2017. [DOI: 10.1016/j.radmeas.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Agarwal A, Rastogi N, Maria Das KJ, Yoganathan SA, Udayakumar D, Kumar S. Investigating the Electronic Portal Imaging Device for Small Radiation Field Measurements. J Med Phys 2017; 42:59-64. [PMID: 28706350 PMCID: PMC5496271 DOI: 10.4103/jmp.jmp_131_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Purpose: With the advent of state-of-the-art treatment technologies, the use of small fields has increased, and dosimetry in small fields is highly challenging. In this study, the potential use of Varian electronic portal imaging device (EPID) for small field measurements was explored for 6 and 15 MV photon beams. Materials and Methods: The output factors and profiles were measured for a range of jaw-collimated square field sizes starting from 0.8 cm × 0.8 cm to 10 cm × 10 cm using EPID. For evaluation purpose, reference data were acquired using Exradin A16 microionization chamber (0.007 cc) for output factors and stereotactic field diode for profile measurements in a radiation field analyzer. Results: The output factors of EPID were in agreement with the reference data for field sizes down to 2 cm × 2 cm and for 2 cm × 2 cm; the difference in output factors was +2.06% for 6 MV and +1.56% for 15 MV. For the lowest field size studied (0.8 cm × 0.8 cm), the differences were maximum; +16% for 6 MV and +23% for 15 MV photon beam. EPID profiles of both energies were closely matching with reference profiles for field sizes down to 2 cm × 2 cm; however, penumbra and measured field size of EPID profiles were slightly lower compared to its counterpart. Conclusions: EPID is a viable option for profile and output factor measurements for field sizes down to 2 cm × 2 cm in the absence of appropriate small field dosimeters.
Collapse
Affiliation(s)
- Arpita Agarwal
- Department of Physics, School of Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Nikhil Rastogi
- Department of Physics, School of Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - K J Maria Das
- Department of Radiotherapy, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - S A Yoganathan
- Department of Radiotherapy, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - D Udayakumar
- Department of Radiotherapy, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Shaleen Kumar
- Department of Radiotherapy, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
25
|
Watanabe Y, Warmington L, Gopishankar N. Three-dimensional radiation dosimetry using polymer gel and solid radiochromic polymer: From basics to clinical applications. World J Radiol 2017; 9:112-125. [PMID: 28396725 PMCID: PMC5368627 DOI: 10.4329/wjr.v9.i3.112] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/31/2016] [Accepted: 01/16/2017] [Indexed: 02/06/2023] Open
Abstract
Accurate dose measurement tools are needed to evaluate the radiation dose delivered to patients by using modern and sophisticated radiation therapy techniques. However, the adequate tools which enable us to directly measure the dose distributions in three-dimensional (3D) space are not commonly available. One such 3D dose measurement device is the polymer-based dosimeter, which changes the material property in response to radiation. These are available in the gel form as polymer gel dosimeter (PGD) and ferrous gel dosimeter (FGD) and in the solid form as solid plastic dosimeter (SPD). Those are made of a continuous uniform medium which polymerizes upon irradiation. Hence, the intrinsic spatial resolution of those dosimeters is very high, and it is only limited by the method by which one converts the dose information recorded by the medium to the absorbed dose. The current standard methods of the dose quantification are magnetic resonance imaging, optical computed tomography, and X-ray computed tomography. In particular, magnetic resonance imaging is well established as a method for obtaining clinically relevant dosimetric data by PGD and FGD. Despite the likely possibility of doing 3D dosimetry by PGD, FGD or SPD, the tools are still lacking wider usages for clinical applications. In this review article, we summarize the current status of PGD, FGD, and SPD and discuss the issue faced by these for wider acceptance in radiation oncology clinic and propose some directions for future development.
Collapse
|
26
|
Dong P, Ungun B, Boyd S, Xing L. Optimization of rotational arc station parameter optimized radiation therapy. Med Phys 2017; 43:4973. [PMID: 27587028 DOI: 10.1118/1.4960000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE To develop a fast optimization method for station parameter optimized radiation therapy (SPORT) and show that SPORT is capable of matching VMAT in both plan quality and delivery efficiency by using three clinical cases of different disease sites. METHODS The angular space from 0° to 360° was divided into 180 station points (SPs). A candidate aperture was assigned to each of the SPs based on the calculation results using a column generation algorithm. The weights of the apertures were then obtained by optimizing the objective function using a state-of-the-art GPU based proximal operator graph solver. To avoid being trapped in a local minimum in beamlet-based aperture selection using the gradient descent algorithm, a stochastic gradient descent was employed here. Apertures with zero or low weight were thrown out. To find out whether there was room to further improve the plan by adding more apertures or SPs, the authors repeated the above procedure with consideration of the existing dose distribution from the last iteration. At the end of the second iteration, the weights of all the apertures were reoptimized, including those of the first iteration. The above procedure was repeated until the plan could not be improved any further. The optimization technique was assessed by using three clinical cases (prostate, head and neck, and brain) with the results compared to that obtained using conventional VMAT in terms of dosimetric properties, treatment time, and total MU. RESULTS Marked dosimetric quality improvement was demonstrated in the SPORT plans for all three studied cases. For the prostate case, the volume of the 50% prescription dose was decreased by 22% for the rectum and 6% for the bladder. For the head and neck case, SPORT improved the mean dose for the left and right parotids by 15% each. The maximum dose was lowered from 72.7 to 71.7 Gy for the mandible, and from 30.7 to 27.3 Gy for the spinal cord. The mean dose for the pharynx and larynx was reduced by 8% and 6%, respectively. For the brain case, the doses to the eyes, chiasm, and inner ears were all improved. SPORT shortened the treatment time by ∼1 min for the prostate case, ∼0.5 min for brain case, and ∼0.2 min for the head and neck case. CONCLUSIONS The dosimetric quality and delivery efficiency presented here indicate that SPORT is an intriguing alternative treatment modality. With the widespread adoption of digital linac, SPORT should lead to improved patient care in the future.
Collapse
Affiliation(s)
- P Dong
- Department of Radiation Oncology, Stanford University, Stanford, California 94305
| | - B Ungun
- Department of Radiation Oncology, Stanford University, Stanford, California 94305
| | - S Boyd
- Department of Electrical Engineering, Stanford University, Stanford, California 94305
| | - L Xing
- Department of Radiation Oncology, Stanford University, Stanford, California 94305 and Department of Electrical Engineering, Stanford University, Stanford, California 94305
| |
Collapse
|
27
|
Shukaili KA, Petasecca M, Newall M, Espinoza A, Perevertaylo VL, Corde S, Lerch M, Rosenfeld AB. A 2D silicon detector array for quality assurance in small field dosimetry: DUO. Med Phys 2017; 44:628-636. [DOI: 10.1002/mp.12060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/21/2016] [Accepted: 11/27/2016] [Indexed: 12/31/2022] Open
Affiliation(s)
- Khalsa Al Shukaili
- Centre for Medical Radiation Physics; University of Wollongong; Wollongong NSW 2522 Australia
- National Oncology Centre; Royal Hospital; Muscat Oman
| | - Marco Petasecca
- Centre for Medical Radiation Physics; University of Wollongong; Wollongong NSW 2522 Australia
| | - Matthew Newall
- Centre for Medical Radiation Physics; University of Wollongong; Wollongong NSW 2522 Australia
| | - Anthony Espinoza
- Centre for Medical Radiation Physics; University of Wollongong; Wollongong NSW 2522 Australia
| | | | - Stéphanie Corde
- Centre for Medical Radiation Physics; University of Wollongong; Wollongong NSW 2522 Australia
- Prince of Wales Hospital; Sydney NSW Australia
| | - Michael Lerch
- Centre for Medical Radiation Physics; University of Wollongong; Wollongong NSW 2522 Australia
- Illawarra Health Medical Research Institute; Wollongong NSW Australia
| | - Anatoly B. Rosenfeld
- Centre for Medical Radiation Physics; University of Wollongong; Wollongong NSW 2522 Australia
- Illawarra Health Medical Research Institute; Wollongong NSW Australia
| |
Collapse
|
28
|
Jong WL, Ung NM, Vannyat A, Jamalludin Z, Rosenfeld A, Wong JHD. “Edge-on” MOSkin detector for stereotactic beam measurement and verification. Phys Med 2017; 33:127-135. [DOI: 10.1016/j.ejmp.2016.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/16/2016] [Accepted: 12/29/2016] [Indexed: 11/25/2022] Open
|
29
|
Liu H, Li J, Pappas E, Andrews D, Evans J, Werner-Wasik M, Yu Y, Dicker A, Shi W. Dosimetric validation for an automatic brain metastases planning software using single-isocenter dynamic conformal arcsDosimetric validation for an automatic brain metastases planning software using single-isocenter dynamic conformal arcs. J Appl Clin Med Phys 2016; 17:142-156. [PMID: 27685134 PMCID: PMC5874088 DOI: 10.1120/jacmp.v17i5.6320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/26/2016] [Accepted: 04/25/2016] [Indexed: 01/12/2023] Open
Abstract
An automatic brain‐metastases planning (ABMP) software has been installed in our institution. It is dedicated for treating multiple brain metastases with radiosurgery on linear accelerators (linacs) using a single‐setup isocenter with noncoplanar dynamic conformal arcs. This study is to validate the calculated absolute dose and dose distribution of ABMP. Three types of measurements were performed to validate the planning software: 1, dual micro ion chambers were used with an acrylic phantom to measure the absolute dose; 2, a 3D cylindrical phantom with dual diode array was used to evaluate 2D dose distribution and point dose for smaller targets; and 3, a 3D pseudo‐in vivo patient‐specific phantom filled with polymer gels was used to evaluate the accuracy of 3D dose distribution and radiation delivery. Micro chamber measurement of two targets (volumes of 1.2 cc and 0.9 cc, respectively) showed that the percentage differences of the absolute dose at both targets were less than 1%. Averaged GI passing rate of five different plans measured with the diode array phantom was above 98%, using criteria of 3% dose difference, 1 mm distance to agreement (DTA), and 10% low‐dose threshold. 3D gel phantom measurement results demonstrated a 3D displacement of nine targets of 0.7±0.4 mm (range 0.2 ~ 1.1 mm). The averaged two‐dimensional (2D) GI passing rate for several region of interests (ROI) on axial slices that encompass each one of the nine targets was above 98% (5% dose difference, 2 mm DTA, and 10% low‐dose threshold). Measured D95, the minimum dose that covers 95% of the target volume, of the nine targets was 0.7% less than the calculated D95. Three different types of dosimetric verification methods were used and proved the dose calculation of the new automatic brain metastases planning (ABMP) software was clinical acceptable. The 3D pseudo‐in vivo patient‐specific gel phantom test also served as an end‐to‐end test for validating not only the dose calculation, but the treatment delivery accuracy as well. PACS number(s): 87.53.Lv, 87.55.km, 87.55.Qr
Collapse
Affiliation(s)
- Haisong Liu
- Sidney Kimmel Medical College at Thomas Jefferson University.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Effects of inaccurate small field dose measurements on calculated treatment doses. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2016; 39:747-53. [DOI: 10.1007/s13246-016-0461-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 06/23/2016] [Indexed: 12/31/2022]
|
31
|
Godson HF, Ravikumar M, Sathiyan S, Ganesh KM, Ponmalar YR, Varatharaj C. Analysis of small field percent depth dose and profiles: Comparison of measurements with various detectors and effects of detector orientation with different jaw settings. J Med Phys 2016; 41:12-20. [PMID: 27051165 PMCID: PMC4795411 DOI: 10.4103/0971-6203.177284] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The advent of modern technologies in radiotherapy poses an increased challenge in the determination of dosimetric parameters of small fields that exhibit a high degree of uncertainty. Percent depth dose and beam profiles were acquired using different detectors in two different orientations. The parameters such as relative surface dose (DS), depth of dose maximum (Dmax), percentage dose at 10 cm (D10), penumbral width, flatness, and symmetry were evaluated with different detectors. The dosimetric data were acquired for fields defined by jaws alone, multileaf collimator (MLC) alone, and by MLC while the jaws were positioned at 0, 0.25, 0.5, and 1.0 cm away from MLC leaf-end using a Varian linear accelerator with 6 MV photon beam. The accuracy in the measurement of dosimetric parameters with various detectors for three different field definitions was evaluated. The relative DS(38.1%) with photon field diode in parallel orientation was higher than electron field diode (EFD) (27.9%) values for 1 cm ×1 cm field. An overestimation of 5.7% and 8.6% in D10 depth were observed for 1 cm ×1 cm field with RK ion chamber in parallel and perpendicular orientation, respectively, for the fields defined by MLC while jaw positioned at the edge of the field when compared to EFD values in parallel orientation. For this field definition, the in-plane penumbral widths obtained with ion chamber in parallel and perpendicular orientation were 3.9 mm, 5.6 mm for 1 cm ×1 cm field, respectively. Among all detectors used in the study, the unshielded diodes were found to be an appropriate choice of detector for the measurement of beam parameters in small fields.
Collapse
Affiliation(s)
- Henry Finlay Godson
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India; Department of Radiotherapy, Christian Medical College, Vellore, Tamil Nadu, India
| | - M Ravikumar
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| | - S Sathiyan
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| | - K M Ganesh
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| | - Y Retna Ponmalar
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India; Department of Radiotherapy, Christian Medical College, Vellore, Tamil Nadu, India
| | - C Varatharaj
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| |
Collapse
|
32
|
Sors A, Cassol E, Masquère M, Latorzeff I, Duthil P, Chauveau N, Lotterie JA, Sabatier J, Redon A, Berry I, Franceries X. In-vivo dosimetry for conformal arc therapy using several MOSFET in stereotactic radiosurgery computed by an inverse model. EPJ WEB OF CONFERENCES 2016. [DOI: 10.1051/epjconf/201612400007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Spang FJ, Rosenberg I, Hedin E, Royle G. Photon small-field measurements with a CMOS active pixel sensor. Phys Med Biol 2015; 60:4383-98. [PMID: 25985207 DOI: 10.1088/0031-9155/60/11/4383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this work the dosimetric performance of CMOS active pixel sensors for the measurement of small photon beams is presented. The detector used consisted of an array of 520 × 520 pixels on a 25 µm pitch. Dosimetric parameters measured with this sensor were compared with data collected with an ionization chamber, a film detector and GEANT4 Monte Carlo simulations. The sensor performance for beam profiles measurements was evaluated for field sizes of 0.5 × 0.5 cm(2). The high spatial resolution achieved with this sensor allowed the accurate measurement of profiles, beam penumbrae and field size under lateral electronic disequilibrium. Field size and penumbrae agreed within 5.4% and 2.2% respectively with film measurements. Agreements with ionization chambers better than 1.0% were obtained when measuring tissue-phantom ratios. Output factor measurements were in good agreement with ionization chamber and Monte Carlo simulation. The data obtained from this imaging sensor can be easily analyzed to extract dosimetric information. The results presented in this work are promising for the development and implementation of CMOS active pixel sensors for dosimetry applications.
Collapse
Affiliation(s)
- F Jiménez Spang
- Department of Medical Physics and Bioengineering, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
34
|
Clinical use of diodes and micro-chambers to obtain accurate small field output factor measurements. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2015; 38:357-67. [DOI: 10.1007/s13246-015-0334-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 02/19/2015] [Indexed: 12/22/2022]
|
35
|
Caprile P, Hartmann GH, Doerner E. Development and application of a dose verification tool using a small field model for TomoTherapy. Z Med Phys 2015; 25:48-57. [PMID: 25081067 DOI: 10.1016/j.zemedi.2014.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 11/26/2022]
|
36
|
Radiological characteristics of MRI-based VIP polymer gel under carbon beam irradiation. Radiat Phys Chem Oxf Engl 1993 2015. [DOI: 10.1016/j.radphyschem.2014.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Heilemann G, Georg D, Berg A. Pushing the boundaries of spatial resolution in dosimetry using polymer gels and radiochromic films. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/1742-6596/573/1/012034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Jafari SM, Alalawi AI, Hussein M, Alsaleh W, Najem MA, Hugtenburg RP, Bradley DA, Spyrou NM, Clark CH, Nisbet A. Glass beads and Ge-doped optical fibres as thermoluminescence dosimeters for small field photon dosimetry. Phys Med Biol 2014; 59:6875-89. [DOI: 10.1088/0031-9155/59/22/6875] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
Aldosari AH, Petasecca M, Espinoza A, Newall M, Fuduli I, Porumb C, Alshaikh S, Alrowaili ZA, Weaver M, Metcalfe P, Carolan M, Lerch MLF, Perevertaylo V, Rosenfeld AB. A two dimensional silicon detectors array for quality assurance in stereotactic radiotherapy: MagicPlate-512. Med Phys 2014; 41:091707. [DOI: 10.1118/1.4892384] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
40
|
Cornelius I, Guatelli S, Fournier P, Crosbie JC, Sanchez Del Rio M, Bräuer-Krisch E, Rosenfeld A, Lerch M. Benchmarking and validation of a Geant4-SHADOW Monte Carlo simulation for dose calculations in microbeam radiation therapy. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:518-528. [PMID: 24763641 DOI: 10.1107/s1600577514004640] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/28/2014] [Indexed: 06/03/2023]
Abstract
Microbeam radiation therapy (MRT) is a synchrotron-based radiotherapy modality that uses high-intensity beams of spatially fractionated radiation to treat tumours. The rapid evolution of MRT towards clinical trials demands accurate treatment planning systems (TPS), as well as independent tools for the verification of TPS calculated dose distributions in order to ensure patient safety and treatment efficacy. Monte Carlo computer simulation represents the most accurate method of dose calculation in patient geometries and is best suited for the purpose of TPS verification. A Monte Carlo model of the ID17 biomedical beamline at the European Synchrotron Radiation Facility has been developed, including recent modifications, using the Geant4 Monte Carlo toolkit interfaced with the SHADOW X-ray optics and ray-tracing libraries. The code was benchmarked by simulating dose profiles in water-equivalent phantoms subject to irradiation by broad-beam (without spatial fractionation) and microbeam (with spatial fractionation) fields, and comparing against those calculated with a previous model of the beamline developed using the PENELOPE code. Validation against additional experimental dose profiles in water-equivalent phantoms subject to broad-beam irradiation was also performed. Good agreement between codes was observed, with the exception of out-of-field doses and toward the field edge for larger field sizes. Microbeam results showed good agreement between both codes and experimental results within uncertainties. Results of the experimental validation showed agreement for different beamline configurations. The asymmetry in the out-of-field dose profiles due to polarization effects was also investigated, yielding important information for the treatment planning process in MRT. This work represents an important step in the development of a Monte Carlo-based independent verification tool for treatment planning in MRT.
Collapse
Affiliation(s)
- Iwan Cornelius
- Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522, Australia
| | - Susanna Guatelli
- Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522, Australia
| | - Pauline Fournier
- Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522, Australia
| | - Jeffrey C Crosbie
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, Victoria 3152, Australia
| | | | | | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522, Australia
| | - Michael Lerch
- Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522, Australia
| |
Collapse
|
41
|
Mohammad A, Nedaie HA, YarAhmadi M, Banaee N, Naderi M, Tizmaghz Z. Dosimetric Evaluation of Heterogeneities in Small Circular Fields of 6 MV Photon Beams with EBT2 and EDR2 Films: Comparison with Monte Carlo Calculation. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jmp.2014.516162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Rankine LJ, Newton J, Bache ST, Das SK, Adamovics J, Kirsch DG, Oldham M. Investigating end-to-end accuracy of image guided radiation treatment delivery using a micro-irradiator. Phys Med Biol 2013; 58:7791-801. [PMID: 24140983 DOI: 10.1088/0031-9155/58/21/7791] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is significant interest in delivering precisely targeted small-volume radiation treatments, in the pre-clinical setting, to study dose-volume relationships with tumour control and normal tissue damage. For these studies it is vital that image guidance systems and target positioning are accurately aligned (IGRT), in order to deliver dose precisely and accurately according to the treatment plan. In this work we investigate the IGRT targeting accuracy of the X-RAD 225 Cx system from Precision X-Ray using high-resolution 3D dosimetry techniques. Small cylindrical PRESAGE® dosimeters were used with optical-CT readout (DMOS) to verify the accuracy of 2.5, 1.0, and 5.0 mm X-RAD cone attachments. The dosimeters were equipped with four target points, visible on both CBCT and optical-CT, at which a 7-field coplanar treatment plan was delivered with the respective cone. Targeting accuracy (distance to agreement between the target point and delivery isocenter) and cone alignment (isocenter precision under gantry rotation) were measured using the optical-CT images. Optical-CT readout of the first 2.5 mm cone dosimeter revealed a significant targeting error of 2.1 ± 0.6 mm and a cone misalignment of 1.3 ± 0.1 mm. After the IGRT hardware and software had been recalibrated, these errors were reduced to 0.5 ± 0.1 and 0.18 ± 0.04 mm respectively, within the manufacturer specified 0.5 mm. Results from the 1.0 mm cone were 0.5 ± 0.3 mm targeting accuracy and 0.4 ± 0.1 mm cone misalignment, within the 0.5 mm specification. The results from the 5.0 mm cone were 1.0 ± 0.2 mm targeting accuracy and 0.18 ± 0.06 mm cone misalignment, outside of accuracy specifications. Quality assurance of small field IGRT targeting and delivery accuracy is a challenging task. The use of a 3D dosimetry technique, where targets are visible on both CBCT and optical-CT, enabled identification and quantification of a targeting error in 3D. After correction, the targeting accuracy of the irradiator was verified to be within 0.5 mm (or 1.0 mm for the 5.0 mm cone) and the cone alignment was verified to be within 0.2 mm (or 0.4 mm for the 1.0 mm cone). The PRESAGE®/DMOS system proved valuable for end-to-end verification of small field IGRT capabilities.
Collapse
Affiliation(s)
- L J Rankine
- Medical Physics Graduate Program, Duke University, Durham, NC, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Tyler M, Liu PZY, Chan KW, Ralston A, McKenzie DR, Downes S, Suchowerska N. Characterization of small-field stereotactic radiosurgery beams with modern detectors. Phys Med Biol 2013; 58:7595-608. [DOI: 10.1088/0031-9155/58/21/7595] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
44
|
Dosimetric characteristics of a new polymer gel and their dependence on post-preparation and post-irradiation time: Effect on X-ray beam profile measurements. Phys Med 2013; 29:453-60. [DOI: 10.1016/j.ejmp.2013.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 12/22/2012] [Accepted: 01/03/2013] [Indexed: 11/19/2022] Open
|
45
|
Vargas-Verdesoto MX, Álvarez-Romero JT. Determination and verification of a 2D pencil-beam kernel for a radiosurgery system with cones. Med Dosim 2013; 38:215-20. [PMID: 23558144 DOI: 10.1016/j.meddos.2013.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 12/04/2012] [Accepted: 01/28/2013] [Indexed: 11/28/2022]
Abstract
The quality and correctness of dosimetric data of small fields in stereotactic radiosurgery (SRS) depends significantly on the election of the detector employed in the measurements. This work provides an independent method of verification of these data through the determination of a polyenergetic 2-dimensional pencil-beam kernel for a BrainLAB SRS system with cones, employing the deconvolution/convolution of a reference experimental off-axis ratio (OAR) profile (cone diameter c0 = 35 mm). The kernel in real space k(c(0))(r,z(0)) is convolved with the ideal fluence Φ for the cones 7.5 to 35 mm in diameter to obtain the OAR profiles, and the total scatter factors, St, which are compared with experimental values of the same quantities. The experimental OARs and St factors are measured in water with a PTW 60003 diamond detector. Additionally, the reference OAR is corrected for beam divergence and spectral fluence fluctuations defining a function of boundary correction factors (BF). The BF and Φ functions are transformed to the conjugate space with the zeroth-order Hankel transform, appropriated to the radial symmetry of the cones. Therefore, the kernel in real space k(c(0))(r,z(0)) is the inverse Hankel transform of the ratio of the Hankel transforms of BF and Φ. Finally, an uncertainty analysis according to the Guide to the Expression of Uncertainty in Measurement is carried out for 3 different values of k(c(0))(r,z(0)). Calculated and measured OARs agree within the dose/distance-to-agreement criteria of 2%/0.12 mm; while, St factors agree within 2%. This procedure supplies an independent method to validate the dosimetric data necessary to feed treatment planning systems for SRS with cones.
Collapse
|
46
|
Kron T, Clivio A, Vanetti E, Nicolini G, Cramb J, Lonski P, Cozzi L, Fogliata A. Small field segments surrounded by large areas only shielded by a multileaf collimator: comparison of experiments and dose calculation. Med Phys 2013; 39:7480-9. [PMID: 23231297 DOI: 10.1118/1.4762564] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Complex radiotherapy fields delivered using a tertiary multileaf collimator (MLC) often feature small open segments surrounded by large areas of the beam only shielded by the MLC. The aim of this study was to test the ability of two modern dose calculation algorithms to accurately calculate the dose in these fields which would be common, for example, in volumetric modulated arc treatment (VMAT) and study the impact of variations in dosimetric leaf gap (DLG), focal spot size, and MLC transmission in the beam models. METHODS Nine test fields with small fields (0.6-3 cm side length) surrounded by large MLC shielded areas (secondary collimator 12 × 12 cm(2)) were created using a 6 MV beam from a Varian Clinac iX linear accelerator with 120 leaf MLC. Measurements of output factors and profiles were performed using a diamond detector (PTW) and compared to two dose calculations algorithms anisotropic analytical algorithm [(AAA) and Acuros XB] implemented on a commercial radiotherapy treatment planning system (Varian Eclipse 10). RESULTS Both calculation algorithms predicted output factors within 1% for field sizes larger than 1 × 1 cm(2). For smaller fields AAA tended to underestimate the dose. Profiles were predicted well for all fields except for problems of Acuros XB to model the secondary penumbra between MLC shielded fields and the secondary collimator. A focal spot size of 1 mm or less, DLG 1.4 mm and MLC transmission of 1.4% provided a generally good model for our experimental setup. CONCLUSIONS AAA and Acuros XB were found to predict the dose under small MLC defined field segments well. While DLG and focal spot affect mostly the penumbra, the choice of correct MLC transmission will be essential to model treatments such as VMAT accurately.
Collapse
Affiliation(s)
- T Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Gopishankar N, Vivekanandhan S, Rath GK, Laviraj MA, Senthilkumaran S, Kale SS, Thulkar S, Bisht RK, Subramani V. Indigenously developed multipurpose acrylic head phantom for verification of IMRT using film and gel dosimetry. J Appl Clin Med Phys 2013; 14:4041. [PMID: 23470932 PMCID: PMC5714371 DOI: 10.1120/jacmp.v14i2.4041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/19/2012] [Accepted: 10/16/2012] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to validate the newly designed acrylic phantom for routine dosimetric purpose in radiotherapy. The phantom can be used to evaluate and compare the calculated dose and measured dose using film and gel dosimetric methods. In this study, a doughnut-shaped planning target volume (8.54 cm3) and inner organ at risk (0.353 cm3) were delineated for an IMRT test plan using the X-ray CT image of the phantom. The phantom consists of acrylic slabs which are integrated to form a human head with a hole in the middle where several dosimetric inserts can be positioned for measurement. An inverse planning with nine coplanar intensity-modulated fields was created using Pinnacle TPS. For the film analysis, EBT2 film, flatbed scanner, in-house developed MATLAB codes and ImageJ software were used. The 3D dose distribution recorded in the MAGAT gel dosimeter was read using a 1.5 T MRI scanner. Scanning parameters were CPMG pulse sequence with 8 equidistant echoes, TR = 5600, echo step = 22 ms, pixel size = 0.5 × 0.5, slice thickness = 2 mm. Using a calibration relationship between absorbed dose and spin-spin relaxation rate (R2), R2 images were converted to dose images. The dose comparison was accomplished using in-house MATLAB-based graphical user interface named "IMRT3DCMP". For gel measurement dose grid from the TPS was extracted and compared with the measured dose grid of the gel. Gamma index analysis of film measurement for the tolerance criteria of 2%/2mm, 1%/1 mm showed more than 90% voxels pass rate. Gamma index analysis of 3D gel measurement data showed more than 90% voxels pass rate for different tolerance criteria of 2%/2 mm and 1%/1 mm. Overall both 2D and 3D measurement were in close agreement with the Pinnacle TPS calculated dose. The phantom designed is cost-effective and the results are promising, but further investigation is required to validate the phantom with other 3D conformal techniques for dosimetric purpose.
Collapse
Affiliation(s)
- N Gopishankar
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Natanasabapathi G, Subbiah V, Kale SS, Rath GK, Senthilkumaran S, Thulkar S, Subramani V, Laviraj MA, Bisht RK, Mahapatra AK. MAGAT gel and EBT2 film-based dosimetry for evaluating source plugging-based treatment plan in Gamma Knife stereotactic radiosurgery. J Appl Clin Med Phys 2012; 13:3877. [PMID: 23149780 PMCID: PMC5718525 DOI: 10.1120/jacmp.v13i6.3877] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 06/07/2012] [Accepted: 07/12/2012] [Indexed: 11/23/2022] Open
Abstract
This work illustrates a procedure to assess the overall accuracy associated with Gamma Knife treatment planning using plugging. The main role of source plugging or blocking is to create dose falloff in the junction between a target and a critical structure. We report the use of MAGAT gel dosimeter for verification of an experimental treatment plan based on plugging. The polymer gel contained in a head‐sized glass container simulated all major aspects of the treatment process of Gamma Knife radiosurgery. The 3D dose distribution recorded in the gel dosimeter was read using a 1.5T MRI scanner. Scanning protocol was: CPMG pulse sequence with 8 equidistant echoes, TR=7 s, echo step=14 ms, pixel size=0.5 mm x 0.5 mm, and slice thickness of 2 mm. Using a calibration relationship between absorbed dose and spin‐spin relaxation rate (R2), we converted R2 images to dose images. Volumetric dose comparison between treatment planning system (TPS) and gel measurement was accomplished using an in‐house MATLAB‐based program. The isodose overlay of the measured and computed dose distribution on axial planes was in close agreement. Gamma index analysis of 3D data showed more than 94% voxel pass rate for different tolerance criteria of 3%/2 mm, 3%/1 mm and 2%/2 mm. Film dosimetry with GAFCHROMIC EBT 2 film was also performed to compare the results with the calculated TPS dose. Gamma index analysis of film measurement for the same tolerance criteria used for gel measurement evaluation showed more than 95% voxel pass rate. Verification of gamma plan calculated dose on account of shield is not part of acceptance testing of Leksell Gamma Knife (LGK). Through this study we accomplished a volumetric comparison of dose distributions measured with a polymer gel dosimeter and Leksell GammaPlan (LGP) calculations for plans using plugging. We propose gel dosimeter as a quality assurance (QA) tool for verification of plug‐based planning. PACS number: 87.53.Ly, 87.55.‐x, 87.56.N‐
Collapse
Affiliation(s)
- Gopishankar Natanasabapathi
- Department of Neurosurgery, Neurosciences Centre, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sedaghat M, Bujold R, Lepage M. Preliminary studies on the role and reactions of tetrakis(hydroxymethyl)phosphonium chloride in polyacrylamide gel dosimeters. Phys Med Biol 2012; 57:5981-94. [DOI: 10.1088/0031-9155/57/19/5981] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Wang Y, Easterling SB, Ting JY. Ion recombination corrections of ionization chambers in flattening filter-free photon radiation. J Appl Clin Med Phys 2012; 13:3758. [PMID: 22955642 PMCID: PMC5718222 DOI: 10.1120/jacmp.v13i5.3758] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 03/05/2012] [Accepted: 04/30/2012] [Indexed: 12/11/2022] Open
Abstract
The flattening filter free (FFF) X-rays can provide much higher dose rate at the treatment target compared to the conventional flattened X-rays. However, the substantial increase of dose rate for FFF beams may affect the ion recombination correction factor, which is required for accurate measurements using ionization chambers in clinical dosimetry. The purpose of this work is to investigate the ion recombination of three types of commonly used ion chambers (Farmer, PinPoint and plane-parallel) in the FFF photon radiation. Both 6 MV and 10 MV flattened and FFF beams were fully commissioned on a Varian TrueBeam linear accelerator. The ion recombination correction factor, P(ion), was determined using the two-voltage technique for a 0.6 cc Farmer chamber, a 0.015 cc PinPoint chamber, and a 0.02 cc parallel-plate chamber at different source-to-axis distances (SAD) in a solid water phantom or water tank phantom at a depth of 10 cm in a 10 × 10 cm(2) field. Good repeatability of measurements was demonstrated. Less than 1% difference in P(ion) between the flattened and FFF photons for all three ion chambers was observed. At a SAD of 100 cm and a depth of 10 cm for a 10 × 10 cm(2) field, P(ion) for the Farmer chamber was 1.004 and 1.008 for the 6 MV flattened and FFF beams, respectively. At the same setup using the Farmer chamber, P(ion) was 1.002 and 1.015 for the 10MV flattened and FFF beams, respectively. All P(ion) results for the Farmer, PinPoint, or parallel plate chamber in the 6 MV and 10 MV flattened and FFF beams were within 2% from the unity (1 ≤ P(ion) < 1.02). The P(ion) ratio of the FFF to flattened beams was 0.99~1.01 for both 6 MV and 10 MV photons. The ion recombination effect of the Farmer, PinPoint, and plane-parallel chamber in the FFF beams is not substantially different from that in the conventional flattened beams.
Collapse
Affiliation(s)
- Yuenan Wang
- Melbourne Cancer Center, Melbourne, FL 32901, USA.
| | | | | |
Collapse
|