1
|
Ikefuama EC, Slaviero AN, Silvagnoli AD, Crespo EL, Schalau R, Gott M, Tree MO, Dunbar GL, Rossignol J, Hochgeschwender U. Presymptomatic targeted circuit manipulation for ameliorating Huntington's disease pathogenesis. iScience 2025; 28:112022. [PMID: 40092615 PMCID: PMC11910118 DOI: 10.1016/j.isci.2025.112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/23/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Early stages of Huntington's disease (HD) before the onset of motor and cognitive symptoms are characterized by imbalanced excitatory and inhibitory output from the cortex to striatal and subcortical structures. The window before the onset of symptoms presents an opportunity to adjust the firing rate within microcircuits with the goal of restoring the impaired E/I balance, thereby preventing or slowing down disease progression. Here, we investigated the effect of presymptomatic cell-type specific manipulation of activity of pyramidal neurons and parvalbumin interneurons in the M1 motor cortex on disease progression in the R6/2 HD mouse model. Our results show that dampening excitation of Emx1 pyramidal neurons or increasing activity of parvalbumin interneurons once daily for 3 weeks during the pre-symptomatic phase alleviated HD-related motor coordination dysfunction. Cell-type-specific modulation to normalize the net output of the cortex is a potential therapeutic avenue for HD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Ebenezer C. Ikefuama
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Ashley N. Slaviero
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859, USA
| | | | - Emmanuel L. Crespo
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Raegan Schalau
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Madison Gott
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Maya O. Tree
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Gary L. Dunbar
- Department of Psychology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Julien Rossignol
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859, USA
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Ute Hochgeschwender
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859, USA
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
2
|
Ortega-Robles E, de Celis Alonso B, Cantillo-Negrete J, Carino-Escobar RI, Arias-Carrión O. Advanced Magnetic Resonance Imaging for Early Diagnosis and Monitoring of Movement Disorders. Brain Sci 2025; 15:79. [PMID: 39851446 PMCID: PMC11763950 DOI: 10.3390/brainsci15010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Advanced magnetic resonance imaging (MRI) techniques are transforming the study of movement disorders by providing valuable insights into disease mechanisms. This narrative review presents a comprehensive overview of their applications in this field, offering an updated perspective on their potential for early diagnosis, disease monitoring, and therapeutic evaluation. Emerging MRI modalities such as neuromelanin-sensitive imaging, diffusion-weighted imaging, magnetization transfer imaging, and relaxometry provide sensitive biomarkers that can detect early microstructural degeneration, iron deposition, and connectivity disruptions in key regions like the substantia nigra. These techniques enable earlier and more accurate differentiation of movement disorders, including Parkinson's disease, progressive supranuclear palsy, multiple system atrophy, corticobasal degeneration, Lewy body and frontotemporal dementia, Huntington's disease, and dystonia. Furthermore, MRI provides objective metrics for tracking disease progression and assessing therapeutic efficacy, making it an indispensable tool in clinical trials. Despite these advances, the absence of standardized protocols limits their integration into routine clinical practice. Addressing this gap and incorporating these techniques more systematically could bring the field closer to leveraging advanced MRI for personalized treatment strategies, ultimately improving outcomes for individuals with movement disorders.
Collapse
Affiliation(s)
- Emmanuel Ortega-Robles
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Calzada de Tlalpan 4800, Mexico City 14080, Mexico;
| | - Benito de Celis Alonso
- Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Jessica Cantillo-Negrete
- Technological Research Subdirection, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Ruben I. Carino-Escobar
- Division of Research in Clinical Neuroscience, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Calzada de Tlalpan 4800, Mexico City 14080, Mexico;
| |
Collapse
|
3
|
Schnellbächer GJ, Rajkumar R, Veselinović T, Ramkiran S, Hagen J, Collee M, Shah NJ, Neuner I. Structural alterations as a predictor of depression - a 7-Tesla MRI-based multidimensional approach. Mol Psychiatry 2024:10.1038/s41380-024-02854-5. [PMID: 39613917 DOI: 10.1038/s41380-024-02854-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
Major depressive disorder (MDD) is a debilitating condition that is associated with changes in the default-mode network (DMN). Commonly reported features include alterations in gray matter volume (GMV), cortical thickness (CoT), and gyrification. A comprehensive examination of these variables using ultra-high field strength MRI and machine learning methods may lead to novel insights into the pathophysiology of depression and help develop a more personalized therapy. Cerebral images were obtained from 41 patients with confirmed MDD and 41 healthy controls, matched for age and gender, using a 7-T-MRI. DMN parcellation followed the Schaefer 600 Atlas. Based on the results of a mixed-model repeated measures analysis, a support vector machine (SVM) calculation followed by leave-one-out cross-validation determined the predictive ability of structural features for the presence of MDD. A consecutive permutation procedure identified which areas contributed to the classification results. Correlating changes in those areas with BDI-II and AMDP scores added an explanatory aspect to this study. CoT did not delineate relevant changes in the mixed model and was excluded from further analysis. The SVM achieved a good prediction accuracy of 0.76 using gyrification data. GMV was not a viable predictor for disease presence, however, it correlated in the left parahippocampal gyrus with disease severity as measured by the BDI-II. Structural data of the DMN may therefore contain the necessary information to predict the presence of MDD. However, there may be inherent challenges with predicting disease course or treatment response due to high GMV variance and the static character of gyrification. Further improvements in data acquisition and analysis may help to overcome these difficulties.
Collapse
Affiliation(s)
- Gereon J Schnellbächer
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Germany
| | - Ravichandran Rajkumar
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Germany
- JARA-BRAIN, Aachen, Germany
| | - Tanja Veselinović
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Germany
| | - Shukti Ramkiran
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Germany
| | - Jana Hagen
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Germany
| | - Maria Collee
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Germany
- JARA-BRAIN, Aachen, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 11, INM-11, Forschungszentrum Jülich, Germany
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Germany.
- JARA-BRAIN, Aachen, Germany.
| |
Collapse
|
4
|
Pongrácová E, Buratti E, Romano M. Prion-like Spreading of Disease in TDP-43 Proteinopathies. Brain Sci 2024; 14:1132. [PMID: 39595895 PMCID: PMC11591745 DOI: 10.3390/brainsci14111132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
TDP-43 is a ubiquitous nuclear protein that plays a central role in neurodegenerative disorders collectively known as TDP-43 proteinopathies. Under physiological conditions, TDP-43 is primarily localized to the nucleus, but in its pathological form it aggregates in the cytoplasm, contributing to neuronal death. Given its association with numerous diseases, particularly ALS and FTLD, the mechanisms underlying TDP-43 aggregation and its impact on neuronal function have been extensively investigated. However, little is still known about the spreading of this pathology from cell to cell. Recent research has unveiled the possibility that TDP-43 may possess prion-like properties. Specifically, misfolded TDP-43 aggregates can act as templates inducing conformational changes in native TDP-43 molecules and propagating the misfolded state across neural networks. This review summarizes the mounting and most recent evidence from in vitro and in vivo studies supporting the prion-like hypothesis and its underlying mechanisms. The prion-like behavior of TDP-43 has significant implications for diagnostics and therapeutics. Importantly, emerging strategies such as small molecule inhibitors, immunotherapies, and gene therapies targeting TDP-43 propagation offer promising avenues for developing effective treatments. By elucidating the mechanisms of TDP-43 spreading, we therefore aim to pave the way for novel therapies for TDP-43-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Emma Pongrácová
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio, 28, 34127 Trieste, Italy
| |
Collapse
|
5
|
Nandi S, Ghosh S, Garg S, Ghosh S. Unveiling the Human Brain on a Chip: An Odyssey to Reconstitute Neuronal Ensembles and Explore Plausible Applications in Neuroscience. ACS Chem Neurosci 2024; 15:3828-3847. [PMID: 39436813 DOI: 10.1021/acschemneuro.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
The brain is an incredibly complex structure that consists of millions of neural networks. In developmental and cellular neuroscience, probing the highly complex dynamics of the brain remains a challenge. Furthermore, deciphering how several cues can influence neuronal growth and its interactions with different brain cell types (such as astrocytes and microglia) is also a formidable task. Traditional in vitro macroscopic cell culture techniques offer simple and straightforward methods. However, they often fall short of providing insights into the complex phenomena of neuronal network formation and the relevant microenvironments. To circumvent the drawbacks of conventional cell culture methods, recent advancements in the development of microfluidic device-based microplatforms have emerged as promising alternatives. Microfluidic devices enable precise spatiotemporal control over compartmentalized cell cultures. This feature facilitates researchers in reconstituting the intricacies of the neuronal cytoarchitecture within a regulated environment. Therefore, in this review, we focus primarily on modeling neuronal development in a microfluidic device and the various strategies that researchers have adopted to mimic neurogenesis on a chip. Additionally, we have presented an overview of the application of brain-on-chip models for the recapitulation of the blood-brain barrier and neurodegenerative diseases, followed by subsequent high-throughput drug screening. These lab-on-a-chip technologies have tremendous potential to mimic the brain on a chip, providing valuable insights into fundamental brain processes. The brain-on-chip models will also serve as innovative platforms for developing novel neurotherapeutics to address several neurological disorders.
Collapse
Affiliation(s)
- Subhadra Nandi
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Shubham Garg
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342030, India
| |
Collapse
|
6
|
Horne K, Carmichael A, Mercieca EC, Glikmann-Johnston Y, Stout JC, Irish M. Delineating the neural substrates of autobiographical memory impairment in Huntington's disease. Eur J Neurosci 2024; 60:6509-6524. [PMID: 39419578 DOI: 10.1111/ejn.16576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/12/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Emerging evidence suggests that autobiographical memory (ABM) is altered in Huntington's disease (HD). While these impairments are typically attributed to frontostriatal dysfunction, the neural substrates of ABM impairment in HD remain unexplored. To this end, we assessed ABM in 30 participants with genetically confirmed HD (18 premanifest, 12 manifest) and 24 age-matched healthy controls. Participants completed the Autobiographical Interview to assess free and probed ABM recall and underwent structural brain imaging. Whole-brain voxel-based morphometry (VBM) was used to explore voxel-wise associations between ABM performance and grey matter intensity (False Discovery Rate corrected at q = 0.05). Relative to controls, HD participants displayed significantly less detailed ABM retrieval across free and probed recall conditions, irrespective of disease stage. Recall performance did not differ significantly between manifest and premanifest HD groups. VBM analyses indicated that poorer ABM performance was associated with atrophy of a distributed cortico-subcortical network. Key regions implicated irrespective of ABM condition included the bilateral occipital cortex, left precuneus, right parahippocampal gyrus and right caudate nucleus. In addition, probed ABM recall was associated with the superior and inferior frontal gyri, frontal pole, right hippocampus, nucleus accumbens, paracingulate gyrus and cerebellum. Overall, our findings indicate that ABM impairments in HD reflect the progressive degeneration of a distributed cortico-subcortical brain network comprising medial temporal, frontal, striatal and posterior parietal cortices. Our findings advance our understanding of the neurocognitive profile of HD, providing an important foundation for future interventions to support memory function in this population.
Collapse
Affiliation(s)
- Kristina Horne
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
| | - Anna Carmichael
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
| | - Emily-Clare Mercieca
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
| | - Yifat Glikmann-Johnston
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
| | - Julie C Stout
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
| | - Muireann Irish
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Caillaud M, Laisney M, Bejanin A, Duclos H, Scherer-Gagou C, Prundean A, Bonneau D, Eustache F, Verny C, Desgranges B, Allain P. Social cognition profile in early Huntington disease: Insight from neuropsychological assessment and structural neuroimaging. J Huntingtons Dis 2024; 13:467-477. [PMID: 39973378 DOI: 10.1177/18796397241291730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND Huntington's disease (HD) is traditionally associated with motor, cognitive, and neuropsychiatric symptoms. Recent observations suggest that disturbances in social cognition may feature prominently in HD, potentially contributing to behavioral challenges. OBJECTIVE This study aims to explore the onset and neural mechanisms underlying social cognition disturbances in HD, which are not yet well understood despite increasing recognition of these symptoms. METHODS This study compared 20 individuals in the early stages of HD with 20 healthy controls across a range of cognitive tests, in-depth social cognition assessments, and structural MRI evaluations. RESULTS The findings revealed alterations in various aspects of social cognition, particularly cognitive and affective Theory of Mind, in the early HD group. Some of these alterations correlated with the neurodegeneration of the striatum (caudate), suggesting that social cognition deficits may serve as early indicators of disease progression. CONCLUSIONS This research underscores the importance of integrating social cognition evaluations into the clinical assessment of HD and hints at a complex interplay between these deficits and the broader neuropsychological impact of the disease. The results thus advocate for a more holistic approach to understanding and managing HD, considering the potential interdependencies between social cognition and other cognitive functions.
Collapse
Affiliation(s)
- Marie Caillaud
- Univ Angers, Nantes Université, [CHU Angers], LPPL, SFR CONFLUENCES, Angers, France
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Mickael Laisney
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Alexandre Bejanin
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Harmony Duclos
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | | | - Adriana Prundean
- Univ Angers, [CHU Angers], Inserm, CNRS, MITOVASC, SFR ICAT, Angers, France
| | - Dominique Bonneau
- Univ Angers, [CHU Angers], Inserm, CNRS, MITOVASC, SFR ICAT, Angers, France
| | - Francis Eustache
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Christophe Verny
- Univ Angers, [CHU Angers], Inserm, CNRS, MITOVASC, SFR ICAT, Angers, France
| | - Béatrice Desgranges
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Philippe Allain
- Univ Angers, Nantes Université, [CHU Angers], LPPL, SFR CONFLUENCES, Angers, France
| |
Collapse
|
8
|
Salem S, Alpaugh M, Saint-Pierre M, Alves-Martins-Borba FN, Cerquera-Cleves C, Lemieux M, Ngonza-Nito SB, De Koninck P, Melki R, Cicchetti F. Treatment with Tau fibrils impact Huntington's disease-related phenotypes in cell and mouse models. Neurobiol Dis 2024; 202:106696. [PMID: 39389154 DOI: 10.1016/j.nbd.2024.106696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/13/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
There is now compelling evidence for the presence of pathological forms of Tau in tissues of both patients and animal models of Huntington's disease (HD). While the root cause of this illness is a mutation within the huntingtin gene, a number of studies now suggest that HD could also be considered a secondary tauopathy. However, the contributory role of Tau in the pathogenesis and pathophysiology of this condition, as well as its implications in cellular toxicity and consequent behavioral impairments are largely unknown. We therefore performed intracerebral stereotaxic injections of recombinant human Tau monomers and fibrils into the knock-in zQ175 mouse model of HD. Tau fibrils induced cognitive and anxiety-like phenotypes predominantly in zQ175 mice and increased the number and size of insoluble mutant huntingtin (mHTT) aggregates in the brains of treated animals. To better understand the putative mechanisms through which Tau could initiate and/or contribute to pathology, we incubated StHdh striatal cells, an in vitro model of HD, with the different Tau forms and evaluated the effects on cell functionality and heat shock proteins Hsp70 and Hsp90. Calcium imaging experiments showed functional impairments of HD StHdh cells following treatment with Tau fibrils, as well as significant changes to the levels of both heat shock proteins which were found trapped within mHTT aggregates. The accumulation of Hsp70 and 90 within aggregates was also present in mouse tissue which suggests that alteration of molecular chaperone-dependent protein quality control may influence aggregation, implicating proteostasis in the mHTT-Tau interplay.
Collapse
Affiliation(s)
- Shireen Salem
- Cente de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
| | - Melanie Alpaugh
- Cente de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Martine Saint-Pierre
- Cente de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - Flavia Natale Alves-Martins-Borba
- Cente de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Catalina Cerquera-Cleves
- Cente de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Mado Lemieux
- CERVO Brain Research Center, 2601 de la Canardière, Québec, QC G1J 2G3, Canada
| | - Soki Bradel Ngonza-Nito
- Labortory of Neurodegenerative Diseases, Institut François Jacob, MIRCen, CEA, CNRS, Fontenay-aux-Roses, France
| | - Paul De Koninck
- CERVO Brain Research Center, 2601 de la Canardière, Québec, QC G1J 2G3, Canada
| | - Ronald Melki
- Labortory of Neurodegenerative Diseases, Institut François Jacob, MIRCen, CEA, CNRS, Fontenay-aux-Roses, France
| | - Francesca Cicchetti
- Cente de Recherche du CHU de Québec, Axe Neurosciences, T2-07, 2705, Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada; Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada.
| |
Collapse
|
9
|
Demir A, Rosas HD. Altered interhemispheric connectivity in Huntington's Disease. Neuroimage Clin 2024; 44:103670. [PMID: 39293356 PMCID: PMC11422549 DOI: 10.1016/j.nicl.2024.103670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024]
Abstract
Pyramidal cells give rise to the corpus callosum, interhemispheric fibers that constitute the associations between the left and the right hemispheres. These interconnections are the substrates of important neurological functions, such as perception, memory, emotion, and movement control, which are all affected in Huntington's disease (HD). In this study we used directional tract density patterns (dTDPs) to evaluate changes in interhemispheric connectivity in gene-expanded individuals, which included presymptomatic and early symptomatic HD subjects. Our results demonstrated regionally selective and progressive differences in dTDPs between distinct regions of the corpus callosum (subdivided by Hofer-Frahm scheme) in the gene-expanded cohorts. In the presymptomatic HD cohort, we found trends, such that the density of fibers was reduced in CC regions IIb, III, and IV (p < 0.05); fibers from these regions project to sensory, premotor, and motor cortical regions, respectively. In the HD cohort, we found reduction in the density of fibers in all CC regions, including in fibers extending to the cortical surface (p < 0.002). Our results support the use of dTDPs to evaluate individual and progressive changes in interhemispheric connectivity in HD.
Collapse
Affiliation(s)
- Ali Demir
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - H Diana Rosas
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
10
|
Mühlbäck A, Hoffmann R, Pozzi NG, Marziniak M, Brieger P, Dose M, Priller J. [Psychiatric symptoms of Huntington's disease]. DER NERVENARZT 2024; 95:871-884. [PMID: 39212681 PMCID: PMC11374876 DOI: 10.1007/s00115-024-01728-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Huntington's disease (HD) is an autosomal dominant inherited disease, which leads to motor, cognitive and psychiatric symptoms. The diagnosis can be confirmed by genetic testing for extended CAG repeats in the Huntingtin gene. Mental and behavioral symptoms are common in HD and can appear several years before the onset of motor symptoms. The psychiatric symptoms include apathy, depression, anxiety, obsessive-compulsive symptoms and, in some cases, psychoses and aggression. These are currently restricted to symptomatic treatment as disease-modifying treatment approaches are still under investigation. The current clinical practice is based on expert opinions as well as experience with the treatment of similar symptoms in other neurological and mental health diseases. This article provides an overview of the complex psychiatric manifestations of HD, the diagnostic options and the established pharmacological and nonpharmacological treatment approaches.
Collapse
Affiliation(s)
- Alzbeta Mühlbäck
- Huntington-Zentrum-Süd, kbo-Isar-Amper-Klinikum, Region München, Taufkirchen (Vils), Deutschland.
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Klinikum rechts der Isar, School of Medicine and Health, TU München, Ismaninger Str. 22, 81675, München, Deutschland.
| | - Rainer Hoffmann
- Huntington-Zentrum-Süd, kbo-Isar-Amper-Klinikum, Region München, Taufkirchen (Vils), Deutschland
| | - Nicolo Gabriele Pozzi
- Huntington-Zentrum-Süd, kbo-Isar-Amper-Klinikum, Region München, Taufkirchen (Vils), Deutschland
- Neurologische Klinik und Poliklinik, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - Martin Marziniak
- Klinik für Neurologie und Intensivmedizin, kbo-Isar-Amper-Klinikum, Region München, Akademisches Lehrkrankenhaus der LMU München, Haar, Deutschland
| | - Peter Brieger
- kbo-Isar-Amper-Klinikum, Region München, Akademisches Lehrkrankenhaus der LMU München, Haar, Deutschland
| | - Matthias Dose
- Huntington-Zentrum-Süd, kbo-Isar-Amper-Klinikum, Region München, Taufkirchen (Vils), Deutschland
| | - Josef Priller
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Klinikum rechts der Isar, School of Medicine and Health, TU München, Ismaninger Str. 22, 81675, München, Deutschland
- Deutsches Zentrum für Psychische Gesundheit (DZPG), Standort München, München, Deutschland
- Universität Edinburgh und UK DRI, Edinburgh, Großbritannien
- Neuropsychiatrie und Labor für Molekulare Psychiatrie, Charité-Universitätsmedizin Berlin, Berlin, Deutschland
- DZNE, Berlin, Deutschland
| |
Collapse
|
11
|
Boulos A, Maroun D, Ciechanover A, Ziv NE. Peripheral sequestration of huntingtin delays neuronal death and depends on N-terminal ubiquitination. Commun Biol 2024; 7:1014. [PMID: 39155290 PMCID: PMC11330980 DOI: 10.1038/s42003-024-06733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/13/2024] [Indexed: 08/20/2024] Open
Abstract
Huntington's disease (HD) is caused by a glutamine repeat expansion in the protein huntingtin. Mutated huntingtin (mHtt) forms aggregates whose impacts on neuronal survival are still debated. Using weeks-long, continual imaging of cortical neurons, we find that mHtt is gradually sequestrated into peripheral, mainly axonal aggregates, concomitant with dramatic reductions in cytosolic mHtt levels and enhanced neuronal survival. in-situ pulse-chase imaging reveals that aggregates continually gain and lose mHtt, in line with these acting as mHtt sinks at equilibrium with cytosolic pools. Mutating two N-terminal lysines found to be ubiquitinated in HD animal models suppresses peripheral aggregate formation and reductions in cytosolic mHtt, promotes nuclear aggregate formation, stabilizes aggregates and leads to pervasive neuronal death. These findings demonstrate the capacity of aggregates formed at peripheral locations to sequester away cytosolic, presumably toxic mHtt forms and support a crucial role for N-terminal ubiquitination in promoting these processes and delaying neuronal death.
Collapse
Affiliation(s)
- Ayub Boulos
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Fishbach Building, Technion City, Haifa, Israel
- Department of Neurology, Massachusetts General Hospital, and Harvard Medical School, Charlestown, MA, USA
| | - Dunia Maroun
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Fishbach Building, Technion City, Haifa, Israel
| | - Aaron Ciechanover
- Rappaport Faculty of Medicine and Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, Israel
| | - Noam E Ziv
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Fishbach Building, Technion City, Haifa, Israel.
| |
Collapse
|
12
|
Paryani F, Kwon JS, Ng CW, Jakubiak K, Madden N, Ofori K, Tang A, Lu H, Xia S, Li J, Mahajan A, Davidson SM, Basile AO, McHugh C, Vonsattel JP, Hickman R, Zody MC, Housman DE, Goldman JE, Yoo AS, Menon V, Al-Dalahmah O. Multi-omic analysis of Huntington's disease reveals a compensatory astrocyte state. Nat Commun 2024; 15:6742. [PMID: 39112488 PMCID: PMC11306246 DOI: 10.1038/s41467-024-50626-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
The mechanisms underlying the selective regional vulnerability to neurodegeneration in Huntington's disease (HD) have not been fully defined. To explore the role of astrocytes in this phenomenon, we used single-nucleus and bulk RNAseq, lipidomics, HTT gene CAG repeat-length measurements, and multiplexed immunofluorescence on HD and control post-mortem brains. We identified genes that correlated with CAG repeat length, which were enriched in astrocyte genes, and lipidomic signatures that implicated poly-unsaturated fatty acids in sensitizing neurons to cell death. Because astrocytes play essential roles in lipid metabolism, we explored the heterogeneity of astrocytic states in both protoplasmic and fibrous-like (CD44+) astrocytes. Significantly, one protoplasmic astrocyte state showed high levels of metallothioneins and was correlated with the selective vulnerability of distinct striatal neuronal populations. When modeled in vitro, this state improved the viability of HD-patient-derived spiny projection neurons. Our findings uncover key roles of astrocytic states in protecting against neurodegeneration in HD.
Collapse
Affiliation(s)
- Fahad Paryani
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ji-Sun Kwon
- Department of Developmental Biology Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Christopher W Ng
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA
| | - Kelly Jakubiak
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nacoya Madden
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kenneth Ofori
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Alice Tang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hong Lu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shengnan Xia
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Juncheng Li
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Aayushi Mahajan
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shawn M Davidson
- Northwestern Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | | | | | - Jean Paul Vonsattel
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Richard Hickman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - David E Housman
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Andrew S Yoo
- Department of Developmental Biology Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA.
| | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA.
| |
Collapse
|
13
|
Tan AYS, Tippett LJ, Turner CP, Swanson MEV, Park TIH, Curtis MA, Faull RLM, Dragunow M, Singh-Bains MK. Microglial proliferation and astrocytic protein alterations in the human Huntington's disease cortex. Neurobiol Dis 2024; 198:106554. [PMID: 38844243 DOI: 10.1016/j.nbd.2024.106554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder that severely affects the basal ganglia and regions of the cerebral cortex. While astrocytosis and microgliosis both contribute to basal ganglia pathology, the contribution of gliosis and potential factors driving glial activity in the human HD cerebral cortex is less understood. Our study aims to identify nuanced indicators of gliosis in HD which is challenging to identify in the severely degenerated basal ganglia, by investigating the middle temporal gyrus (MTG), a cortical region previously documented to demonstrate milder neuronal loss. Immunohistochemistry was conducted on MTG paraffin-embedded tissue microarrays (TMAs) comprising 29 HD and 35 neurologically normal cases to compare the immunoreactivity patterns of key astrocytic proteins (glial fibrillary acidic protein, GFAP; inwardly rectifying potassium channel 4.1, Kir4.1; glutamate transporter-1, GLT-1; aquaporin-4, AQP4), key microglial proteins (ionised calcium-binding adapter molecule-1, IBA-1; human leukocyte antigen (HLA)-DR; transmembrane protein 119, TMEM119; purinergic receptor P2RY12, P2RY12), and indicators of proliferation (Ki-67; proliferative cell nuclear antigen, PCNA). Our findings demonstrate an upregulation of GFAP+ protein expression attributed to the presence of more GFAP+ expressing cells in HD, which correlated with greater cortical mutant huntingtin (mHTT) deposition. In contrast, Kir4.1, GLT-1, and AQP4 immunoreactivity levels were unchanged in HD. We also demonstrate an increased number of IBA-1+ and TMEM119+ microglia with somal enlargement. IBA-1+, TMEM119+, and P2RY12+ reactive microglia immunophenotypes were also identified in HD, evidenced by the presence of rod-shaped, hypertrophic, and dystrophic microglia. In HD cases, IBA-1+ cells contained either Ki-67 or PCNA, whereas GFAP+ astrocytes were devoid of proliferative nuclei. These findings suggest cortical microgliosis may be driven by proliferation in HD, supporting the hypothesis of microglial proliferation as a feature of HD pathophysiology. In contrast, astrocytes in HD demonstrate an altered GFAP expression profile that is associated with the degree of mHTT deposition.
Collapse
Affiliation(s)
- Adelie Y S Tan
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1023, New Zealand
| | - Lynette J Tippett
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; School of Psychology, University of Auckland, Auckland 1023, New Zealand
| | - Clinton P Turner
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland 1023, New Zealand
| | - Molly E V Swanson
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; School of Biological Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Thomas I H Park
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1023, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1023, New Zealand
| | - Mike Dragunow
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1023, New Zealand.
| | - Malvindar K Singh-Bains
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
14
|
Ikefuama EC, Slaviero AN, Schalau R, Gott M, Tree MO, Dunbar GL, Rossignol J, Hochgeschwender U. Presymptomatic Targeted Circuit Manipulation for Ameliorating Huntington's Disease Pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604946. [PMID: 39091860 PMCID: PMC11291159 DOI: 10.1101/2024.07.24.604946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Early stages of Huntington's disease (HD) before the onset of motor and cognitive symptoms are characterized by imbalanced excitatory and inhibitory output from the cortex to striatal and subcortical structures. The window before the onset of symptoms presents an opportunity to adjust the firing rate within microcircuits with the goal of restoring the impaired E/I balance, thereby preventing or slowing down disease progression. Here, we investigated the effect of presymptomatic cell-type specific manipulation of activity of pyramidal neurons and parvalbumin interneurons in the M1 motor cortex on disease progression in the R6/2 HD mouse model. Our results show that dampening excitation of Emx1 pyramidal neurons or increasing activity of parvalbumin interneurons once daily for 3 weeks during the pre-symptomatic phase alleviated HD-related motor coordination dysfunction. Cell-type-specific modulation to normalize the net output of the cortex is a potential therapeutic avenue for HD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Ebenezer C. Ikefuama
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Ashley N. Slaviero
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Raegan Schalau
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Madison Gott
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Maya O. Tree
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Gary L. Dunbar
- Department of Psychology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Julien Rossignol
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859, USA
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Ute Hochgeschwender
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI 48859, USA
- College of Medicine, Central Michigan University, Mount Pleasant, MI 48859, USA
- Lead Contact
| |
Collapse
|
15
|
Wang X, Li Y, Li B, Shang H, Yang J. Gray matter alterations in Huntington's disease: A meta-analysis of VBM neuroimaging studies. J Neurosci Res 2024; 102:e25366. [PMID: 38953592 DOI: 10.1002/jnr.25366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/16/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
Increasing neuroimaging studies have attempted to identify biomarkers of Huntington's disease (HD) progression. Here, we conducted voxel-based meta-analyses of voxel-based morphometry (VBM) studies on HD to investigate the evolution of gray matter volume (GMV) alterations and explore the effects of genetic and clinical features on GMV changes. A systematic review was performed to identify the relevant studies. Meta-analyses of whole-brain VBM studies were performed to assess the regional GMV changes in all HD mutation carriers, in presymptomatic HD (pre-HD), and in symptomatic HD (sym-HD). A quantitative comparison was performed between pre-HD and sym-HD. Meta-regression analyses were used to explore the effects of genetic and clinical features on GMV changes. Twenty-eight studies were included, comparing a total of 1811 HD mutation carriers [including 1150 pre-HD and 560 sym-HD] and 969 healthy controls (HCs). Pre-HD showed decreased GMV in the bilateral caudate nuclei, putamen, insula, anterior cingulate/paracingulate gyri, middle temporal gyri, and left dorsolateral superior frontal gyrus compared with HCs. Compared with pre-HD, GMV decrease in sym-HD extended to the bilateral median cingulate/paracingulate gyri, Rolandic operculum and middle occipital gyri, left amygdala, and superior temporal gyrus. Meta-regression analyses found that age, mean lengths of CAG repeats, and disease burden were negatively associated with GMV atrophy of the bilateral caudate and right insula in all HD mutation carriers. This meta-analysis revealed the pattern of GMV changes from pre-HD to sym-HD, prompting the understanding of HD progression. The pattern of GMV changes may be biomarkers for disease progression in HD.
Collapse
Affiliation(s)
- Xi Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuming Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Boyi Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Bjerkan J, Kobal J, Lancaster G, Šešok S, Meglič B, McClintock PVE, Budohoski KP, Kirkpatrick PJ, Stefanovska A. The phase coherence of the neurovascular unit is reduced in Huntington's disease. Brain Commun 2024; 6:fcae166. [PMID: 38938620 PMCID: PMC11210076 DOI: 10.1093/braincomms/fcae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/07/2024] [Accepted: 05/09/2024] [Indexed: 06/29/2024] Open
Abstract
Huntington's disease is a neurodegenerative disorder in which neuronal death leads to chorea and cognitive decline. Individuals with ≥40 cytosine-adenine-guanine repeats on the interesting transcript 15 gene develop Huntington's disease due to a mutated huntingtin protein. While the associated structural and molecular changes are well characterized, the alterations in neurovascular function that lead to the symptoms are not yet fully understood. Recently, the neurovascular unit has gained attention as a key player in neurodegenerative diseases. The mutant huntingtin protein is known to be present in the major parts of the neurovascular unit in individuals with Huntington's disease. However, a non-invasive assessment of neurovascular unit function in Huntington's disease has not yet been performed. Here, we investigate neurovascular interactions in presymptomatic (N = 13) and symptomatic (N = 15) Huntington's disease participants compared to healthy controls (N = 36). To assess the dynamics of oxygen transport to the brain, functional near-infrared spectroscopy, ECG and respiration effort were recorded. Simultaneously, neuronal activity was assessed using EEG. The resultant time series were analysed using methods for discerning time-resolved multiscale dynamics, such as wavelet transform power and wavelet phase coherence. Neurovascular phase coherence in the interval around 0.1 Hz is significantly reduced in both Huntington's disease groups. The presymptomatic Huntington's disease group has a lower power of oxygenation oscillations compared to controls. The spatial coherence of the oxygenation oscillations is lower in the symptomatic Huntington's disease group compared to the controls. The EEG phase coherence, especially in the α band, is reduced in both Huntington's disease groups and, to a significantly greater extent, in the symptomatic group. Our results show a reduced efficiency of the neurovascular unit in Huntington's disease both in the presymptomatic and symptomatic stages of the disease. The vasculature is already significantly impaired in the presymptomatic stage of the disease, resulting in reduced cerebral blood flow control. The results indicate vascular remodelling, which is most likely a compensatory mechanism. In contrast, the declines in α and γ coherence indicate a gradual deterioration of neuronal activity. The results raise the question of whether functional changes in the vasculature precede the functional changes in neuronal activity, which requires further investigation. The observation of altered dynamics paves the way for a simple method to monitor the progression of Huntington's disease non-invasively and evaluate the efficacy of treatments.
Collapse
Affiliation(s)
- Juliane Bjerkan
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Jan Kobal
- Department of Neurology, University Medical Centre, 1525 Ljubljana, Slovenia
| | - Gemma Lancaster
- Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
| | - Sanja Šešok
- Department of Neurology, University Medical Centre, 1525 Ljubljana, Slovenia
| | - Bernard Meglič
- Department of Neurology, University Medical Centre, 1525 Ljubljana, Slovenia
| | | | - Karol P Budohoski
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Peter J Kirkpatrick
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| | | |
Collapse
|
17
|
Delussi M, Valt C, Silvestri A, Ricci K, Ladisa E, Ammendola E, Rampino A, Pergola G, de Tommaso M. Auditory mismatch negativity in pre-manifest and manifest Huntington's disease. Clin Neurophysiol 2024; 162:121-128. [PMID: 38603947 DOI: 10.1016/j.clinph.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Abstract
AIM The aim of this study was to investigate the characteristics of the electrophysiological brain response elicited in a passive acoustic oddball paradigm, i.e. mismatch negativity (MMN), in patients with Huntington's disease (HD) in the premanifest (pHD) and manifest (mHD) phases. In this regard, we correlated the results of event-related potentials (ERP) with disease characteristics. METHODS This was an observational cross-sectional MMN study. In addition to the MMN recording of the passive oddball task, all subjects with first-degree inheritance for HD underwent genetic testing for mutant HTT, the Huntington's Disease Rating Scale, the Total Functional Capacity Scale, the Problem Behaviors Assessment short form, and the Mini-Mental State Examination. RESULTS We found that global field power (GFP) was reduced in the MMN time window in mHD patients compared to pHD and normal controls (NC). In the pHD group, MMN amplitude was only slightly and not significantly increased compared to mHD, while pHD patients showed increased theta coherence between trials compared to mHD. In the entire sample of HD gene carriers, the main MMN traits were not correlated with motor performance, cognitive impairment and functional disability. CONCLUSION These results suggest an initial and subtle deterioration of pre-attentive mechanisms in the presymptomatic phase of HD, with an increasing phase shift in the MMN time frame. This result could indicate initial functional changes with a possible compensatory effect. SIGNIFICANCE An initial and slight decrease in MMN associated with increased phase coherence in the corresponding EEG frequencies could indicate an early functional involvement of pre-attentive resources that could precede the clinical expression of HD.
Collapse
Affiliation(s)
- Marianna Delussi
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Christian Valt
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Adelchi Silvestri
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Katia Ricci
- Neurophysiopathology Unit, Policlinico General Hospital, Bari, Italy
| | - Emanuella Ladisa
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Elena Ammendola
- Neurophysiopathology Unit, Policlinico General Hospital, Bari, Italy
| | - Antonio Rampino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | - Giulio Pergola
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Marina de Tommaso
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
18
|
Bonsor M, Ammar O, Schnoegl S, Wanker EE, Silva Ramos E. Polyglutamine disease proteins: Commonalities and differences in interaction profiles and pathological effects. Proteomics 2024; 24:e2300114. [PMID: 38615323 DOI: 10.1002/pmic.202300114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Currently, nine polyglutamine (polyQ) expansion diseases are known. They include spinocerebellar ataxias (SCA1, 2, 3, 6, 7, 17), spinal and bulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA), and Huntington's disease (HD). At the root of these neurodegenerative diseases are trinucleotide repeat mutations in coding regions of different genes, which lead to the production of proteins with elongated polyQ tracts. While the causative proteins differ in structure and molecular mass, the expanded polyQ domains drive pathogenesis in all these diseases. PolyQ tracts mediate the association of proteins leading to the formation of protein complexes involved in gene expression regulation, RNA processing, membrane trafficking, and signal transduction. In this review, we discuss commonalities and differences among the nine polyQ proteins focusing on their structure and function as well as the pathological features of the respective diseases. We present insights from AlphaFold-predicted structural models and discuss the biological roles of polyQ-containing proteins. Lastly, we explore reported protein-protein interaction networks to highlight shared protein interactions and their potential relevance in disease development.
Collapse
Affiliation(s)
- Megan Bonsor
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Orchid Ammar
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Sigrid Schnoegl
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Erich E Wanker
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Eduardo Silva Ramos
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
19
|
Amartumur S, Nguyen H, Huynh T, Kim TS, Woo RS, Oh E, Kim KK, Lee LP, Heo C. Neuropathogenesis-on-chips for neurodegenerative diseases. Nat Commun 2024; 15:2219. [PMID: 38472255 PMCID: PMC10933492 DOI: 10.1038/s41467-024-46554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Developing diagnostics and treatments for neurodegenerative diseases (NDs) is challenging due to multifactorial pathogenesis that progresses gradually. Advanced in vitro systems that recapitulate patient-like pathophysiology are emerging as alternatives to conventional animal-based models. In this review, we explore the interconnected pathogenic features of different types of ND, discuss the general strategy to modelling NDs using a microfluidic chip, and introduce the organoid-on-a-chip as the next advanced relevant model. Lastly, we overview how these models are being applied in academic and industrial drug development. The integration of microfluidic chips, stem cells, and biotechnological devices promises to provide valuable insights for biomedical research and developing diagnostic and therapeutic solutions for NDs.
Collapse
Affiliation(s)
- Sarnai Amartumur
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Huong Nguyen
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Thuy Huynh
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Testaverde S Kim
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Korea
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824, Korea
| | - Eungseok Oh
- Department of Neurology, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Anti-microbial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Luke P Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea.
- Harvard Medical School, Division of Engineering in Medicine and Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, 94720, USA.
| | - Chaejeong Heo
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea.
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Korea.
| |
Collapse
|
20
|
Ahamad S, Bano N, Khan S, Hussain MK, Bhat SA. Unraveling the Puzzle of Therapeutic Peptides: A Promising Frontier in Huntington's Disease Treatment. J Med Chem 2024; 67:783-815. [PMID: 38207096 DOI: 10.1021/acs.jmedchem.3c01131] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Huntington's disease (HD) is a neurodegenerative genetic disorder characterized by a mutation in the huntingtin (HTT) gene, resulting in the production of a mutant huntingtin protein (mHTT). The accumulation of mHTT leads to the development of toxic aggregates in neurons, causing cell dysfunction and, eventually, cell death. Peptide therapeutics target various aspects of HD pathology, including mHTT reduction and aggregation inhibition, extended CAG mRNA degradation, and modulation of dysregulated signaling pathways, such as BDNF/TrkB signaling. In addition, these peptide therapeutics also target the detrimental interactions of mHTT with InsP3R1, CaM, or Caspase-6 proteins to mitigate HD. This Perspective provides a detailed perspective on anti-HD therapeutic peptides, highlighting their design, structural characteristics, neuroprotective effects, and specific mechanisms of action. Peptide therapeutics for HD exhibit promise in preclinical models, but further investigation is required to confirm their effectiveness as viable therapeutic strategies, recognizing that no approved peptide therapy for HD currently exists.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | | | - Shahnawaz A Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
21
|
Javed H, Meeran MFN, Jha NK, Ashraf GM, Ojha S. Sesamol: A Phenolic Compound of Health Benefits and Therapeutic Promise in Neurodegenerative Diseases. Curr Top Med Chem 2024; 24:797-809. [PMID: 38141184 DOI: 10.2174/0115680266273944231213070916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 12/25/2023]
Abstract
Sesamol, one of the key bioactive ingredients of sesame seeds (Sesamum indicum L.), is responsible for many of its possible nutritional benefits. Both the Chinese and Indian medical systems have recognized the therapeutic potential of sesame seeds. It has been shown to have significant therapeutic potential against oxidative stress, inflammatory diseases, metabolic syndrome, neurodegeneration, and mental disorders. Sesamol is a benign molecule that inhibits the expression of inflammatory indicators like numerous enzymes responsible for inducing inflammation, protein kinases, cytokines, and redox status. This review summarises the potential beneficial effects of sesamol against neurological diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Recently, sesamol has been shown to reduce amyloid peptide accumulation and attenuate cognitive deficits in AD models. Sesamol has also been demonstrated to reduce the severity of PD and HD in animal models by decreasing oxidative stress and inflammatory pathways. The mechanism of sesamol's pharmacological activities against neurodegenerative diseases will also be discussed in this review.
Collapse
Affiliation(s)
- Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, UP, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, United Arab Emirates
| |
Collapse
|
22
|
Bonassi G, Semprini M, Mandich P, Trevisan L, Marchese R, Lagravinese G, Barban F, Pelosin E, Chiappalone M, Mantini D, Avanzino L. Neural oscillations modulation during working memory in pre-manifest and early Huntington's disease. Brain Res 2023; 1820:148540. [PMID: 37598900 DOI: 10.1016/j.brainres.2023.148540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/21/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION We recently demonstrated specific spectral signatures associated with updating of memory information, working memory (WM) maintenance and readout, with relatively high spatial resolution by means of high-density electroencephalography (hdEEG). WM is impaired already in early symptomatic HD (early-HD) and in pre-manifest HD (pre-HD). The aim of this study was to test whether hdEEG coupled to source localization allows for the identification of neuronal oscillations in specific frequency bands in 16 pre-HD and early-HD during different phases of a WM task. METHODS We examined modulation of neural oscillations by event-related synchronization and desynchronization (ERS/ERD) of θ, β, gamma low, γLOW and γHIGH EEG bands in a-priori selected large fronto-parietal network, including the insula and the cerebellum. RESULTS We found: (i) Reduced θ oscillations in HD with respect to controls in almost all the areas of the WM network during the update and readout phases; (ii) Modulation of β oscillations, which increased during the maintenance phase of the WM task in both groups; (iii) correlation of γHIGH oscillations during WM task with disease burden score in HD patients. CONCLUSIONS Our data show reduced phase-specific modulation of oscillations in pre-HD and early-HD, even in the presence of preserved dynamic of modulation. Particularly, reduced synchronization in the θ band in the areas of the WM network, consistent with abnormal long-range coordination of neuronal activity within this network, was found in update and readout phases in HD groups.
Collapse
Affiliation(s)
- Gaia Bonassi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy
| | - Marianna Semprini
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Paola Mandich
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Lucia Trevisan
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | - Giovanna Lagravinese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Federico Barban
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy; Dept. of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16145 Genoa, Italy
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Michela Chiappalone
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy; Dept. of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16145 Genoa, Italy
| | - Dante Mantini
- Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001 Leuven, Belgium; Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, 30126 Venice, Italy
| | - Laura Avanzino
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; Department of Experimental Medicine, Section of Human Physiology, University of Genoa, 16132 Genoa, Italy.
| |
Collapse
|
23
|
Estevez-Fraga C, Altmann A, Parker CS, Scahill RI, Costa B, Chen Z, Manzoni C, Zarkali A, Durr A, Roos RAC, Landwehrmeyer B, Leavitt BR, Rees G, Tabrizi SJ, McColgan P. Genetic topography and cortical cell loss in Huntington's disease link development and neurodegeneration. Brain 2023; 146:4532-4546. [PMID: 37587097 PMCID: PMC10629790 DOI: 10.1093/brain/awad275] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
Cortical cell loss is a core feature of Huntington's disease (HD), beginning many years before clinical motor diagnosis, during the premanifest stage. However, it is unclear how genetic topography relates to cortical cell loss. Here, we explore the biological processes and cell types underlying this relationship and validate these using cell-specific post-mortem data. Eighty premanifest participants on average 15 years from disease onset and 71 controls were included. Using volumetric and diffusion MRI we extracted HD-specific whole brain maps where lower grey matter volume and higher grey matter mean diffusivity, relative to controls, were used as proxies of cortical cell loss. These maps were combined with gene expression data from the Allen Human Brain Atlas (AHBA) to investigate the biological processes relating genetic topography and cortical cell loss. Cortical cell loss was positively correlated with the expression of developmental genes (i.e. higher expression correlated with greater atrophy and increased diffusivity) and negatively correlated with the expression of synaptic and metabolic genes that have been implicated in neurodegeneration. These findings were consistent for diffusion MRI and volumetric HD-specific brain maps. As wild-type huntingtin is known to play a role in neurodevelopment, we explored the association between wild-type huntingtin (HTT) expression and developmental gene expression across the AHBA. Co-expression network analyses in 134 human brains free of neurodegenerative disorders were also performed. HTT expression was correlated with the expression of genes involved in neurodevelopment while co-expression network analyses also revealed that HTT expression was associated with developmental biological processes. Expression weighted cell-type enrichment (EWCE) analyses were used to explore which specific cell types were associated with HD cortical cell loss and these associations were validated using cell specific single nucleus RNAseq (snRNAseq) data from post-mortem HD brains. The developmental transcriptomic profile of cortical cell loss in preHD was enriched in astrocytes and endothelial cells, while the neurodegenerative transcriptomic profile was enriched for neuronal and microglial cells. Astrocyte-specific genes differentially expressed in HD post-mortem brains relative to controls using snRNAseq were enriched in the developmental transcriptomic profile, while neuronal and microglial-specific genes were enriched in the neurodegenerative transcriptomic profile. Our findings suggest that cortical cell loss in preHD may arise from dual pathological processes, emerging as a consequence of neurodevelopmental changes, at the beginning of life, followed by neurodegeneration in adulthood, targeting areas with reduced expression of synaptic and metabolic genes. These events result in age-related cell death across multiple brain cell types.
Collapse
Affiliation(s)
- Carlos Estevez-Fraga
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| | - Andre Altmann
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
| | - Christopher S Parker
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
| | - Rachael I Scahill
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| | - Beatrice Costa
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Zhongbo Chen
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| | - Claudia Manzoni
- School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Angeliki Zarkali
- Dementia Research Centre, University College London, London WC1N 3AR, UK
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute (ICM), AP-HP, Inserm, CNRS, Paris 75013, France
| | - Raymund A C Roos
- Department of Neurology, Leiden University Medical Centre, Leiden 2333, The Netherlands
| | | | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver BC V5Z 4H4Canada
- Division of Neurology, Department of Medicine, University of British Columbia Hospital, Vancouver BC V6T 2B5, Canada
| | - Geraint Rees
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| | - Peter McColgan
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| |
Collapse
|
24
|
Horta-Barba A, Martinez-Horta S, Pérez-Pérez J, Puig-Davi A, de Lucia N, de Michele G, Salvatore E, Kehrer S, Priller J, Migliore S, Squitieri F, Castaldo A, Mariotti C, Mañanes V, Lopez-Sendon JL, Rodriguez N, Martinez-Descals A, Júlio F, Januário C, Delussi M, de Tommaso M, Noguera S, Ruiz-Idiago J, Sitek EJ, Wallner R, Nuzzi A, Pagonabarraga J, Kulisevsky J. Measuring cognitive impairment and monitoring cognitive decline in Huntington's disease: a comparison of assessment instruments. J Neurol 2023; 270:5408-5417. [PMID: 37462754 PMCID: PMC10576674 DOI: 10.1007/s00415-023-11804-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Progressive cognitive decline is an inevitable feature of Huntington's disease (HD) but specific criteria and instruments are still insufficiently developed to reliably classify patients into categories of cognitive severity and to monitor the progression of cognitive impairment. METHODS We collected data from a cohort of 180 positive gene-carriers: 33 with premanifest HD and 147 with manifest HD. Using a specifically developed gold-standard for cognitive status we classified participants into those with normal cognition, those with mild cognitive impairment, and those with dementia. We administered the Parkinson's Disease-Cognitive Rating Scale (PD-CRS), the MMSE and the UHDRS cogscore at baseline, and at 6-month and 12-month follow-up visits. Cutoff scores discriminating between the three cognitive categories were calculated for each instrument. For each cognitive group and instrument we addressed cognitive progression, sensitivity to change, and the minimally clinical important difference corresponding to conversion from one category to another. RESULTS The PD-CRS cutoff scores for MCI and dementia showed excellent sensitivity and specificity ratios that were not achieved with the other instruments. Throughout follow-up, in all cognitive groups, PD-CRS captured the rate of conversion from one cognitive category to another and also the different patterns in terms of cognitive trajectories. CONCLUSION The PD-CRS is a valid and reliable instrument to capture MCI and dementia syndromes in HD. It captures the different trajectories of cognitive progression as a function of cognitive status and shows sensitivity to change in MCI and dementia.
Collapse
Affiliation(s)
- Andrea Horta-Barba
- Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Saul Martinez-Horta
- Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Jesús Pérez-Pérez
- Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Arnau Puig-Davi
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Natascia de Lucia
- European Huntington's Disease Network (EHDN), Ulm, Germany
- University of Naples "Federico II", Naples, Italy
| | - Giuseppe de Michele
- European Huntington's Disease Network (EHDN), Ulm, Germany
- University of Naples "Federico II", Naples, Italy
| | - Elena Salvatore
- European Huntington's Disease Network (EHDN), Ulm, Germany
- University of Naples "Federico II", Naples, Italy
| | - Stefanie Kehrer
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neuropsychiatry, Charité-Universitätsmedizin, Berlin, Germany
| | - Josef Priller
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neuropsychiatry, Charité-Universitätsmedizin, Berlin, Germany
| | - Simone Migliore
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza Research Hospital, San Giovanni Rotondo, Italy
| | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza Research Hospital, San Giovanni Rotondo, Italy
| | - Anna Castaldo
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Caterina Mariotti
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Veronica Mañanes
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neurology, Hospital Universitario Ramon Y Cajal, Madrid, Spain
| | - Jose Luis Lopez-Sendon
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neurology, Hospital Universitario Ramon Y Cajal, Madrid, Spain
| | - Noelia Rodriguez
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neurology, Fundación Jimenez Diaz, Madrid, Spain
| | - Asunción Martinez-Descals
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neurology, Fundación Jimenez Diaz, Madrid, Spain
| | - Filipa Júlio
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Coimbra Institute for Biomedical Imaging and Translational Research-CIBIT, University of Coimbra, Coimbra, Portugal
- Neurology Department, Coimbra University Hospital, Coimbra, Portugal
| | - Cristina Januário
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Coimbra Institute for Biomedical Imaging and Translational Research-CIBIT, University of Coimbra, Coimbra, Portugal
- Neurology Department, Coimbra University Hospital, Coimbra, Portugal
| | - Marianna Delussi
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Applied Neurophysiology and Pain Unit, Apulian Center for Huntington's Disease SMBNOS Department, "Aldo Moro" University, Bari, Italy
| | - Marina de Tommaso
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Applied Neurophysiology and Pain Unit, Apulian Center for Huntington's Disease SMBNOS Department, "Aldo Moro" University, Bari, Italy
| | - Sandra Noguera
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Hospital Mare de Deu de La Mercè, Barcelona, Spain
| | - Jesús Ruiz-Idiago
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Hospital Mare de Deu de La Mercè, Barcelona, Spain
| | - Emilia J Sitek
- European Huntington's Disease Network (EHDN), Ulm, Germany
- Department of Neurological and Psychiatric Nursing, Faculty of Health Science Medical, University of Gdansk, Gdańsk, Poland
- Department of Neurology, St. Adalbert Hospital, Copernicus, Gdańsk, Poland
| | - Renata Wallner
- Department of Psychiatry, Medical University of Wroclaw, Wroclaw, Poland
| | - Angela Nuzzi
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Javier Pagonabarraga
- Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- European Huntington's Disease Network (EHDN), Ulm, Germany
| | - Jaime Kulisevsky
- Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain.
- Movement Disorders Unit, Neurology Department, Hospital de La Santa Creu I Sant Pau, Barcelona, Spain.
- Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain.
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- European Huntington's Disease Network (EHDN), Ulm, Germany.
| |
Collapse
|
25
|
Li Y, Li C, Jiang L. Well-being is associated with cortical thickness network topology of human brain. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:16. [PMID: 37749598 PMCID: PMC10521404 DOI: 10.1186/s12993-023-00219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Living a happy and meaningful life is an eternal topic in positive psychology, which is crucial for individuals' physical and mental health as well as social functioning. Well-being can be subdivided into pleasure attainment related hedonic well-being or emotional well-being, and self-actualization related eudaimonic well-being or psychological well-being plus social well-being. Previous studies have mostly focused on human brain morphological and functional mechanisms underlying different dimensions of well-being, but no study explored brain network mechanisms of well-being, especially in terms of topological properties of human brain morphological similarity network. METHODS Therefore, in the study, we collected 65 datasets including magnetic resonance imaging (MRI) and well-being data, and constructed human brain morphological network based on morphological distribution similarity of cortical thickness to explore the correlations between topological properties including network efficiency and centrality and different dimensions of well-being. RESULTS We found emotional well-being was negatively correlated with betweenness centrality in the visual network but positively correlated with eigenvector centrality in the precentral sulcus, while the total score of well-being was positively correlated with local efficiency in the posterior cingulate cortex of cortical thickness network. CONCLUSIONS Our findings demonstrated that different dimensions of well-being corresponded to different cortical hierarchies: hedonic well-being was involved in more preliminary cognitive processing stages including perceptual and attentional information processing, while hedonic and eudaimonic well-being might share common morphological similarity network mechanisms in the subsequent advanced cognitive processing stages.
Collapse
Affiliation(s)
- Yubin Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, No. 16 Lincui Road, Chaoyang District, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Shijingshan, Beijing, China
| | - Chunlin Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, No. 16 Lincui Road, Chaoyang District, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Shijingshan, Beijing, China
| | - Lili Jiang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, No. 16 Lincui Road, Chaoyang District, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Shijingshan, Beijing, China.
| |
Collapse
|
26
|
Paryani F, Kwon JS, Ng CW, Madden N, Ofori K, Tang A, Lu H, Li J, Mahajan A, Davidson SM, Basile A, McHugh C, Vonsattel JP, Hickman R, Zody M, Houseman DE, Goldman JE, Yoo AS, Menon V, Al-Dalahmah O. Multi-OMIC analysis of Huntington disease reveals a neuroprotective astrocyte state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.08.556867. [PMID: 37745577 PMCID: PMC10515780 DOI: 10.1101/2023.09.08.556867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Huntington disease (HD) is an incurable neurodegenerative disease characterized by neuronal loss and astrogliosis. One hallmark of HD is the selective neuronal vulnerability of striatal medium spiny neurons. To date, the underlying mechanisms of this selective vulnerability have not been fully defined. Here, we employed a multi-omic approach including single nucleus RNAseq (snRNAseq), bulk RNAseq, lipidomics, HTT gene CAG repeat length measurements, and multiplexed immunofluorescence on post-mortem brain tissue from multiple brain regions of HD and control donors. We defined a signature of genes that is driven by CAG repeat length and found it enriched in astrocytic and microglial genes. Moreover, weighted gene correlation network analysis showed loss of connectivity of astrocytic and microglial modules in HD and identified modules that correlated with CAG-repeat length which further implicated inflammatory pathways and metabolism. We performed lipidomic analysis of HD and control brains and identified several lipid species that correlate with HD grade, including ceramides and very long chain fatty acids. Integration of lipidomics and bulk transcriptomics identified a consensus gene signature that correlates with HD grade and HD lipidomic abnormalities and implicated the unfolded protein response pathway. Because astrocytes are critical for brain lipid metabolism and play important roles in regulating inflammation, we analyzed our snRNAseq dataset with an emphasis on astrocyte pathology. We found two main astrocyte types that spanned multiple brain regions; these types correspond to protoplasmic astrocytes, and fibrous-like - CD44-positive, astrocytes. HD pathology was differentially associated with these cell types in a region-specific manner. One protoplasmic astrocyte cluster showed high expression of metallothionein genes, the depletion of this cluster positively correlated with the depletion of vulnerable medium spiny neurons in the caudate nucleus. We confirmed that metallothioneins were increased in cingulate HD astrocytes but were unchanged or even decreased in caudate astrocytes. We combined existing genome-wide association studies (GWAS) with a GWA study conducted on HD patients from the original Venezuelan cohort and identified a single-nucleotide polymorphism in the metallothionein gene locus associated with delayed age of onset. Functional studies found that metallothionein overexpressing astrocytes are better able to buffer glutamate and were neuroprotective of patient-derived directly reprogrammed HD MSNs as well as against rotenone-induced neuronal death in vitro. Finally, we found that metallothionein-overexpressing astrocytes increased the phagocytic activity of microglia in vitro and increased the expression of genes involved in fatty acid binding. Together, we identified an astrocytic phenotype that is regionally-enriched in less vulnerable brain regions that can be leveraged to protect neurons in HD.
Collapse
Affiliation(s)
- Fahad Paryani
- Department of Neurology, Columbia University Irving Medical Center
| | - Ji-Sun Kwon
- Washington University School of Medicine in St. Louis
| | - Chris W Ng
- Massachusetts Institute of Technology, Department of Biological Engineering
| | - Nacoya Madden
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Kenneth Ofori
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Alice Tang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Hong Lu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Juncheng Li
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Aayushi Mahajan
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Shawn M. Davidson
- Princeton University, Lewis-Sigler Institute for Integrative Genomics
| | | | | | - Jean Paul Vonsattel
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Richard Hickman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | | | - David E. Houseman
- Massachusetts Institute of Technology, Department of Biological Engineering
| | - James E. Goldman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Andrew S. Yoo
- Washington University School of Medicine in St. Louis
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center
| | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| |
Collapse
|
27
|
Wibawa P, Walterfang M, Malpas CB, Glikmann‐Johnston Y, Poudel G, Razi A, Hannan AJ, Velakoulis D, Georgiou‐Karistianis N. Selective perforant-pathway atrophy in Huntington disease: MRI analysis of hippocampal subfields. Eur J Neurol 2023; 30:2650-2660. [PMID: 37306313 PMCID: PMC10946817 DOI: 10.1111/ene.15918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/17/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
INTRODUCTION While individuals with Huntington disease (HD) show memory impairment that indicates hippocampal dysfunction, the available literature does not consistently identify structural evidence for involvement of the whole hippocampus but rather suggests that hippocampal atrophy may be confined to certain hippocampal subregions. METHODS We processed T1-weighted MRI from IMAGE-HD study using FreeSurfer 7.0 and compared the volumes of the hippocampal subfields among 36 early motor symptomatic (symp-HD), 40 pre-symptomatic (pre-HD), and 36 healthy control individuals across three timepoints over 36 months. RESULTS Mixed-model analyses revealed significantly lower subfield volumes in symp-HD, compared with pre-HD and control groups, in the subicular regions of the perforant-pathway: presubiculum, subiculum, dentate gyrus, tail, and right molecular layer. These adjoining subfields aggregated into a single principal component, which demonstrated an accelerated rate of atrophy in the symp-HD. Volumes between pre-HD and controls did not show any significant difference. In the combined HD groups, CAG repeat length and disease burden score were associated with presubiculum, molecular layer, tail, and perforant-pathway subfield volumes. Hippocampal left tail and perforant-pathway subfields were associated with motor onset in the pre-HD group. CONCLUSIONS Hippocampal subfields atrophy in early symptomatic HD affects key regions of the perforant-pathway, which may implicate the distinctive memory impairment at this stage of illness. Their volumetric associations with genetic and clinical markers suggest the selective susceptibility of these subfields to mutant Huntingtin and disease progression.
Collapse
Affiliation(s)
- Pierre Wibawa
- NeuropsychiatryRoyal Melbourne HospitalParkvilleVictoriaAustralia
- Melbourne Neuropsychiatry CenterUniversity of MelbourneParkvilleVictoriaAustralia
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
| | - Mark Walterfang
- NeuropsychiatryRoyal Melbourne HospitalParkvilleVictoriaAustralia
- Melbourne Neuropsychiatry CenterUniversity of MelbourneParkvilleVictoriaAustralia
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Charles B. Malpas
- NeuropsychiatryRoyal Melbourne HospitalParkvilleVictoriaAustralia
- Melbourne Neuropsychiatry CenterUniversity of MelbourneParkvilleVictoriaAustralia
| | - Yifat Glikmann‐Johnston
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
| | - Govinda Poudel
- Mary Mackillop Institute for Health ResearchAustralian Catholic UniversityFitzroyVictoriaAustralia
| | - Adeel Razi
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
| | - Anthony J. Hannan
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Dennis Velakoulis
- NeuropsychiatryRoyal Melbourne HospitalParkvilleVictoriaAustralia
- Melbourne Neuropsychiatry CenterUniversity of MelbourneParkvilleVictoriaAustralia
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
| | - Nellie Georgiou‐Karistianis
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
28
|
Jiang A, Handley RR, Lehnert K, Snell RG. From Pathogenesis to Therapeutics: A Review of 150 Years of Huntington's Disease Research. Int J Mol Sci 2023; 24:13021. [PMID: 37629202 PMCID: PMC10455900 DOI: 10.3390/ijms241613021] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Huntington's disease (HD) is a debilitating neurodegenerative genetic disorder caused by an expanded polyglutamine-coding (CAG) trinucleotide repeat in the huntingtin (HTT) gene. HD behaves as a highly penetrant dominant disorder likely acting through a toxic gain of function by the mutant huntingtin protein. Widespread cellular degeneration of the medium spiny neurons of the caudate nucleus and putamen are responsible for the onset of symptomology that encompasses motor, cognitive, and behavioural abnormalities. Over the past 150 years of HD research since George Huntington published his description, a plethora of pathogenic mechanisms have been proposed with key themes including excitotoxicity, dopaminergic imbalance, mitochondrial dysfunction, metabolic defects, disruption of proteostasis, transcriptional dysregulation, and neuroinflammation. Despite the identification and characterisation of the causative gene and mutation and significant advances in our understanding of the cellular pathology in recent years, a disease-modifying intervention has not yet been clinically approved. This review includes an overview of Huntington's disease, from its genetic aetiology to clinical presentation and its pathogenic manifestation. An updated view of molecular mechanisms and the latest therapeutic developments will also be discussed.
Collapse
Affiliation(s)
- Andrew Jiang
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand; (R.R.H.); (K.L.); (R.G.S.)
| | | | | | | |
Collapse
|
29
|
Tano V, Utami KH, Yusof NABM, Bégin J, Tan WWL, Pouladi MA, Langley SR. Widespread dysregulation of mRNA splicing implicates RNA processing in the development and progression of Huntington's disease. EBioMedicine 2023; 94:104720. [PMID: 37481821 PMCID: PMC10393612 DOI: 10.1016/j.ebiom.2023.104720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND In Huntington's disease (HD), a CAG repeat expansion mutation in the Huntingtin (HTT) gene drives a gain-of-function toxicity that disrupts mRNA processing. Although dysregulation of gene splicing has been shown in human HD post-mortem brain tissue, post-mortem analyses are likely confounded by cell type composition changes in late-stage HD, limiting the ability to identify dysregulation related to early pathogenesis. METHODS To investigate gene splicing changes in early HD, we performed alternative splicing analyses coupled with a proteogenomics approach to identify early CAG length-associated splicing changes in an established isogenic HD cell model. FINDINGS We report widespread neuronal differentiation stage- and CAG length-dependent splicing changes, and find an enrichment of RNA processing, neuronal function, and epigenetic modification-related genes with mutant HTT-associated splicing. When integrated with a proteomics dataset, we identified several of these differential splicing events at the protein level. By comparing with human post-mortem and mouse model data, we identified common patterns of altered splicing from embryonic stem cells through to post-mortem striatal tissue. INTERPRETATION We show that widespread splicing dysregulation in HD occurs in an early cell model of neuronal development. Importantly, we observe HD-associated splicing changes in our HD cell model that were also identified in human HD striatum and mouse model HD striatum, suggesting that splicing-associated pathogenesis possibly occurs early in neuronal development and persists to later stages of disease. Together, our results highlight splicing dysregulation in HD which may lead to disrupted neuronal function and neuropathology. FUNDING This research is supported by the Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Nanyang Assistant Professorship Start-Up Grant, the Singapore Ministry of Education under its Singapore Ministry of Education Academic Research Fund Tier 1 (RG23/22), the BC Children's Hospital Research Institute Investigator Grant Award (IGAP), and a Scholar Award from the Michael Smith Health Research BC.
Collapse
Affiliation(s)
- Vincent Tano
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Kagistia Hana Utami
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Nur Amirah Binte Mohammad Yusof
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Jocelyn Bégin
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Willy Wei Li Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore; Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Sarah R Langley
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore.
| |
Collapse
|
30
|
Ekkel MR, Veenhuizen RB, van Loon AM, Depla MFIA, Verschuur EML, Onwuteaka-Philipsen BD, Hertogh CMPM. Nursing home residents with Huntington's disease: Heterogeneity in characteristics and functioning. Brain Cogn 2023; 169:106002. [PMID: 37269816 DOI: 10.1016/j.bandc.2023.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND In Huntington's disease (HD), admission to a nursing home (NH) is required in advanced disease stages. To gain insight in care needs, more knowledge is needed on the functioning of this group. OBJECTIVE Describing patient and disease characteristics, their functioning, and gender differences. METHODS A cross-sectional descriptive design was used to collect data of 173 patients living in eight Dutch HD-specialized NHs. Data were collected on characteristics and functioning. We tested for gender differences. RESULTS Mean age was 58.3 years and 49.7% were men. Activities of daily living and cognition varied from 46 to 49% mildly impaired to 22-23% severely impaired. Communication was severely impaired in 24%. Social functioning was low in 31% and high in 34%. A majority of patients used psychotropic medications (80.3%) and showed neuropsychiatric signs (74%). Women were on average more dependent in ADL (severely impaired 33.3% vs 12.8%), more often depressed (26.4% vs 11.6%), and prescribed antidepressant medications more often (64.4% vs 48.8%) than men. CONCLUSIONS The population of HD patients in NHs is heterogeneous in terms of patient and disease characteristics, and functioning. As a consequence, care needs are complex leading to implications for the required expertise of staff to provide adequate care and treatment.
Collapse
Affiliation(s)
- Marina R Ekkel
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Medicine for Older People, Amsterdam, the Netherlands; Amsterdam Public Health, Aging & Later Life, Amsterdam, the Netherlands; Huntington Expert Centre Atlant, Apeldoorn, the Netherlands.
| | - Ruth B Veenhuizen
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Medicine for Older People, Amsterdam, the Netherlands; Amsterdam Public Health, Aging & Later Life, Amsterdam, the Netherlands; Huntington Expert Centre Atlant, Apeldoorn, the Netherlands
| | - Anouk M van Loon
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Medicine for Older People, Amsterdam, the Netherlands; Amsterdam Public Health, Aging & Later Life, Amsterdam, the Netherlands
| | - Marja F I A Depla
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Medicine for Older People, Amsterdam, the Netherlands; Amsterdam Public Health, Aging & Later Life, Amsterdam, the Netherlands
| | | | - Bregje D Onwuteaka-Philipsen
- Amsterdam Public Health, Aging & Later Life, Amsterdam, the Netherlands; Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Public and Occupational Health, Amsterdam, the Netherlands
| | - Cees M P M Hertogh
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Medicine for Older People, Amsterdam, the Netherlands; Amsterdam Public Health, Aging & Later Life, Amsterdam, the Netherlands
| |
Collapse
|
31
|
Adhikari MH, Vasilkovska T, Cachope R, Tang H, Liu L, Keliris GA, Munoz-Sanjuan I, Pustina D, Van der Linden A, Verhoye M. Longitudinal investigation of changes in resting-state co-activation patterns and their predictive ability in the zQ175 DN mouse model of Huntington's disease. Sci Rep 2023; 13:10194. [PMID: 37353500 PMCID: PMC10290061 DOI: 10.1038/s41598-023-36812-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/10/2023] [Indexed: 06/25/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by expanded (≥ 40) glutamine-encoding CAG repeats in the huntingtin gene, which leads to dysfunction and death of predominantly striatal and cortical neurons. While the genetic profile and clinical signs and symptoms of the disease are better known, changes in the functional architecture of the brain, especially before the clinical expression becomes apparent, are not fully and consistently characterized. In this study, we sought to uncover functional changes in the brain in the heterozygous (HET) zQ175 delta-neo (DN) mouse model at 3, 6, and 10 months of age, using resting-state functional magnetic resonance imaging (RS-fMRI). This mouse model shows molecular, cellular and circuitry alterations that worsen through age. Motor function disturbances are manifested in this model at 6 and 10 months of age. Specifically, we investigated, longitudinally, changes in co-activation patterns (CAPs) that are the transient states of brain activity constituting the resting-state networks (RSNs). Most robust changes in the temporal properties of CAPs occurred at the 10-months time point; the durations of two anti-correlated CAPs, characterized by simultaneous co-activation of default-mode like network (DMLN) and co-deactivation of lateral-cortical network (LCN) and vice-versa, were reduced in the zQ175 DN HET animals compared to the wild-type mice. Changes in the spatial properties, measured in terms of activation levels of different brain regions, during CAPs were found at all three ages and became progressively more pronounced at 6-, and 10 months of age. We then assessed the cross-validated predictive power of CAP metrics to distinguish HET animals from controls. Spatial properties of CAPs performed significantly better than the chance level at all three ages with 80% classification accuracy at 6 and 10 months of age.
Collapse
Affiliation(s)
- Mohit H Adhikari
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium.
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| | - Tamara Vasilkovska
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Roger Cachope
- CHDI Management for CHDI Foundation, Princeton, NJ, USA
| | - Haiying Tang
- CHDI Management for CHDI Foundation, Princeton, NJ, USA
| | - Longbin Liu
- CHDI Management for CHDI Foundation, Princeton, NJ, USA
| | - Georgios A Keliris
- Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | | | | | - Annemie Van der Linden
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
32
|
Sierra LA, Ullman CJ, Frank SA, Laganiere S. Using the LASSI-L to Detect Robust Interference Effects in Premanifest Huntington Disease. Cogn Behav Neurol 2023; 36:100-107. [PMID: 36728399 DOI: 10.1097/wnn.0000000000000329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/16/2022] [Indexed: 06/02/2023]
Abstract
BACKGROUND Diagnosis of manifest Huntington disease (HD) is based primarily on motor symptoms, but premanifest HD (preHD) is often associated with subtle cognitive decline. The Loewenstein-Acevedo Scales for Semantic Interference and Learning (LASSI-L) is a validated verbal learning test that can be used to detect early cognitive decline. OBJECTIVE To determine the utility of the LASSI-L for detecting early cognitive decline in individuals with preHD and to compare the results of the LASSI-L with those of commonly used neuropsychological tests in HD. METHOD We administered the LASSI-L to 13 individuals with preHD and 13 healthy controls matched for age, sex, and education as part of a longitudinal study of disease progression. For comparison purposes, we administered the Mini-Mental State Examination; Stroop Color and Word Test; Symbol Digit Modalities Test; Trail-Making Test, Parts A and B; and category fluency (animals) task. RESULTS Five of the seven sections on the LASSI-L captured group differences: Proactive Semantic Interference (PSI; P < 0.001), Failure to Recover From PSI ( P = 0.038), Retroactive Semantic Interference (RSI; P = 0.013), Delayed Recall ( P < 0.001), and B1 Cued Recall Intrusions ( P = 0.036). Using a false discovery rate of <0.05, PSI, RSI, and Delayed Recall remained significant. CONCLUSION The LASSI-L is a sensitive instrument for detecting early interference effects in individuals with preHD that outperforms commonly used neuropsychological tests. The LASSI-L could be a useful addition to clinical and research protocols involving individuals with preHD.
Collapse
Affiliation(s)
- Luis A Sierra
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | | |
Collapse
|
33
|
Liu AM, Koppel E, Anderson KE. Understanding the Relationship Between Perseveration, Comorbid Behavioral Symptoms, Motor Decline, Functional Decline, and Self-report Accuracy in Huntington Disease Can Help Inform Clinical Practice. Cogn Behav Neurol 2023; 36:93-99. [PMID: 36633581 DOI: 10.1097/wnn.0000000000000331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/06/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Perseveration is one of the most debilitating symptoms of Huntington disease (HD). OBJECTIVE To study perseveration and its relationship to comorbid behavioral symptoms, motor decline, functional decline, and subject self-report accuracy by analyzing cross-sectional data tracking individuals who have or are at risk for HD and healthy controls (HC). METHOD We studied 96 individuals from HD families and 35 HC who were either family controls or gene negative. We used χ 2 tests to compare patient demographic and survey outcomes data and to analyze the presence of obsessions and compulsions (OC), depression, and apathy relative to the presence of perseveration. RESULTS Individuals with HD and perseveration had a higher presence of OC, depression, and apathy compared with individuals with HD of the same stages without perseveration (19%, 47.6%, and 47.6% vs 15%, 40%, and 25%, respectively). In addition, individuals in HD Stages 1-3 with higher motor scores (showing a later stage of disease) displayed a significantly higher rate of perseveration than the HC ( P = 0.0476; P = 0.0499, respectively). The presence of an informant resulted in a significantly higher rate of perseveration reporting for individuals in HD Stages 1 and 2 (41.2% and 53.8% with informant vs 23.5% and 11.1% without informant, respectively). CONCLUSION Perseveration was seen across all motor and functional stages for the individuals with HD, without significant differences between the different stages. Additionally, informants were beneficial to obtaining accurate patient reports of perseveration. These findings should prove useful for physician evaluation and treatment considerations.
Collapse
Affiliation(s)
- Andy M Liu
- Huntington Disease Care, Education and Research Center, Georgetown Medical School, Washington, DC
| | | | | |
Collapse
|
34
|
Weiss AR, Liguore WA, Brandon K, Wang X, Liu Z, Kroenke CD, McBride JL. Alterations of fractional anisotropy throughout cortico-basal ganglia gray matter in a macaque model of Huntington's Disease. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100090. [PMID: 37397804 PMCID: PMC10313883 DOI: 10.1016/j.crneur.2023.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/14/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023] Open
Abstract
We recently generated a nonhuman primate (NHP) model of the neurodegenerative disorder Huntington's disease (HD) using adeno-associated viral vectors to express a fragment of mutant HTT protein (mHTT) throughout the cortico-basal ganglia circuit. Previous work by our group established that mHTT-treated NHPs exhibit progressive motor and cognitive phenotypes which are accompanied by mild volumetric reductions of cortical-basal ganglia structures and reduced fractional anisotropy (FA) in the white matter fiber pathways interconnecting these regions, mirroring findings observed in early-stage HD patients. Given the mild structural atrophy observed in cortical and sub-cortical gray matter regions characterized in this model using tensor-based morphometry, the current study sought to query potential microstructural alterations in the same gray matter regions using diffusion tensor imaging (DTI), to define early biomarkers of neurodegenerative processes in this model. Here, we report that mHTT-treated NHPs exhibit significant microstructural changes in several cortical and subcortical brain regions that comprise the cortico-basal ganglia circuit; with increased FA in the putamen and globus pallidus and decreased FA in the caudate nucleus and several cortical regions. DTI measures also correlated with motor and cognitive deficits such that animals with increased basal ganglia FA, and decreased cortical FA, had more severe motor and cognitive impairment. These data highlight the functional implications of microstructural changes in the cortico-basal ganglia circuit in early-stage HD.
Collapse
Affiliation(s)
- Alison R. Weiss
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA, 97006
| | - William A. Liguore
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA, 97006
| | - Kristin Brandon
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA, 97006
| | - Xiaojie Wang
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA, 97006
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, USA, 97239
| | - Zheng Liu
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA, 97006
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, USA, 97239
| | - Christopher D. Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA, 97006
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, USA, 97239
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA, 97239
| | - Jodi L. McBride
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA, 97006
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA, 97239
| |
Collapse
|
35
|
Khatoon S, Kalam N, Rashid S, Bano G. Effects of gut microbiota on neurodegenerative diseases. Front Aging Neurosci 2023; 15:1145241. [PMID: 37323141 PMCID: PMC10268008 DOI: 10.3389/fnagi.2023.1145241] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/12/2023] [Indexed: 06/17/2023] Open
Abstract
A progressive degradation of the brain's structure and function, which results in a reduction in cognitive and motor skills, characterizes neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). The morbidity linked to NDs is growing, which poses a severe threat to human being's mental and physical ability to live well. The gut-brain axis (GBA) is now known to have a crucial role in the emergence of NDs. The gut microbiota is a conduit for the GBA, a two-way communication system between the gut and the brain. The myriad microorganisms that make up the gut microbiota can affect brain physiology by transmitting numerous microbial chemicals from the gut to the brain via the GBA or neurological system. The synthesis of neurotransmitters, the immunological response, and the metabolism of lipids and glucose have all been demonstrated to be impacted by alterations in the gut microbiota, such as an imbalance of helpful and harmful bacteria. In order to develop innovative interventions and clinical therapies for NDs, it is crucial to comprehend the participation of the gut microbiota in these conditions. In addition to using antibiotics and other drugs to target particular bacterial species that may be a factor in NDs, this also includes using probiotics and other fecal microbiota transplantation to maintain a healthy gut microbiota. In conclusion, the examination of the GBA can aid in understanding the etiology and development of NDs, which may benefit the improvement of clinical treatments for these disorders and ND interventions. This review indicates existing knowledge about the involvement of microbiota present in the gut in NDs and potential treatment options.
Collapse
Affiliation(s)
- Saima Khatoon
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Nida Kalam
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gulnaz Bano
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
36
|
Lange J, Gillham O, Flower M, Ging H, Eaton S, Kapadia S, Neueder A, Duchen MR, Ferretti P, Tabrizi SJ. PolyQ length-dependent metabolic alterations and DNA damage drive human astrocyte dysfunction in Huntington’s disease. Prog Neurobiol 2023; 225:102448. [PMID: 37023937 DOI: 10.1016/j.pneurobio.2023.102448] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/03/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023]
Abstract
Huntington's Disease (HD) is a neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the Huntingtin gene. Astrocyte dysfunction is known to contribute to HD pathology, however our understanding of the molecular pathways involved is limited. Transcriptomic analysis of patient-derived PSC (pluripotent stem cells) astrocyte lines revealed that astrocytes with similar polyQ lengths shared a large number of differentially expressed genes (DEGs). Notably, weighted correlation network analysis (WGCNA) modules from iPSC derived astrocytes showed significant overlap with WGCNA modules from two post-mortem HD cohorts. Further experiments revealed two key elements of astrocyte dysfunction. Firstly, expression of genes linked to astrocyte reactivity, as well as metabolic changes were polyQ length-dependent. Hypermetabolism was observed in shorter polyQ length astrocytes compared to controls, whereas metabolic activity and release of metabolites were significantly reduced in astrocytes with increasing polyQ lengths. Secondly, all HD astrocytes showed increased DNA damage, DNA damage response and upregulation of mismatch repair genes and proteins. Together our study shows for the first time polyQ-dependent phenotypes and functional changes in HD astrocytes providing evidence that increased DNA damage and DNA damage response could contribute to HD astrocyte dysfunction.
Collapse
|
37
|
Vasilkovska T, Adhikari M, Van Audekerke J, Salajeghe S, Pustina D, Cachope R, Tang H, Liu L, Munoz-Sanjuan I, Van der Linden A, Verhoye M. Resting-state fMRI reveals longitudinal alterations in brain network connectivity in the zQ175DN mouse model of Huntington's disease. Neurobiol Dis 2023; 181:106095. [PMID: 36963694 DOI: 10.1016/j.nbd.2023.106095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023] Open
Abstract
Huntington's disease is an autosomal, dominantly inherited neurodegenerative disease caused by an expansion of the CAG repeats in exon 1 of the huntingtin gene. Neuronal degeneration and dysfunction that precedes regional atrophy result in the impairment of striatal and cortical circuits that affect the brain's large-scale network functionality. However, the evolution of these disease-driven, large-scale connectivity alterations is still poorly understood. Here we used resting-state fMRI to investigate functional connectivity changes in a mouse model of Huntington's disease in several relevant brain networks and how they are affected at different ages that follow a disease-like phenotypic progression. Towards this, we used the heterozygous (HET) form of the zQ175DN Huntington's disease mouse model that recapitulates aspects of human disease pathology. Seed- and Region-based analyses were performed at different ages, on 3-, 6-, 10-, and 12-month-old HET and age-matched wild-type mice. Our results demonstrate decreased connectivity starting at 6 months of age, most prominently in regions such as the retrosplenial and cingulate cortices, pertaining to the default mode-like network and auditory and visual cortices, part of the associative cortical network. At 12 months, we observe a shift towards decreased connectivity in regions such as the somatosensory cortices, pertaining to the lateral cortical network, and the caudate putamen, a constituent of the subcortical network. Moreover, we assessed the impact of distinct Huntington's Disease-like pathology of the zQ175DN HET mice on age-dependent connectivity between different brain regions and networks where we demonstrate that connectivity strength follows a nonlinear, inverted U-shape pattern, a well-known phenomenon of development and normal aging. Conversely, the neuropathologically driven alteration of connectivity, especially in the default mode and associative cortical networks, showed diminished age-dependent evolution of functional connectivity. These findings reveal that in this Huntington's disease model, altered connectivity starts with cortical network aberrations which precede striatal connectivity changes, that appear only at a later age. Taken together, these results suggest that the age-dependent cortical network dysfunction seen in rodents could represent a relevant pathological process in Huntington's disease progression.
Collapse
Affiliation(s)
- Tamara Vasilkovska
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium; μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| | - Mohit Adhikari
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium; μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Johan Van Audekerke
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium; μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Somaie Salajeghe
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | | | | | - Haiying Tang
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| | - Longbin Liu
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| | | | - Annemie Van der Linden
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium; μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium; μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
38
|
Horta-Barba A, Martinez-Horta S, Sampedro F, Pérez-Pérez J, Pagonabarraga J, Kulisevsky J. Structural and metabolic brain correlates of arithmetic word-problem solving in Huntington's disease. J Neurosci Res 2023; 101:990-999. [PMID: 36807154 DOI: 10.1002/jnr.25174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/03/2023] [Accepted: 01/20/2023] [Indexed: 02/22/2023]
Abstract
Individuals with pre-manifest and early symptomatic Huntington's disease (HD) have shown deficits in solving arithmetic word-problems. However, the neural correlates of these deficits in HD are poorly understood. We explored the structural (gray-matter volume; GMV) and metabolic (18F-FDG PET; SUVr) brain correlates of arithmetic performance using the recently developed HD-word problem arithmetic task (HD-WPA) in seventeen preHD and sixteen HD individuals. Symptomatic participants showed significantly lower scores in the HD-WPA than preHD participants. Lower performance in the HD-WPA was associated with reduced GMV in subcortical, medial frontal, and several posterior-cortical clusters in HD participants. No significant GMV loss was found in preHD participants. 18F-FDG data revealed a widespread pattern of hypometabolism in association with lower arithmetic performance in all participants. In preHD participants, this pattern was restricted to the ventrolateral and orbital prefrontal cortex, the insula, and the precentral gyrus. In HD participants, the pattern extended to several parietal-temporal regions. Word-problem solving arithmetic deficits in HD is subserved by a pattern of asynchronous metabolic and structural compromise across the cerebral cortex as a function of disease stage. In preHD individuals, arithmetic deficits were associated with prefrontal alterations, whereas in symptomatic HD patients, more severe arithmetic deficits are associated with the compromise of several frontal-subcortical and temporo-parietal regions. Our results support the hypothesis that cognitive deficits in HD are not exclusively dominated by frontal-striatal dysfunctions but also involve fronto-temporal and parieto-occipital damage.
Collapse
Affiliation(s)
- Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain.,European Huntington's Disease Network (EHDN), Bellaterra, Spain
| | - Saul Martinez-Horta
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain.,European Huntington's Disease Network (EHDN), Bellaterra, Spain
| | - Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jesús Pérez-Pérez
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain.,European Huntington's Disease Network (EHDN), Bellaterra, Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain.,European Huntington's Disease Network (EHDN), Bellaterra, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Bellaterra, Spain.,European Huntington's Disease Network (EHDN), Bellaterra, Spain
| |
Collapse
|
39
|
Zhang S, Cheng Y, Shang H. The updated development of blood-based biomarkers for Huntington's disease. J Neurol 2023; 270:2483-2503. [PMID: 36692635 PMCID: PMC9873222 DOI: 10.1007/s00415-023-11572-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
Huntington's disease is a progressive neurodegenerative disease caused by mutation of the huntingtin (HTT) gene. The identification of mutation carriers before symptom onset provides an opportunity to intervene in the early stage of the disease course. Optimal biomarkers are of great value to reflect neuropathological and clinical progression and are sensitive to potential disease-modifying treatments. Blood-based biomarkers have the merits of minimal invasiveness, low cost, easy accessibility and safety. In this review, we summarized the updated development of blood-based biomarkers for HD from six aspects, including neuronal injuries, oxidative stress, endocrine functions, immune reactions, metabolism and differentially expressed miRNAs. The blood-based biomarkers presented and discussed in this review were close to clinical applicability and might facilitate clinical design as surrogate endpoints. Exploration and validation of robust blood-based biomarkers require further standard and systemic study design in the future.
Collapse
Affiliation(s)
- Sirui Zhang
- grid.412901.f0000 0004 1770 1022Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China ,grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041 China ,grid.412901.f0000 0004 1770 1022West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yangfan Cheng
- grid.412901.f0000 0004 1770 1022Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China ,grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Huifang Shang
- grid.412901.f0000 0004 1770 1022Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China ,grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
40
|
Podvin S, Mosier C, Poon W, Wei E, Rossitto LA, Hook V. Dysregulation of Human Juvenile Huntington's Disease Brain Proteomes in Cortex and Putamen Involves Mitochondrial and Neuropeptide Systems. J Huntingtons Dis 2023; 12:315-333. [PMID: 38108356 DOI: 10.3233/jhd-230577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
BACKGROUND Huntington's disease (HD) is a genetic neurodegenerative disease caused by trinucleotide repeat CAG expansions in the human HTT gene. Early onset juvenile HD (JHD) in children is the most severe form of the disease caused by high CAG repeat numbers of the HTT gene. OBJECTIVE To gain understanding of human HD mechanisms hypothesized to involve dysregulated proteomes of brain regions that regulate motor and cognitive functions, this study analyzed the proteomes of human JHD cortex and putamen brain regions compared to age-matched controls. METHODS JHD and age-matched control brain tissues were assessed for CAG repeat numbers of HTT by PCR. Human brain JHD brain cortex regions of BA4 and BA6 with the putamen region (n = 5) were analyzed by global proteomics, compared to age-matched controls (n = 7). Protein interaction pathways were assessed by gene ontology (GO), STRING-db, and KEGG bioinformatics. RESULTS JHD brain tissues were heterozygous for one mutant HTT allele containing 60 to 120 CAG repeats, and one normal HTT allele with 10 to 19 CAG repeats. Proteomics data for JHD brain regions showed dysregulated mitochondrial energy pathways and changes in synaptic systems including peptide neurotransmitters. JHD compared to control proteomes of cortex and putamen displayed (a) proteins present only in JHD, (b) proteins absent in JHD, and (c) proteins that were downregulated or upregulated. CONCLUSIONS Human JHD brain cortex and putamen regions display significant dysregulation of proteomes representing deficits in mitochondrial and synaptic neurotransmission functions. These findings advance understanding of JHD brain molecular mechanisms associated with HD disabilities.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Charles Mosier
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - William Poon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Enlin Wei
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Leigh-Ana Rossitto
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
41
|
Younger DS. Neurogenetic motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:183-250. [PMID: 37562870 DOI: 10.1016/b978-0-323-98818-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Advances in the field of neurogenetics have practical applications in rapid diagnosis on blood and body fluids to extract DNA, obviating the need for invasive investigations. The ability to obtain a presymptomatic diagnosis through genetic screening and biomarkers can be a guide to life-saving disease-modifying therapy or enzyme replacement therapy to compensate for the deficient disease-causing enzyme. The benefits of a comprehensive neurogenetic evaluation extend to family members in whom identification of the causal gene defect ensures carrier detection and at-risk counseling for future generations. This chapter explores the many facets of the neurogenetic evaluation in adult and pediatric motor disorders as a primer for later chapters in this volume and a roadmap for the future applications of genetics in neurology.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
42
|
Taghian T, Gallagher J, Batcho E, Pullan C, Kuchel T, Denney T, Perumal R, Moore S, Muirhead R, Herde P, Johns D, Christou C, Taylor A, Passler T, Pulaparthi S, Hall E, Chandra S, O’Neill CA, Gray-Edwards H. Brain Alterations in Aged OVT73 Sheep Model of Huntington's Disease: An MRI Based Approach. J Huntingtons Dis 2022; 11:391-406. [PMID: 36189602 PMCID: PMC9837686 DOI: 10.3233/jhd-220526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Huntington's disease (HD) is a fatal neurodegenerative autosomal dominant disorder with prevalence of 1 : 20000 that has no effective treatment to date. Translatability of candidate therapeutics could be enhanced by additional testing in large animal models because of similarities in brain anatomy, size, and immunophysiology. These features enable realistic pre-clinical studies of biodistribution, efficacy, and toxicity. OBJECTIVE AND METHODS Here we non-invasively characterized alterations in brain white matter microstructure, neurochemistry, neurological status, and mutant Huntingtin protein (mHTT) levels in cerebrospinal fluid (CSF) of aged OVT73 HD sheep. RESULTS Similar to HD patients, CSF mHTT differentiates HD from normal sheep. Our results are indicative of a decline in neurological status, and alterations in brain white matter diffusion and spectroscopy metric that are more severe in aged female HD sheep. Longitudinal analysis of aged female HD sheep suggests that the decline is detectable over the course of a year. In line with reports of HD human studies, white matter alterations in corpus callosum correlates with a decline in gait of HD sheep. Moreover, alterations in the occipital cortex white matter correlates with a decline in clinical rating score. In addition, the marker of energy metabolism in striatum of aged HD sheep, shows a correlation with decline of clinical rating score and eye coordination. CONCLUSION This data suggests that OVT73 HD sheep can serve as a pre-manifest large animal model of HD providing a platform for pre-clinical testing of HD therapeutics and non-invasive tracking of the efficacy of the therapy.
Collapse
Affiliation(s)
- Toloo Taghian
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA,
Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jillian Gallagher
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Erin Batcho
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | - Caitlin Pullan
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Tim Kuchel
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Thomas Denney
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | - Raj Perumal
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Shamika Moore
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Robb Muirhead
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Paul Herde
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Daniel Johns
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Chris Christou
- South Australian Health and Medical Research Institute, Gillies Plains, SA, Australia
| | - Amanda Taylor
- Department of Clinical Sciences, Auburn University, Auburn, AL, USA
| | - Thomas Passler
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | - Sanjana Pulaparthi
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Erin Hall
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sundeep Chandra
- Sana Biotechnology, South San Francisco, CA, USA,Bio Marin Pharmaceutical Inc., San Rafael, CA, USA
| | | | - Heather Gray-Edwards
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA,
Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA,Correspondence to: Heather L. Gray-Edwards, DVM, PhD, University of Massachusetts Medical School, Department of Radiology and Horae Gene Therapy Center, 368 Plantation Street, ASC6-2055, Worcester, MA 01605, USA. Tel.: +1 508 856 4051; Fax: +1 508 856 1552; E-mail:
| |
Collapse
|
43
|
Plasma TDP-43 Reflects Cortical Neurodegeneration and Correlates with Neuropsychiatric Symptoms in Huntington's Disease. Clin Neuroradiol 2022; 32:1077-1085. [PMID: 35238950 DOI: 10.1007/s00062-022-01150-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/02/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Huntington's disease (HD) is a monogenic neurodegenerative disease with no effective treatment currently available. The pathological hallmark of HD is the aggregation of mutant huntingtin in the medium spiny neurons of the striatum, leading to severe subcortical atrophy. Cortical degeneration also occurs in HD from its very early stages, although its biological origin is poorly understood. Among the possible pathological mechanisms that could promote cortical damage in HD, the in vivo study of TDP-43 pathology remains to be explored, which was the main objective of this work. METHODS We investigated the clinical and structural brain correlates of plasma TDP-43 levels in a sample of 36 HD patients. Neuroimaging alterations were assessed both at the macrostructural (cortical thickness) and microstructural (intracortical diffusivity) levels. Importantly, we controlled for mutant huntingtin and tau biomarkers in order to assess the independent role of TDP-43 in HD neurodegeneration. RESULTS Plasma TDP-43 levels in HD specifically correlated with the presence and severity of apathy (p = 0.003). The TDP-43 levels also reflected cortical thinning and microstructural degeneration, especially in frontal and anterior-temporal regions (p < 0.05 corrected). These TDP-43-related brain alterations correlated, in turn, with the severity of cognitive, motor and behavioral symptoms. CONCLUSION Our results suggest that the presence of TDP-43 pathology in HD has an independent contribution to the severity of neuropsychiatric symptoms and frontotemporal degeneration. These findings point out the importance of TDP-43 as an additional pathological process to be taken into consideration in this devastating disorder.
Collapse
|
44
|
Krach F, Stemick J, Boerstler T, Weiss A, Lingos I, Reischl S, Meixner H, Ploetz S, Farrell M, Hehr U, Kohl Z, Winner B, Winkler J. An alternative splicing modulator decreases mutant HTT and improves the molecular fingerprint in Huntington's disease patient neurons. Nat Commun 2022; 13:6797. [PMID: 36357392 PMCID: PMC9649613 DOI: 10.1038/s41467-022-34419-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by poly-Q expansion in the Huntingtin (HTT) protein. Here, we delineate elevated mutant HTT (mHTT) levels in patient-derived cells including fibroblasts and iPSC derived cortical neurons using mesoscale discovery (MSD) HTT assays. HD patients' fibroblasts and cortical neurons recapitulate aberrant alternative splicing as a molecular fingerprint of HD. Branaplam is a splicing modulator currently tested in a phase II study in HD (NCT05111249). The drug lowers total HTT (tHTT) and mHTT levels in fibroblasts, iPSC, cortical progenitors, and neurons in a dose dependent manner at an IC50 consistently below 10 nM without inducing cellular toxicity. Branaplam promotes inclusion of non-annotated novel exons. Among these Branaplam-induced exons, there is a 115 bp frameshift-inducing exon in the HTT transcript. This exon is observed upon Branaplam treatment in Ctrl and HD patients leading to a profound reduction of HTT RNA and protein levels. Importantly, Branaplam ameliorates aberrant alternative splicing in HD patients' fibroblasts and cortical neurons. These findings highlight the applicability of splicing modulators in the treatment of CAG repeat disorders and decipher their molecular effects associated with the pharmacokinetic and -dynamic properties in patient-derived cellular models.
Collapse
Affiliation(s)
- Florian Krach
- grid.5330.50000 0001 2107 3311Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Judith Stemick
- grid.5330.50000 0001 2107 3311Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tom Boerstler
- grid.5330.50000 0001 2107 3311Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Ioannis Lingos
- grid.428240.80000 0004 0553 4650Evotec SE, Hamburg, Germany
| | - Stephanie Reischl
- grid.5330.50000 0001 2107 3311Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Holger Meixner
- grid.5330.50000 0001 2107 3311Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sonja Ploetz
- grid.5330.50000 0001 2107 3311Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michaela Farrell
- grid.5330.50000 0001 2107 3311Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ute Hehr
- Zentrum für Humangenetik Regensburg, Regensburg, Germany
| | - Zacharias Kohl
- grid.7727.50000 0001 2190 5763Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Beate Winner
- grid.5330.50000 0001 2107 3311Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany ,grid.5330.50000 0001 2107 3311Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Juergen Winkler
- grid.5330.50000 0001 2107 3311Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany ,grid.5330.50000 0001 2107 3311Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
45
|
Weiss AR, Liguore WA, Brandon K, Wang X, Liu Z, Domire JS, Button D, Srinivasan S, Kroenke CD, McBride JL. A novel rhesus macaque model of Huntington's disease recapitulates key neuropathological changes along with motor and cognitive decline. eLife 2022; 11:e77568. [PMID: 36205397 PMCID: PMC9545527 DOI: 10.7554/elife.77568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
We created a new nonhuman primate model of the genetic neurodegenerative disorder Huntington's disease (HD) by injecting a mixture of recombinant adeno-associated viral vectors, serotypes AAV2 and AAV2.retro, each expressing a fragment of human mutant HTT (mHTT) into the caudate and putamen of adult rhesus macaques. This modeling strategy results in expression of mutant huntingtin protein (mHTT) and aggregate formation in the injected brain regions, as well as dozens of other cortical and subcortical brain regions affected in human HD patients. We queried the disruption of cortico-basal ganglia circuitry for 30 months post-surgery using a variety of behavioral and imaging readouts. Compared to controls, mHTT-treated macaques developed working memory decline and progressive motor impairment. Multimodal imaging revealed circuit-wide white and gray matter degenerative processes in several key brain regions affected in HD. Taken together, we have developed a novel macaque model of HD that may be used to develop disease biomarkers and screen promising therapeutics.
Collapse
Affiliation(s)
- Alison R Weiss
- Division of Neuroscience, Oregon National Primate Research CenterBeavertonUnited States
| | - William A Liguore
- Division of Neuroscience, Oregon National Primate Research CenterBeavertonUnited States
| | - Kristin Brandon
- Division of Neuroscience, Oregon National Primate Research CenterBeavertonUnited States
| | - Xiaojie Wang
- Division of Neuroscience, Oregon National Primate Research CenterBeavertonUnited States
- Advanced Imaging Research Center, Oregon Health and Science UniversityPortlandUnited States
| | - Zheng Liu
- Division of Neuroscience, Oregon National Primate Research CenterBeavertonUnited States
- Advanced Imaging Research Center, Oregon Health and Science UniversityPortlandUnited States
| | - Jacqueline S Domire
- Division of Neuroscience, Oregon National Primate Research CenterBeavertonUnited States
| | - Dana Button
- Division of Neuroscience, Oregon National Primate Research CenterBeavertonUnited States
| | - Sathya Srinivasan
- Imaging and Morphology Support Core, Oregon National Primate Research CenterBeavertonUnited States
| | - Christopher D Kroenke
- Division of Neuroscience, Oregon National Primate Research CenterBeavertonUnited States
- Advanced Imaging Research Center, Oregon Health and Science UniversityPortlandUnited States
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortlandUnited States
| | - Jodi L McBride
- Division of Neuroscience, Oregon National Primate Research CenterBeavertonUnited States
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortlandUnited States
| |
Collapse
|
46
|
Jahanshahi A, Boonstra JT, Alosaimi F, Ozsoy O, Michielse S, Temel Y. Hidden brain atrophy in ultra-high-field MR images in a transgenic rat model of Huntington's disease. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
47
|
Classification of Huntington's Disease Stage with Features Derived from Structural and Diffusion-Weighted Imaging. J Pers Med 2022; 12:jpm12050704. [PMID: 35629126 PMCID: PMC9143912 DOI: 10.3390/jpm12050704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to classify Huntington’s disease (HD) stage using support vector machines and measures derived from T1- and diffusion-weighted imaging. The effects of feature selection approach and combination of imaging modalities are assessed. Fourteen premanifest-HD individuals (Pre-HD; on average > 20 years from estimated disease onset), eleven early-manifest HD (Early-HD) patients, and eighteen healthy controls (HC) participated in the study. We compared three feature selection approaches: (i) whole-brain segmented grey matter (GM; voxel-based measure) or fractional anisotropy (FA) values; (ii) GM or FA values from subcortical regions-of-interest (caudate, putamen, pallidum); and (iii) automated selection of GM or FA values with the algorithm Relief-F. We assessed single- and multi-kernel approaches to classify combined GM and FA measures. Significant classifications were achieved between Early-HD and Pre-HD or HC individuals (accuracy: generally, 85% to 95%), and between Pre-HD and controls for the feature FA of the caudate ROI (74% accuracy). The combination of GM and FA measures did not result in higher performances. We demonstrate evidence on the high sensitivity of FA for the classification of the earliest Pre-HD stages, and successful distinction between HD stages.
Collapse
|
48
|
Hickman RA, Faust PL, Marder K, Yamamoto A, Vonsattel JP. The distribution and density of Huntingtin inclusions across the Huntington disease neocortex: regional correlations with Huntingtin repeat expansion independent of pathologic grade. Acta Neuropathol Commun 2022; 10:55. [PMID: 35440014 PMCID: PMC9020040 DOI: 10.1186/s40478-022-01364-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Huntington disease is characterized by progressive neurodegeneration, especially of the striatum, and the presence of polyglutamine huntingtin (HTT) inclusions. Although HTT inclusions are most abundant in the neocortex, their neocortical distribution and density in relation to the extent of CAG repeat expansion in the HTT gene and striatal pathologic grade have yet to be formally established. We immunohistochemically studied 65 brains with a pathologic diagnosis of Huntington disease to investigate the cortical distributions and densities of HTT inclusions within the calcarine (BA17), precuneus (BA7), motor (BA4) and prefrontal (BA9) cortices; in 39 of these brains, a p62 immunostain was used for comparison. HTT inclusions predominate in the infragranular cortical layers (layers V-VI) and layer III, however, the densities of HTT inclusions across the human cerebral cortex are not uniform but are instead regionally contingent. The density of HTT and p62 inclusions (intranuclear and extranuclear) in layers V-VI increases caudally to rostrally (BA17 < BA7 < BA4 < BA9) with the median burden of HTT inclusions being 38-fold greater in the prefrontal cortex (BA9) than in the calcarine cortex (BA17). Conversely, intranuclear HTT inclusions prevail in the calcarine cortex irrespective of HTT CAG length. Neocortical HTT inclusion density correlates with CAG repeat expansion, but not with the neuropathologic grade of striatal degeneration (Vonsattel grade) or with the duration of clinical disease since motor onset. Extrapolation of these findings suggest that HTT inclusions are at a regionally-contingent, CAG-dependent, density during the advanced stages of HD. The distribution and density of HTT inclusions in HD therefore does not provide a measure of pathologic disease stage but rather infers the degree of pathogenic HTT expansion.
Collapse
Affiliation(s)
- Richard A. Hickman
- grid.51462.340000 0001 2171 9952Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Phyllis L. Faust
- grid.413734.60000 0000 8499 1112Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, 630 W 168th Street, New York, NY 10032 USA
| | - Karen Marder
- grid.21729.3f0000000419368729Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Ai Yamamoto
- grid.413734.60000 0000 8499 1112Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, 630 W 168th Street, New York, NY 10032 USA ,grid.21729.3f0000000419368729Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Jean-Paul Vonsattel
- grid.413734.60000 0000 8499 1112Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, 630 W 168th Street, New York, NY 10032 USA ,grid.239585.00000 0001 2285 2675Taub Institute for Research On Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, 710 West 168th Street, New York, NY 10032 USA
| |
Collapse
|
49
|
Kacher R, Mounier C, Caboche J, Betuing S. Altered Cholesterol Homeostasis in Huntington’s Disease. Front Aging Neurosci 2022; 14:797220. [PMID: 35517051 PMCID: PMC9063567 DOI: 10.3389/fnagi.2022.797220] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant genetic disorder caused by an expansion of the CAG repeat in the first exon of Huntingtin’s gene. The associated neurodegeneration mainly affects the striatum and the cortex at early stages and progressively spreads to other brain structures. Targeting HD at its earlier stages is under intense investigation. Numerous drugs were tested, with a rate of success of only 3.5% approved molecules used as symptomatic treatment. The restoration of cholesterol metabolism, which is central to the brain homeostasis and strongly altered in HD, could be an interesting disease-modifying strategy. Cholesterol is an essential membrane component in the central nervous system (CNS); alterations of its homeostasis have deleterious consequences on neuronal functions. The levels of several sterols, upstream of cholesterol, are markedly decreased within the striatum of HD mouse model. Transcription of cholesterol biosynthetic genes is reduced in HD cell and mouse models as well as post-mortem striatal and cortical tissues from HD patients. Since the dynamic of brain cholesterol metabolism is complex, it is essential to establish the best method to target it in HD. Cholesterol, which does not cross the blood-brain-barrier, is locally synthesized and renewed within the brain. All cell types in the CNS synthesize cholesterol during development but as they progress through adulthood, neurons down-regulate their cholesterol synthesis and turn to astrocytes for their full supply. Cellular levels of cholesterol reflect the dynamic balance between synthesis, uptake and export, all integrated into the context of the cross talk between neurons and glial cells. In this review, we describe the latest advances regarding the role of cholesterol deregulation in neuronal functions and how this could be a determinant factor in neuronal degeneration and HD progression. The pathways and major mechanisms by which cholesterol and sterols are regulated in the CNS will be described. From this overview, we discuss the main clinical strategies for manipulating cholesterol metabolism in the CNS, and how to reinstate a proper balance in HD.
Collapse
Affiliation(s)
- Radhia Kacher
- Institut du Cerveau - Paris Brain Institute (ICM), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Sorbonne Université, Paris, France
- INSERM, U1216, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Coline Mounier
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Jocelyne Caboche
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Sandrine Betuing
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
- *Correspondence: Sandrine Betuing,
| |
Collapse
|
50
|
Ramirez-Garcia G, Galvez V, Diaz R, Campos-Romo A, Fernandez-Ruiz J. Montreal Cognitive Assessment (MoCA) performance in Huntington's disease patients correlates with cortical and caudate atrophy. PeerJ 2022; 10:e12917. [PMID: 35402100 PMCID: PMC8988933 DOI: 10.7717/peerj.12917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/20/2022] [Indexed: 01/11/2023] Open
Abstract
Huntington's Disease (HD) is an autosomal neurodegenerative disease characterized by motor, cognitive, and psychiatric symptoms. Cognitive impairment develops gradually in HD patients, progressing later into a severe cognitive dysfunction. The Montreal Cognitive Assessment (MoCA) is a brief screening test commonly employed to detect mild cognitive impairment, which has also been useful to assess cognitive decline in HD patients. However, the relationship between MoCA performance and brain structural integrity in HD patients remains unclear. Therefore, to explore this relationship we analyzed if cortical thinning and subcortical nuclei volume differences correlated with HD patients' MoCA performance. Twenty-two HD patients and twenty-two healthy subjects participated in this study. T1-weighted images were acquired to analyze cortical thickness and subcortical nuclei volumes. Group comparison analysis showed a significantly lower score in the MoCA global performance of HD patients. Also, the MoCA total score correlated with cortical thinning of fronto-parietal and temporo-occipital cortices, as well as with bilateral caudate volume differences in HD patients. These results provide new insights into the effectiveness of using the MoCA test to detect cognitive impairment and the brain atrophy pattern associated with the cognitive status of prodromal/early HD patients.
Collapse
Affiliation(s)
- Gabriel Ramirez-Garcia
- Departamento de Fisiología, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
| | - Victor Galvez
- Escuela de Psicología, Universidad Panamericana, Ciudad de Mexico, Mexico
| | - Rosalinda Diaz
- Departamento de Fisiología, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
| | - Aurelio Campos-Romo
- Facultad de Medicina, Unidad Periférica de Neurociencias, Universidad Nacional Autónoma de México/Instituto Nacional de Neurologia y Neurocirugia, Ciudad de Mexico, Mexico
| | - Juan Fernandez-Ruiz
- Departamento de Fisiología, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico
| |
Collapse
|