1
|
Arce P, Lagares JI, Azcona JD, Huesa-Berral C, Burguete J. Precise dosimetric comparison between GAMOS and the collapsed cone convolution algorithm of 4D DOSE accumulated in lung SBRT treatments. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
2
|
Mariotti V, Gayol A, Pianoschi T, Mattea F, Vedelago J, Pérez P, Valente M, Alva-Sánchez M. Radiotherapy dosimetry parameters intercomparison among eight gel dosimeters by Monte Carlo simulation. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2021.109782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Bagdare P, Dubey S, Ghosh S. Dosimetric evaluation of analytic anisotropic algorithm and Acuros XB algorithm using in-house developed heterogeneous thorax phantom and homogeneous slab phantom for stereotactic body radiation therapy technique. RADIATION PROTECTION AND ENVIRONMENT 2021. [DOI: 10.4103/rpe.rpe_52_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
4
|
Galpayage Dona KNU, Shang C, Leventouri T. Dosimetric Comparison of Treatment Plans Computed With Finite Size Pencil Beam and Monte Carlo Algorithms Using the InCise™ Multileaf Collimator-Equipped Cyberknife ® System. J Med Phys 2020; 45:7-15. [PMID: 32355430 PMCID: PMC7185708 DOI: 10.4103/jmp.jmp_64_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/02/2019] [Accepted: 11/19/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose: InCise™ multileaf collimator (MLC) was introduced for CyberKnife® (CK) Robotic Radiosurgery System (CK-MLC) in 2015, and finite size pencil beam (FSPB) was the only available dose computation algorithm for treatment plans of CK-MLC system. The more advanced Monte Carlo (MC) dose calculation algorithm of lnCise™ was initially released in 2017 for the CK Precision™ treatment planning system (TPS) (v1.1) with new graphic processing unit (GPU) platform. GPU based TPS of the CK offers more accurate, faster treatment planning time and intuitive user interface with smart three-dimensional editing tools and fully automated autosegmentation tools. The MC algorithm used in CK TPS simulates the energy deposited by each individual photon and secondary particles to calculate more accurate dose. In the present study, the dose disparities between MC and FSPB algorithms for selected Stereotactic Ablative Radiation Therapy (SABR) CK-MLC treatment plans are quantified. Materials and Methods: A total of 80 CK-MLC SABR plans computed with FSPB were retrospectively reviewed and compared with MC computed results, including plans for detached lung cancer (or tumors fully surrounded by lung tissues, n = 21), nondetached lung cancer (or tumor touched the chest wall or mediastinum, n = 23), intracranial (n = 21), and pancreas lesions (n = 15). Dosimetric parameters of each planning target volume and major organs at risk (OAR) are compared in terms of normalized percentage deviations (Ndev). Results: This study revealed an average of 24.4% overestimated D95 values in plans using FSPB over MC for detached lung (n = 21) and 14.9% for nondetached lung (n = 23) lesions. No significant dose differences are found in intracranial (0.3%, n = 21) and pancreatic (0.9%, n = 15) cases. Furthermore, no significant differences were found in Ndev of OARs. Conclusion: In this study, it was found that FSPB overestimates dose to inhomogeneous treatment sites. This indicates, the employment of MC algorithm in CK-MLC-based lung SABR treatment plans is strongly suggested.
Collapse
Affiliation(s)
| | - Charles Shang
- Department of Physics, Florida Atlantic University, Boca Raton, Florida, USA.,South Florida Proton Therapy Institute, Delray Beach, Florida, USA
| | - Theodora Leventouri
- Department of Physics, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
5
|
Roberts NF, Williams M, Holloway L, Metcalfe P, Oborn BM. 4D Monte Carlo dose calculations for pre-treatment quality assurance of VMAT SBRT: a phantom-based feasibility study. Phys Med Biol 2019; 64:21NT01. [PMID: 31470421 DOI: 10.1088/1361-6560/ab3fd0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Volumetric arc therapy (VMAT) for lung stereotactic body radiotherapy (SBRT) is challenging due to both breathing-induced motion and the dynamic components of the linear accelerator. In this study, a 4D Monte Carlo (4DMC) dose calculation method for VMAT SBRT is proposed and the feasibility of the method is evaluated. A rigidly-moving lung phantom was imaged using four dimensional computed tomography (4DCT). VMAT SBRT plans were generated on the average intensity projection dataset using the internal target volume (ITV) strategy (ITV-plan) and a single phase to simulate a dynamic treatment-couch tracking technique (TRACKING-plan). 4DMC simulations were performed and compared to 3D Monte Carlo (3DMC) and 3D- and 4D- calculations in the treatment planning system using the adaptive convolution (AC) algorithm. Dose metrics calculated for the ITV-plan showed an overestimation with 3D adaptive convolution (3DAC) for D[Formula: see text] (GTV) by 3.5% and by 2.0% for 3DMC, both compared to 4DMC. The TRACKING-plan D[Formula: see text] (GTV) calculated with the 3DAC method overestimated by 2.0% compared with 4DMC. Deviations between the calculation methods for D mean (Lung) and D[Formula: see text] (PTV) were minimal. For both plans, measurements were taken with EBT3 film inside the phantom tumour. EBT3 film profiles showed good agreement with 4DMC for the TRACKING-plan giving a gamma pass rate of 97.2% for 3%/3 mm global and for 3DAC compared with measured, 95.8%. Whereas for the ITV-plan, the 3D profiles varied from film in the ITV periphery region with a pass rates of 50% and 48.6% for 3DAC and 3DMC, respectively. 4DMC agreed more closely to measurements for this plan with a pass rate of 95.8%. We have proposed an accurate method to perform 4D dose calculations for pre-treatment quality assurance of VMAT SBRT. The method was compared to experimental measurements and for both plans, 4DMC dose agreed with measurements more closely than other evaluated dose calculation methods. This study has demonstrated the feasibility of this 4DMC method.
Collapse
Affiliation(s)
- Natalia F Roberts
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia. Centre for Oncology Education and Research Translation (CONCERT), Wollongong, NSW, Australia. Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia. Author to whom correspondence should be addressed
| | | | | | | | | |
Collapse
|
6
|
Volume effects in radiosurgical spinal cord dose tolerance: how small is too small? ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s13566-018-0371-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Najafzadeh M, Nickfarjam A, Jabbari K, Markel D, Chow JCL, Takabi FS. Dosimetric verification of lung phantom calculated by collapsed cone convolution: A Monte Carlo and experimental evaluation. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2019; 27:161-175. [PMID: 30614811 DOI: 10.3233/xst-180425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To evaluate the dose calculation accuracy in the Prowess Panther treatment planning system (TPS) using the collapsed cone convolution (CCC) algorithm. METHODS The BEAMnrc Monte Carlo (MC) package was used to predict the dose distribution of photon beams produced by the Oncor® linear accelerator (linac). The MC model of an 18 MV photon beam was verified by measurement using a p-type diode dosimeter. Percent depth dose (PDD) and dose profiles were used for comparison based on three field sizes: 5×5, 10×10, and 20×20cm2. The accuracy of the CCC dosimetry was also evaluated using a plan composed of a simple parallel-opposed field (11×16cm2) in a lung phantom comprised of four tissue simulating media namely, lung, soft tissue, bone and spinal cord. The CCC dose calculation accuracy was evaluated by MC simulation and measurements according to the dose difference and 3D gamma analysis. Gamma analysis was carried out through comparison of the Monte Carlo simulation and the TPS calculated dose. RESULTS Compared to the dosimetric results measured by the Farmer chamber, the CCC algorithm underestimated dose in the planning target volume (PTV), right lung and lung-tissue interface regions by about -0.11%, -1.6 %, and -2.9%, respectively. Moreover, the CCC algorithm underestimated the dose at the PTV, right lung and lung-tissue interface regions in the order of -0.34%, -0.4% and -3.5%, respectively, when compared to the MC simulation. Gamma analysis results showed that the passing rates within the PTV and heterogeneous region were above 59% and 76%. For the right lung and spinal cord, the passing rates were above 80% for all gamma criteria. CONCLUSIONS This study demonstrates that the CCC algorithm has potential to calculate dose with sufficient accuracy for 3D conformal radiotherapy within the thorax where a significant amount of tissue heterogeneity exists.
Collapse
Affiliation(s)
- Milad Najafzadeh
- Department of Medical Physics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Radiology, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandare-Abbas, Iran
| | - Abolfzal Nickfarjam
- Department of Medical Physics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Radiotherapy Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Keyvan Jabbari
- Department of Medical Physics, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Daniel Markel
- Department of Radiation Oncology, University of Toronto and Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - James C L Chow
- Department of Radiation Oncology, University of Toronto and Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Fatemeh Shirani Takabi
- Department of Medical Physics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
8
|
Karlsson K, Lax I, Lindbäck E, Poludniowski G. Accuracy of the dose-shift approximation in estimating the delivered dose in SBRT of lung tumors considering setup errors and breathing motions. Acta Oncol 2017; 56:1189-1196. [PMID: 28388257 DOI: 10.1080/0284186x.2017.1310395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Geometrical uncertainties can result in a delivered dose to the tumor different from that estimated in the static treatment plan. The purpose of this project was to investigate the accuracy of the dose calculated to the clinical target volume (CTV) with the dose-shift approximation, in stereotactic body radiation therapy (SBRT) of lung tumors considering setup errors and breathing motion. The dose-shift method was compared with a beam-shift method with dose recalculation. MATERIAL AND METHODS Included were 10 patients (10 tumors) selected to represent a variety of SBRT-treated lung tumors in terms of tumor location, CTV volume, and tumor density. An in-house developed toolkit within a treatment planning system allowed the shift of either the dose matrix or a shift of the beam isocenter with dose recalculation, to simulate setup errors and breathing motion. Setup shifts of different magnitudes (up to 10 mm) and directions as well as breathing with different peak-to-peak amplitudes (up to 10:5:5 mm) were modeled. The resulting dose-volume histograms (DVHs) were recorded and dose statistics were extracted. RESULTS Generally, both the dose-shift and beam-shift methods resulted in calculated doses lower than the static planned dose, although the minimum (D98%) dose exceeded the prescribed dose in all cases, for setup shifts up to 5 mm. The dose-shift method also generally underestimated the dose compared with the beam-shift method. For clinically realistic systematic displacements of less than 5 mm, the results demonstrated that in the minimum dose region within the CTV, the dose-shift method was accurate to 2% (root-mean-square error). Breathing motion only marginally degraded the dose distributions. CONCLUSIONS Averaged over the patients and shift directions, the dose-shift approximation was determined to be accurate to approximately 2% (RMS) within the CTV, for clinically relevant geometrical uncertainties for SBRT of lung tumors.
Collapse
Affiliation(s)
- Kristin Karlsson
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology–Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ingmar Lax
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology–Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Elias Lindbäck
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology–Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Gavin Poludniowski
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology–Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Diwanji TP, Mohindra P, Vyfhuis M, Snider JW, Kalavagunta C, Mossahebi S, Yu J, Feigenberg S, Badiyan SN. Advances in radiotherapy techniques and delivery for non-small cell lung cancer: benefits of intensity-modulated radiation therapy, proton therapy, and stereotactic body radiation therapy. Transl Lung Cancer Res 2017; 6:131-147. [PMID: 28529896 DOI: 10.21037/tlcr.2017.04.04] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The 21st century has seen several paradigm shifts in the treatment of non-small cell lung cancer (NSCLC) in early-stage inoperable disease, definitive locally advanced disease, and the postoperative setting. A key driver in improvement of local disease control has been the significant evolution of radiation therapy techniques in the last three decades, allowing for delivery of definitive radiation doses while limiting exposure of normal tissues. For patients with locally-advanced NSCLC, the advent of volumetric imaging techniques has allowed a shift from 2-dimensional approaches to 3-dimensional conformal radiation therapy (3DCRT). The next generation of 3DCRT, intensity-modulated radiation therapy and volumetric-modulated arc therapy (VMAT), have enabled even more conformal radiation delivery. Clinical evidence has shown that this can improve the quality of life for patients undergoing definitive management of lung cancer. In the early-stage setting, conventional fractionation led to poor outcomes. Evaluation of altered dose fractionation with the previously noted technology advances led to advent of stereotactic body radiation therapy (SBRT). This technique has dramatically improved local control and expanded treatment options for inoperable, early-stage patients. The recent development of proton therapy has opened new avenues for improving conformity and the therapeutic ratio. Evolution of newer proton therapy techniques, such as pencil-beam scanning (PBS), could improve tolerability and possibly allow reexamination of dose escalation. These new progresses, along with significant advances in systemic therapies, have improved survival for lung cancer patients across the spectrum of non-metastatic disease. They have also brought to light new challenges and avenues for further research and improvement.
Collapse
Affiliation(s)
- Tejan P Diwanji
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland 21201, USA
| | - Pranshu Mohindra
- University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Melissa Vyfhuis
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland 21201, USA
| | - James W Snider
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland 21201, USA
| | - Chaitanya Kalavagunta
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland 21201, USA
| | - Sina Mossahebi
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland 21201, USA
| | - Jen Yu
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland 21201, USA
| | - Steven Feigenberg
- University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Shahed N Badiyan
- University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| |
Collapse
|
10
|
Gholampourkashi S, Vujicic M, Belec J, Cygler JE, Heath E. Experimental verification of 4D Monte Carlo simulations of dose delivery to a moving anatomy. Med Phys 2017; 44:299-310. [DOI: 10.1002/mp.12023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/25/2022] Open
Affiliation(s)
- Sara Gholampourkashi
- Carleton Laboratory for Radiotherapy Physics; Carleton University; 1125 Colonel By Drive Ottawa ON K1S 5B6 Canada
| | - Miro Vujicic
- Department of Medical Physics; The Ottawa Hospital Cancer Centre; 501 Smyth Road, Box 927 Ottawa ON K1H 8L6 Canada
| | - Jason Belec
- Department of Medical Physics; The Ottawa Hospital Cancer Centre; 501 Smyth Road, Box 927 Ottawa ON K1H 8L6 Canada
| | - Joanna E. Cygler
- Carleton Laboratory for Radiotherapy Physics; Carleton University; 1125 Colonel By Drive Ottawa ON K1S 5B6 Canada
- Department of Medical Physics; The Ottawa Hospital Cancer Centre; 501 Smyth Road, Box 927 Ottawa ON K1H 8L6 Canada
| | - Emily Heath
- Carleton Laboratory for Radiotherapy Physics; Carleton University; 1125 Colonel By Drive Ottawa ON K1S 5B6 Canada
| |
Collapse
|
11
|
Mayorga PA, Brualla L, Flühs A, Sauerwein W, Lallena AM. Testing Monte Carlo absolute dosimetry formalisms for a small field ‘D’-shaped collimator used in retinoblastoma external beam radiotherapy. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/6/065008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Hardcastle N, Oborn BM, Haworth A. On the use of a convolution-superposition algorithm for plan checking in lung stereotactic body radiation therapy. J Appl Clin Med Phys 2016; 17:99-110. [PMID: 27685114 PMCID: PMC5874108 DOI: 10.1120/jacmp.v17i5.6186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 05/09/2016] [Accepted: 04/18/2016] [Indexed: 12/31/2022] Open
Abstract
Stereotactic body radiation therapy (SBRT) aims to deliver a highly conformal ablative dose to a small target. Dosimetric verification of SBRT for lung tumors presents a challenge due to heterogeneities, moving targets, and small fields. Recent software (M3D) designed for dosimetric verification of lung SBRT treatment plans using an advanced convolution–superposition algorithm was evaluated. Ten lung SBRT patients covering a range of tumor volumes were selected. 3D CRT plans were created using the XiO treatment planning system (TPS) with the superposition algorithm. Dose was recalculated in the Eclipse TPS using the AAA algorithm, M3D verification software using the collapsed‐cone‐convolution algorithm, and in‐house Monte Carlo (MC). Target point doses were calculated with RadCalc software. Near‐maximum, median, and near‐minimum target doses, conformity indices, and lung doses were compared with MC as the reference calculation. M3D 3D gamma passing rates were compared with the XiO and Eclipse. Wilcoxon signed‐rank test was used to compare each calculation method with XiO with a threshold of significance of p<0.05. M3D and RadCalc point dose calculations were greater than MC by up to 7.7% and 13.1%, respectively, with M3D being statistically significant (s.s.). AAA and XiO calculated point doses were less than MC by 11.3% and 5.2%, respectively (AAA s.s.). Median and near‐minimum and near‐maximum target doses were less than MC when calculated with AAA and XiO (all s.s.). Near‐maximum and median target doses were higher with M3D compared with MC (s.s.), but there was no difference in near‐minimum M3D doses compared with MC. M3D‐calculated ipsilateral lung V20 Gy and V5 Gy were greater than that calculated with MC (s.s.); AAA‐ and XiO‐calculated V20 Gy was lower than that calculated with MC, but not statistically different to MC for V5 Gy. Nine of the 10 plans achieved M3D gamma passing rates greater than 95% and 80%for 5%/1 mm and 3%/1 mm criteria, respectively. M3D typically calculated a higher target and lung dose than MC for lung SBRT plans. The results show a range of calculated doses with different algorithms and suggest that M3D is in closer agreement with Monte Carlo, thus discrepancies between the TPS and M3D software will be observed for lung SBRT plans. M3D provides a useful supplement to verification of lung SBRT plans by direct measurement, which typically excludes patient specific heterogeneities. PACS number(s): 87.55.D‐, 87.55.Qr, 87.55.K‐
Collapse
|
13
|
Zheng D, Zhu X, Zhang Q, Liang X, Zhen W, Lin C, Verma V, Wang S, Wahl A, Lei Y, Zhou S, Zhang C. Target dose conversion modeling from pencil beam (PB) to Monte Carlo (MC) for lung SBRT. Radiat Oncol 2016; 11:83. [PMID: 27316922 PMCID: PMC4912806 DOI: 10.1186/s13014-016-0661-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/15/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND A challenge preventing routine clinical implementation of Monte Carlo (MC)-based lung SBRT is the difficulty of reinterpreting historical outcome data calculated with inaccurate dose algorithms, because the target dose was found to decrease to varying degrees when recalculated with MC. The large variability was previously found to be affected by factors such as tumour size, location, and lung density, usually through sub-group comparisons. We hereby conducted a pilot study to systematically and quantitatively analyze these patient factors and explore accurate target dose conversion models, so that large-scale historical outcome data can be correlated with more accurate MC dose without recalculation. METHODS Twenty-one patients that underwent SBRT for early-stage lung cancer were replanned with 6MV 360° dynamic conformal arcs using pencil-beam (PB) and recalculated with MC. The percent D95 difference (PB-MC) was calculated for the PTV and GTV. Using single linear regression, this difference was correlated with the following quantitative patient indices: maximum tumour diameter (MaxD); PTV and GTV volumes; minimum distance from tumour to soft tissue (dmin); and mean density and standard deviation of the PTV, GTV, PTV margin, lung, and 2 mm, 15 mm, 50 mm shells outside the PTV. Multiple linear regression and artificial neural network (ANN) were employed to model multiple factors and improve dose conversion accuracy. RESULTS Single linear regression with PTV D95 deficiency identified the strongest correlation on mean-density (location) indices, weaker on lung density, and the weakest on size indices, with the following R(2) values in decreasing orders: shell2mm (0.71), PTV (0.68), PTV margin (0.65), shell15mm (0.62), shell50mm (0.49), lung (0.40), dmin (0.22), GTV (0.19), MaxD (0.17), PTV volume (0.15), and GTV volume (0.08). A multiple linear regression model yielded the significance factor of 3.0E-7 using two independent features: mean density of shell2mm (P = 1.6E-7) and PTV volume (P = 0.006). A 4-feature ANN model slightly improved the modeling accuracy. CONCLUSION Quantifiable density features were proposed, replacing simple central/peripheral location designation, which showed strong correlations with PB-to-MC target dose conversion magnitude, followed by lung density and target size. Density in the immediate outer and inner areas of the PTV showed the strongest correlations. A multiple linear regression model with one such feature and PTV volume established a high significance factor, improving dose conversion accuracy.
Collapse
Affiliation(s)
- Dandan Zheng
- />Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE USA
| | - Xiaofeng Zhu
- />Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE USA
| | - Qinghui Zhang
- />Department of Radiation Medicine, Northwell Health, New York, NY USA
| | - Xiaoying Liang
- />University of Florida Health Proton Therapy Institute, Jacksonville, FL USA
| | - Weining Zhen
- />Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE USA
| | - Chi Lin
- />Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE USA
| | - Vivek Verma
- />Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE USA
| | - Shuo Wang
- />Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE USA
| | - Andrew Wahl
- />Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE USA
| | - Yu Lei
- />Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE USA
| | - Sumin Zhou
- />Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE USA
| | - Chi Zhang
- />School of Biological Sciences, University of Nebraska Lincoln, 1901 Vine Street, Lincoln, NE 68588-0660 USA
| |
Collapse
|
14
|
Ruben J, Seeley A, Panettieri V, Ackerly T. Variation in Lung Tumour Breathing Motion between Planning Four-dimensional Computed Tomography and Stereotactic Ablative Radiotherapy Delivery and its Dosimetric Implications: Any Role for Four-dimensional Set-up Verification? Clin Oncol (R Coll Radiol) 2016; 28:21-7. [DOI: 10.1016/j.clon.2015.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/06/2015] [Accepted: 08/25/2015] [Indexed: 12/13/2022]
|
15
|
Li Y, Tian Z, Shi F, Song T, Wu Z, Liu Y, Jiang S, Jia X. A new Monte Carlo-based treatment plan optimization approach for intensity modulated radiation therapy. Phys Med Biol 2015; 60:2903-19. [DOI: 10.1088/0031-9155/60/7/2903] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Cal-González J, Lage E, Herranz E, Vicente E, Udias JM, Moore SC, Park MA, Dave SR, Parot V, Herraiz JL. Simulation of triple coincidences in PET. Phys Med Biol 2015; 60:117-36. [PMID: 25479147 DOI: 10.1088/0031-9155/60/1/117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although current PET scanners are designed and optimized to detect double coincidence events, there is a significant amount of triple coincidences in any PET acquisition. Triple coincidences may arise from causes such as: inter-detector scatter (IDS), random triple interactions (RT), or the detection of prompt gamma rays in coincidence with annihilation photons when non-pure positron-emitting radionuclides are used (β(+)γ events). Depending on the data acquisition settings of the PET scanner, these triple events are discarded or processed as a set of double coincidences if the energy of the three detected events is within the scanner's energy window. This latter option introduces noise in the data, as at most, only one of the possible lines-of-response defined by triple interactions corresponds to the line along which the decay occurred. Several novel works have pointed out the possibility of using triple events to increase the sensitivity of PET scanners or to expand PET imaging capabilities by allowing differentiation between radiotracers labeled with non-pure and pure positron-emitting radionuclides. In this work, we extended the Monte Carlo simulator PeneloPET to assess the proportion of triple coincidences in PET acquisitions and to evaluate their possible applications. We validated the results of the simulator against experimental data acquired with a modified version of a commercial preclinical PET/CT scanner, which was enabled to acquire and process triple-coincidence events. We used as figures of merit the energy spectra for double and triple coincidences and the triples-to-doubles ratio for different energy windows and radionuclides. After validation, the simulator was used to predict the relative quantity of triple-coincidence events in two clinical scanners assuming different acquisition settings. Good agreement between simulations and preclinical experiments was found, with differences below 10% for most of the observables considered. For clinical scanners and pure positron emitters, we found that around 10% of the processed double events come from triple coincidences, increasing this ratio substantially for non-pure emitters (around 25% for (124)I and > 50% for (86)Y). For radiotracers labeled with (18)F we found that the relative quantity of IDS events in standard acquisitions is around 18% for the preclinical scanner and between 14 and 22% for the clinical scanners. For non-pure positron emitters like (124)I, we found a β(+)γ triples-to-doubles ratio of 2.5% in the preclinical scanner and of up to 4% in the clinical scanners.
Collapse
Affiliation(s)
- J Cal-González
- Grupo de Física Nuclear, Dpto. de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, CEI Moncloa, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cal-González J, Lage E, Herranz E, Vicente E, Udias JM, Moore SC, Park MA, Dave SR, Parot V, Herraiz JL. Simulation of triple coincidences in PET. Phys Med Biol 2014. [DOI: https://doi.org/10.1088/0031-9155/60/1/117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Chen WZ, Xiao Y, Li J. Impact of dose calculation algorithm on radiation therapy. World J Radiol 2014; 6:874-880. [PMID: 25431642 PMCID: PMC4241494 DOI: 10.4329/wjr.v6.i11.874] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/04/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023] Open
Abstract
The quality of radiation therapy depends on the ability to maximize the tumor control probability while minimize the normal tissue complication probability. Both of these two quantities are directly related to the accuracy of dose distributions calculated by treatment planning systems. The commonly used dose calculation algorithms in the treatment planning systems are reviewed in this work. The accuracy comparisons among these algorithms are illustrated by summarizing the highly cited research papers on this topic. Further, the correlation between the algorithms and tumor control probability/normal tissue complication probability values are manifested by several recent studies from different groups. All the cases demonstrate that dose calculation algorithms play a vital role in radiation therapy.
Collapse
|
19
|
Stereotactic body radiotherapy for small lung tumors in the University of Tokyo Hospital. BIOMED RESEARCH INTERNATIONAL 2014; 2014:136513. [PMID: 25110653 PMCID: PMC4109604 DOI: 10.1155/2014/136513] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/03/2014] [Accepted: 06/18/2014] [Indexed: 01/08/2023]
Abstract
Our work on stereotactic body radiation therapy (SBRT) for primary and metastatic lung tumors will be described. The eligibility criteria for SBRT, our previous SBRT method, the definition of target volume, heterogeneity correction, the position adjustment using four-dimensional cone-beam computed tomography (4D CBCT) immediately before SBRT, volumetric modulated arc therapy (VMAT) method for SBRT, verifying of tumor position within internal target volume (ITV) using in-treatment 4D-CBCT during VMAT-SBRT, shortening of treatment time using flattening-filter-free (FFF) techniques, delivery of 4D dose calculation for lung-VMAT patients using in-treatment CBCT and LINAC log data with agility multileaf collimator, and SBRT method for centrally located lung tumors in our institution will be shown. In our institution, these efforts have been made with the goal of raising the local control rate and decreasing adverse effects after SBRT.
Collapse
|
20
|
Haga A, Magome T, Takenaka S, Imae T, Sakumi A, Nomoto A, Igaki H, Shiraishi K, Yamashita H, Ohtomo K, Nakagawa K. Independent absorbed-dose calculation using the Monte Carlo algorithm in volumetric modulated arc therapy. Radiat Oncol 2014; 9:75. [PMID: 24625221 PMCID: PMC3995553 DOI: 10.1186/1748-717x-9-75] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 03/07/2014] [Indexed: 01/24/2023] Open
Abstract
Purpose To report the result of independent absorbed-dose calculations based on a Monte Carlo (MC) algorithm in volumetric modulated arc therapy (VMAT) for various treatment sites. Methods and materials All treatment plans were created by the superposition/convolution (SC) algorithm of SmartArc (Pinnacle V9.2, Philips). The beam information was converted into the format of the Monaco V3.3 (Elekta), which uses the X-ray voxel-based MC (XVMC) algorithm. The dose distribution was independently recalculated in the Monaco. The dose for the planning target volume (PTV) and the organ at risk (OAR) were analyzed via comparisons with those of the treatment plan. Before performing an independent absorbed-dose calculation, the validation was conducted via irradiation from 3 different gantry angles with a 10- × 10-cm2 field. For the independent absorbed-dose calculation, 15 patients with cancer (prostate, 5; lung, 5; head and neck, 3; rectal, 1; and esophageal, 1) who were treated with single-arc VMAT were selected. To classify the cause of the dose difference between the Pinnacle and Monaco TPSs, their calculations were also compared with the measurement data. Result In validation, the dose in Pinnacle agreed with that in Monaco within 1.5%. The agreement in VMAT calculations between Pinnacle and Monaco using phantoms was exceptional; at the isocenter, the difference was less than 1.5% for all the patients. For independent absorbed-dose calculations, the agreement was also extremely good. For the mean dose for the PTV in particular, the agreement was within 2.0% in all the patients; specifically, no large difference was observed for high-dose regions. Conversely, a significant difference was observed in the mean dose for the OAR. For patients with prostate cancer, the mean rectal dose calculated in Monaco was significantly smaller than that calculated in Pinnacle. Conclusions There was no remarkable difference between the SC and XVMC calculations in the high-dose regions. The difference observed in the low-dose regions may have arisen from various causes such as the intrinsic dose deviation in the MC calculation, modeling accuracy, and CT-to-density table used in each planning system It is useful to perform independent absorbed-dose calculations with the MC algorithm in intensity-modulated radiation therapy commissioning.
Collapse
Affiliation(s)
- Akihiro Haga
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Altunbas C, Kavanagh B, Dzingle W, Stuhr K, Gaspar L, Miften M. Dosimetric errors during treatment of centrally located lung tumors with stereotactic body radiation therapy: Monte Carlo evaluation of tissue inhomogeneity corrections. Med Dosim 2013; 38:436-41. [PMID: 24119416 DOI: 10.1016/j.meddos.2013.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 11/30/2012] [Accepted: 06/05/2013] [Indexed: 10/26/2022]
Abstract
Early experience with stereotactic body radiation therapy (SBRT) of centrally located lung tumors indicated increased rate of high-grade toxicity in the lungs. These clinical results were based on treatment plans that were computed using pencil beam-like algorithms and without tissue inhomogeneity corrections. In this study, we evaluated the dosimetric errors in plans with and without inhomogeneity corrections and with planning target volumes (PTVs) that were within the zone of the proximal bronchial tree (BT). For 10 patients, the PTV, lungs, and sections of the BT either inside or within 2cm of the PTV were delineated. Two treatment plans were generated for each patient using the following dose-calculation methods: (1) pencil beam (PB) algorithm without inhomogeneity correction (IC) (PB - IC) and (2) PB with inhomogeneity correction (PB + IC). Both plans had identical beam geometry but different beam segment shapes and monitor units (MU) to achieve similar conformal dose coverage of PTV. To obtain the baseline dose distributions, each plan was recalculated using a Monte Carlo (MC) algorithm by keeping MUs the same in the respective plans. The median maximum dose to the proximal BT and PTV dose coverage in the PB + IC plans were overestimated by 8% and 11%, respectively. However, the median maximum dose to the proximal BT and PTV dose coverage in PB - IC plans were underestimated by 15% and 9%. Similar trends were observed in low-dose regions of the lung within the irradiated volume. Our study indicates that dosimetric bias introduced by unit tissue density plans cannot be characterized as underestimation or overestimation of dose without taking the tumor location into account. This issue should be considered when analyzing clinical toxicity data from early lung SBRT trials that utilized unit tissue density for dose calculations.
Collapse
Affiliation(s)
- Cem Altunbas
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO.
| | | | | | | | | | | |
Collapse
|
22
|
Moiseenko V, Liu M, Loewen S, Kosztyla R, Vollans E, Lucido J, Fong M, Vellani R, Popescu IA. Monte Carlo calculation of dose distributions in oligometastatic patients planned for spine stereotactic ablative radiotherapy. Phys Med Biol 2013; 58:7107-16. [DOI: 10.1088/0031-9155/58/20/7107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Disher B, Hajdok G, Gaede S, Mulligan M, Battista JJ. Forcing lateral electron disequilibrium to spare lung tissue: a novel technique for stereotactic body radiation therapy of lung cancer. Phys Med Biol 2013; 58:6641-62. [PMID: 24018569 DOI: 10.1088/0031-9155/58/19/6641] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Stereotactic body radiation therapy (SBRT) has quickly become a preferred treatment option for early-stage lung cancer patients who are ineligible for surgery. This technique uses tightly conformed megavoltage (MV) x-ray beams to irradiate a tumour with ablative doses in only a few treatment fractions. Small high energy x-ray fields can cause lateral electron disequilibrium (LED) to occur within low density media, which can reduce tumour dose. These dose effects may be challenging to predict using analytic dose calculation algorithms, especially at higher beam energies. As a result, previous authors have suggested using low energy photons (<10 MV) and larger fields (>5 × 5 cm(2)) for lung cancer patients to avoid the negative dosimetric effects of LED. In this work, we propose a new form of SBRT, described as LED-optimized SBRT (LED-SBRT), which utilizes radiotherapy (RT) parameters designed to cause LED to advantage. It will be shown that LED-SBRT creates enhanced dose gradients at the tumour/lung interface, which can be used to manipulate tumour dose, and/or normal lung dose. To demonstrate the potential benefits of LED-SBRT, the DOSXYZnrc (National Research Council of Canada, Ottawa, ON) Monte Carlo (MC) software was used to calculate dose within a cylindrical phantom and a typical lung patient. 6 MV or 18 MV x-ray fields were focused onto a small tumour volume (diameter ∼1 cm). For the phantom, square fields of 1 × 1 cm(2), 3 × 3 cm(2), or 5 × 5 cm(2) were applied. However, in the patient, 3 × 1 cm(2), 3 × 2 cm(2), 3 × 2.5 cm(2), or 3 × 3 cm(2) field sizes were used in simulations to assure target coverage in the superior-inferior direction. To mimic a 180° SBRT arc in the (symmetric) phantom, a single beam profile was calculated, rotated, and beams were summed at 1° segments to accumulate an arc dose distribution. For the patient, a 360° arc was modelled with 36 equally weighted (and spaced) fields focused on the tumour centre. A planning target volume (PTV) was generated by considering the extent of tumour motion over the patient's breathing cycle and set-up uncertainties. All patient dose results were normalized such that at least 95% of the PTV received at least 54 Gy (i.e. D95 = 54 Gy). Further, we introduce 'LED maps' as a novel clinical tool to compare the magnitude of LED resulting from the various SBRT arc plans. Results from the phantom simulation suggest that the best lung sparing occurred for RT parameters that cause severe LED. For equal tumour dose coverage, normal lung dose (2 cm outside the target region) was reduced from 92% to 23%, comparing results between the 18 MV (5 × 5 cm(2)) and 18 MV (1 × 1 cm(2)) arc simulations. In addition to reduced lung dose for the 18 MV (1 × 1 cm(2)) arc, maximal tumour dose increased beyond 125%. Thus, LED can create steep dose gradients to spare normal lung, while increasing tumour dose levels (if desired). In the patient simulation, a LED-optimized arc plan was designed using either 18 MV (3 × 1 cm(2)) or 6 MV (3 × 3cm(2)) beams. Both plans met the D95 dose coverage requirement for the target. However, the LED-optimized plan increased the maximum, mean, and minimum dose within the PTV by as much as 80 Gy, 11 Gy, and 3 Gy, respectively. Despite increased tumour dose levels, the 18 MV (3 × 1 cm(2)) arc plan improved or maintained the V20, V5, and mean lung dose metrics compared to the 6 MV (3 × 3 cm(2)) simulation. We conclude that LED-SBRT has the potential to increase dose gradients, and dose levels within a small lung tumour. The magnitude of tumour dose increase or lung sparing can be optimized through manipulation of RT parameters (e.g. beam energy and field size).
Collapse
Affiliation(s)
- Brandon Disher
- Department of Physics and Engineering, London Regional Cancer Program, London Health Sciences Centre, 790 Commissioners Road East, London, Ontario, N6A 4L6, Canada. Department of Medical Biophysics, Western University, Schulich School of Medicine and Dentistry, London, Ontario, N6A 5C1, Canada
| | | | | | | | | |
Collapse
|
24
|
Cal-González J, Herraiz JL, España S, Corzo PMG, Vaquero JJ, Desco M, Udias JM. Positron range estimations with PeneloPET. Phys Med Biol 2013; 58:5127-52. [PMID: 23835700 DOI: 10.1088/0031-9155/58/15/5127] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Technical advances towards high resolution PET imaging try to overcome the inherent physical limitations to spatial resolution. Positrons travel in tissue until they annihilate into the two gamma photons detected. This range is the main detector-independent contribution to PET imaging blurring. To a large extent, it can be remedied during image reconstruction if accurate estimates of positron range are available. However, the existing estimates differ, and the comparison with the scarce experimental data available is not conclusive. In this work we present positron annihilation distributions obtained from Monte Carlo simulations with the PeneloPET simulation toolkit, for several common PET isotopes ((18)F, (11)C, (13)N, (15)O, (68)Ga and (82)Rb) in different biological media (cortical bone, soft bone, skin, muscle striated, brain, water, adipose tissue and lung). We compare PeneloPET simulations against experimental data and other simulation results available in the literature. To this end the different positron range representations employed in the literature are related to each other by means of a new parameterization for positron range profiles. Our results are generally consistent with experiments and with most simulations previously reported with differences of less than 20% in the mean and maximum range values. From these results, we conclude that better experimental measurements are needed, especially to disentangle the effect of positronium formation in positron range. Finally, with the aid of PeneloPET, we confirm that scaling approaches can be used to obtain universal, material and isotope independent, positron range profiles, which would considerably simplify range correction.
Collapse
Affiliation(s)
- J Cal-González
- Grupo de Física Nuclear, Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, CEI Moncloa, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Cal-González J, Herraiz JL, España S, Corzo PMG, Vaquero JJ, Desco M, Udias JM. Positron range estimations with PeneloPET. Phys Med Biol 2013. [DOI: https://doi.org/10.1088/0031-9155/58/15/5127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Kry SF, Alvarez P, Molineu A, Amador C, Galvin J, Followill DS. Algorithms used in heterogeneous dose calculations show systematic differences as measured with the Radiological Physics Center's anthropomorphic thorax phantom used for RTOG credentialing. Int J Radiat Oncol Biol Phys 2013; 85:e95-100. [PMID: 23237006 DOI: 10.1016/j.ijrobp.2012.08.039] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 08/24/2012] [Accepted: 08/29/2012] [Indexed: 12/01/2022]
Abstract
PURPOSE To determine the impact of treatment planning algorithm on the accuracy of heterogeneous dose calculations in the Radiological Physics Center (RPC) thorax phantom. METHODS AND MATERIALS We retrospectively analyzed the results of 304 irradiations of the RPC thorax phantom at 221 different institutions as part of credentialing for Radiation Therapy Oncology Group clinical trials; the irradiations were all done using 6-MV beams. Treatment plans included those for intensity-modulated radiation therapy (IMRT) as well as 3-dimensional conformal therapy (3D-CRT). Heterogeneous plans were developed using Monte Carlo (MC), convolution/superposition (CS), and the anisotropic analytic algorithm (AAA), as well as pencil beam (PB) algorithms. For each plan and delivery, the absolute dose measured in the center of a lung target was compared to the calculated dose, as was the planar dose in 3 orthogonal planes. The difference between measured and calculated dose was examined as a function of planning algorithm as well as use of IMRT. RESULTS PB algorithms overestimated the dose delivered to the center of the target by 4.9% on average. Surprisingly, CS algorithms and AAA also showed a systematic overestimation of the dose to the center of the target, by 3.7% on average. In contrast, the MC algorithm dose calculations agreed with measurement within 0.6% on average. There was no difference observed between IMRT and 3D CRT calculation accuracy. CONCLUSION Unexpectedly, advanced treatment planning systems (those using CS and AAA algorithms) overestimated the dose that was delivered to the lung target. This issue requires attention in terms of heterogeneity calculations and potentially in terms of clinical practice.
Collapse
Affiliation(s)
- Stephen F Kry
- Radiological Physics Center, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Zimmermann F, Mosna-Firlejczyk K, Papachristofilou A, Groß M. Results of stereotactic radiotherapy for stage I non-small-cell lung cancer: is there a need for image guidance and highly sophisticated devices? Lung Cancer Manag 2012. [DOI: 10.2217/lmt.12.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY In stage I non-small-cell lung cancer, stereotactic body radiation therapy achieves a local control of 90%, by accurate dose delivery with stereotactic beam navigation and/or image-guided techniques, and extremely dose-escalated hypofractionated radiotherapy. Three-to-ten fractions over 1–2 weeks or one single fraction as radiosurgery are used. A broad spectrum of different techniques have also been introduced, some encouraged by electric companies, and heavily commercialized by institutions and physicians. Although a direct comparison of these techniques has been carried out only in technical and not within clinical trials; clinical data from the few prospective Phase I and II trials and the majority of retrospective evaluations have not shown superiority of either technique. Based on personal experiences, there are nearly no limitations for the use of very simple and cheap techniques, and the broad and increasing disposition of dedicated systems is questionable.
Collapse
Affiliation(s)
- Frank Zimmermann
- Clinic of Radiation Oncology, Petersgraben 4, University Hospital, University Basel, 4031 Basel, Switzerland
| | - Katarzyna Mosna-Firlejczyk
- Clinic of Radiation Oncology, Petersgraben 4, University Hospital, University Basel, 4031 Basel, Switzerland
| | - Alexandros Papachristofilou
- Clinic of Radiation Oncology, Petersgraben 4, University Hospital, University Basel, 4031 Basel, Switzerland
| | - Markus Groß
- Clinic of Radiation Oncology, Petersgraben 4, University Hospital, University Basel, 4031 Basel, Switzerland
| |
Collapse
|
28
|
Narabayashi M, Mizowaki T, Matsuo Y, Nakamura M, Takayama K, Norihisa Y, Sakanaka K, Hiraoka M. Dosimetric evaluation of the impacts of different heterogeneity correction algorithms on target doses in stereotactic body radiation therapy for lung tumors. JOURNAL OF RADIATION RESEARCH 2012; 53:777-84. [PMID: 22843364 PMCID: PMC3430415 DOI: 10.1093/jrr/rrs026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/16/2012] [Accepted: 05/07/2012] [Indexed: 06/01/2023]
Abstract
Heterogeneity correction algorithms can have a large impact on the dose distributions of stereotactic body radiation therapy (SBRT) for lung tumors. Treatment plans of 20 patients who underwent SBRT for lung tumors with the prescribed dose of 48 Gy in four fractions at the isocenter were reviewed retrospectively and recalculated with different heterogeneity correction algorithms: the pencil beam convolution algorithm with a Batho power-law correction (BPL) in Eclipse, the radiological path length algorithm (RPL), and the X-ray Voxel Monte Carlo algorithm (XVMC) in iPlan. The doses at the periphery (minimum dose and D95) of the planning target volume (PTV) were compared using the same monitor units among the three heterogeneity correction algorithms, and the monitor units were compared between two methods of dose prescription, that is, an isocenter dose prescription (IC prescription) and dose-volume based prescription (D95 prescription). Mean values of the dose at the periphery of the PTV were significantly lower with XVMC than with BPL using the same monitor units (P < 0.001). In addition, under IC prescription using BPL, RPL and XVMC, the ratios of mean values of monitor units were 1, 0.959 and 0.986, respectively. Under D95 prescription, they were 1, 0.937 and 1.088, respectively. These observations indicated that the application of XVMC under D95 prescription results in an increase in the actually delivered dose by 8.8% on average compared with the application of BPL. The appropriateness of switching heterogeneity correction algorithms and dose prescription methods should be carefully validated from a clinical viewpoint.
Collapse
Affiliation(s)
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Seppala J, Suilamo S, Kulmala J, Mali P, Minn H. A dosimetric phantom study of dose accuracy and build-up effects using IMRT and RapidArc in stereotactic irradiation of lung tumours. Radiat Oncol 2012; 7:79. [PMID: 22647680 PMCID: PMC3403858 DOI: 10.1186/1748-717x-7-79] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/31/2012] [Indexed: 11/26/2022] Open
Abstract
Background and purpose Stereotactic lung radiotherapy (SLRT) has emerged as a curative treatment for medically inoperable patients with early-stage non-small cell lung cancer (NSCLC) and the use of intensity-modulated radiotherapy (IMRT) and volumetric modulated arc treatments (VMAT) have been proposed as the best practical approaches for the delivery of SLRT. However, a large number of narrow field shapes are needed in the dose delivery of intensity-modulated techniques and the probability of underdosing the tumour periphery increases as the effective field size is decreased. The purpose of this study was to evaluate small lung tumour doses irradiated by intensity-modulated techniques to understand the risk for dose calculation errors in precision radiotherapy such as SLRT. Materials and methods The study was executed with two heterogeneous phantoms with targets of Ø1.5 and Ø4.0 cm. Dose distributions in the simulated tumours delivered by small sliding window apertures (SWAs), IMRT and RapidArc treatment plans were measured with radiochromic film. Calculation algorithms of pencil beam convolution (PBC) and anisotropic analytic algorithm (AAA) were used to calculate the corresponding dose distributions. Results Peripheral doses of the tumours were decreased as SWA decreased, which was not modelled by the calculation algorithms. The smallest SWA studied was 2 mm, which reduced the 90% isodose line width by 4.2 mm with the Ø4.0 cm tumour as compared to open field irradiation. PBC was not able to predict the dose accurately as the gamma evaluation failed to meet the criteria of ±3%/±1 mm on average in 61% of the defined volume with the smaller tumour. With AAA the corresponding value was 16%. The dosimetric inaccuracy of AAA was within ±3% with the optimized treatment plans of IMRT and RapidArc. The exception was the clinical RapidArc plan with dose overestimation of 4%. Conclusions Overall, the peripheral doses of the simulated lung tumours were decreased by decreasing the SWA. To achieve adequate surface dose coverage to small lung tumours with a difference less than 1 mm in the isodose line radius between the open and modulated field, a larger than 6 mm SWA should be used in the dose delivery of SLRT.
Collapse
Affiliation(s)
- Jan Seppala
- Department of Oncology and Radiotherapy, Turku University Hospital, POB 52, 20521 Turku, Finland.
| | | | | | | | | |
Collapse
|
30
|
Disher B, Hajdok G, Gaede S, Battista JJ. An in-depth Monte Carlo study of lateral electron disequilibrium for small fields in ultra-low density lung: implications for modern radiation therapy. Phys Med Biol 2012; 57:1543-59. [DOI: 10.1088/0031-9155/57/6/1543] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Li J, Galvin J, Harrison A, Timmerman R, Yu Y, Xiao Y. Dosimetric verification using monte carlo calculations for tissue heterogeneity-corrected conformal treatment plans following RTOG 0813 dosimetric criteria for lung cancer stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 2012; 84:508-13. [PMID: 22365630 DOI: 10.1016/j.ijrobp.2011.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 11/23/2011] [Accepted: 11/29/2011] [Indexed: 12/11/2022]
Abstract
PURPOSE The recently activated Radiation Therapy Oncology Group (RTOG) studies of stereotactic body radiation therapy (SBRT) for non-small-cell lung cancer (NSCLC) require tissue density heterogeneity correction, where the high and intermediate dose compliance criteria were established based on superposition algorithm dose calculations. The study was aimed at comparing superposition algorithm dose calculations with Monte Carlo (MC) dose calculations for SBRT for NSCLC and to evaluate whether compliance criteria need to be adjusted for MC dose calculations. METHODS AND MATERIALS Fifteen RTOG 0236 study sets were used. The planning tumor volumes (PTV) ranged from 10.7 to 117.1 cm(3). SBRT conformal treatment plans were generated using XiO (CMS Inc.) treatment planning software with superposition algorithm to meet the dosimetric high and intermediate compliance criteria recommended by the RTOG 0813 protocol. Plans were recalculated using the MC algorithm of a Monaco (CMS, Inc.) treatment planning system. Tissue density heterogeneity correction was applied in both calculations. RESULTS Overall, the dosimetric quantities of the MC calculations have larger magnitudes than those of the superposition calculations. On average, R(100%) (ratio of prescription isodose volume to PTV), R(50%) (ratio of 50% prescription isodose volume to PTV), D(2 cm) (maximal dose 2 cm from PTV in any direction as a percentage of prescription dose), and V(20) (percentage of lung receiving dose equal to or larger than 20 Gy) increased by 9%, 12%, 7%, and 18%, respectively. In the superposition plans, 3 cases did not meet criteria for R(50%) or D(2 cm). In the MC-recalculated plans, 8 cases did not meet criteria for R(100%), R(50%), or D(2 cm). After reoptimization with MC calculations, 5 cases did not meet the criteria for R(50%) or D(2 cm). CONCLUSIONS Results indicate that the dosimetric criteria, e.g., the criteria for R(50%) recommended by RTOG 0813 protocol, may need to be adjusted when the MC dose calculation algorithm is used.
Collapse
Affiliation(s)
- Jun Li
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Takahashi W, Yamashita H, Saotome N, Iwai Y, Sakumi A, Haga A, Nakagawa K. Evaluation of heterogeneity dose distributions for Stereotactic Radiotherapy (SRT): comparison of commercially available Monte Carlo dose calculation with other algorithms. Radiat Oncol 2012; 7:20. [PMID: 22315950 PMCID: PMC3305645 DOI: 10.1186/1748-717x-7-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 02/09/2012] [Indexed: 12/02/2022] Open
Abstract
Background The purpose of this study was to compare dose distributions from three different algorithms with the x-ray Voxel Monte Carlo (XVMC) calculations, in actual computed tomography (CT) scans for use in stereotactic radiotherapy (SRT) of small lung cancers. Methods Slow CT scan of 20 patients was performed and the internal target volume (ITV) was delineated on Pinnacle3. All plans were first calculated with a scatter homogeneous mode (SHM) which is compatible with Clarkson algorithm using Pinnacle3 treatment planning system (TPS). The planned dose was 48 Gy in 4 fractions. In a second step, the CT images, structures and beam data were exported to other treatment planning systems (TPSs). Collapsed cone convolution (CCC) from Pinnacle3, superposition (SP) from XiO, and XVMC from Monaco were used for recalculating. The dose distributions and the Dose Volume Histograms (DVHs) were compared with each other. Results The phantom test revealed that all algorithms could reproduce the measured data within 1% except for the SHM with inhomogeneous phantom. For the patient study, the SHM greatly overestimated the isocenter (IC) doses and the minimal dose received by 95% of the PTV (PTV95) compared to XVMC. The differences in mean doses were 2.96 Gy (6.17%) for IC and 5.02 Gy (11.18%) for PTV95. The DVH's and dose distributions with CCC and SP were in agreement with those obtained by XVMC. The average differences in IC doses between CCC and XVMC, and SP and XVMC were -1.14% (p = 0.17), and -2.67% (p = 0.0036), respectively. Conclusions Our work clearly confirms that the actual practice of relying solely on a Clarkson algorithm may be inappropriate for SRT planning. Meanwhile, CCC and SP were close to XVMC simulations and actual dose distributions obtained in lung SRT.
Collapse
Affiliation(s)
- Wataru Takahashi
- Department of Radiology, University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Olsen JR, Robinson CG, El Naqa I, Creach KM, Drzymala RE, Bloch C, Parikh PJ, Bradley JD. Dose–Response for Stereotactic Body Radiotherapy in Early-Stage Non–Small-Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2011; 81:e299-303. [DOI: 10.1016/j.ijrobp.2011.01.038] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 12/22/2010] [Accepted: 01/18/2011] [Indexed: 11/29/2022]
|
34
|
Wennberg BM, Baumann P, Gagliardi G, Nyman J, Drugge N, Hoyer M, Traberg A, Nilsson K, Morhed E, Ekberg L, Wittgren L, Lund JÅ, Levin N, Sederholm C, Lewensohn R, Lax I. NTCP modelling of lung toxicity after SBRT comparing the universal survival curve and the linear quadratic model for fractionation correction. Acta Oncol 2011; 50:518-27. [PMID: 21198416 DOI: 10.3109/0284186x.2010.543695] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND In SBRT of lung tumours no established relationship between dose-volume parameters and the incidence of lung toxicity is found. The aim of this study is to compare the LQ model and the universal survival curve (USC) to calculate biologically equivalent doses in SBRT to see if this will improve knowledge on this relationship. MATERIAL AND METHODS Toxicity data on radiation pneumonitis grade 2 or more (RP2+) from 57 patients were used, 10.5% were diagnosed with RP2+. The lung DVHs were corrected for fractionation (LQ and USC) and analysed with the Lyman- Kutcher-Burman (LKB) model. In the LQ-correction α/β = 3 Gy was used and the USC parameters used were: α/β = 3 Gy, D(0) = 1.0 Gy, [Formula: see text] = 10, α = 0.206 Gy(-1) and d(T) = 5.8 Gy. In order to understand the relative contribution of different dose levels to the calculated NTCP the concept of fractional NTCP was used. This might give an insight to the questions of whether "high doses to small volumes" or "low doses to large volumes" are most important for lung toxicity. RESULTS AND DISCUSSION NTCP analysis with the LKB-model using parameters m = 0.4, D(50) = 30 Gy resulted for the volume dependence parameter (n) with LQ correction n = 0.87 and with USC correction n = 0.71. Using parameters m = 0.3, D(50) = 20 Gy n = 0.93 with LQ correction and n = 0.83 with USC correction. In SBRT of lung tumours, NTCP modelling of lung toxicity comparing models (LQ,USC) for fractionation correction, shows that low dose contribute less and high dose more to the NTCP when using the USC-model. Comparing NTCP modelling of SBRT data and data from breast cancer, lung cancer and whole lung irradiation implies that the response of the lung is treatment specific. More data are however needed in order to have a more reliable modelling.
Collapse
Affiliation(s)
- Berit M Wennberg
- Department of Medical Physics, Karolinska University Hospital and the Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Taylor ML, Kron T, Franich RD. A contemporary review of stereotactic radiotherapy: inherent dosimetric complexities and the potential for detriment. Acta Oncol 2011; 50:483-508. [PMID: 21288161 DOI: 10.3109/0284186x.2010.551665] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The advantages of highly localised, conformal treatments achievable with stereotactic radiotherapy (SRT) are increasingly being extended to extracranial sites as stereotactic body radiotherapy with advancements in imaging and beam collimation. One of the challenges in stereotactic treatment lies in the significant complexities associated with small field dosimetry and dose calculation. This review provides a comprehensive overview of the complexities associated with stereotactic radiotherapy and the potential for detriment. METHODS This study is based on a comprehensive review of literature accessible via PubMed and other sources, covering stereotactic radiotherapy, small-field dosimetry and dose calculation. FINDINGS Several key issues were identified in the literature. They pertain to dose prescription, dose measurement and dose calculation within and beyond the treatment field. Field-edge regions and penumbrae occupy a significant portion of the total field size. Spectral and dosimetric characteristics are difficult to determine and are compounded by effects of tissue inhomogeneity. Measurement of small-fields is made difficult by detector volume averaging and energy response. Available dosimeters are compared, and emphasis is given to gel dosimetry which offers the greatest potential for three-dimensional small-field dosimetry. The limitations of treatment planning system algorithms as applied to small-fields (particularly in the presence of heterogeneities) is explained, and a review of Monte Carlo dose calculation is provided, including simplified treatment planning implementations. Not incorporated into treatment planning, there is evidence that far from the primary field, doses to patients (and corresponding risks of radiocarcinogenesis) from leakage/scatter in SRT are similar to large fields. CONCLUSIONS Improved knowledge of dosimetric issues is essential to the accurate measurement and calculation of dose as well as the interpretation and assessment of planned and delivered treatments. This review highlights such issues and the potential benefit that may be gained from Monte Carlo dose calculation and verification via three-dimensional dosimetric methods (such as gel dosimetry) being introduced into routine clinical practice.
Collapse
Affiliation(s)
- Michael L Taylor
- School of Applied Sciences, RMIT University, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
36
|
Stereotactic radiotherapy of primary lung cancer and other targets: results of consultant meeting of the International Atomic Energy Agency. Int J Radiat Oncol Biol Phys 2011; 79:660-9. [PMID: 21281896 DOI: 10.1016/j.ijrobp.2010.10.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 09/30/2010] [Accepted: 10/02/2010] [Indexed: 12/25/2022]
Abstract
To evaluate the current status of stereotactic body radiotherapy (SBRT) and identify both advantages and disadvantages of its use in developing countries, a meeting composed of consultants of the International Atomic Energy Agency was held in Vienna in November 2006. Owing to continuous developments in the field, the meeting was extended by subsequent discussions and correspondence (2007-2010), which led to the summary presented here. The advantages and disadvantages of SBRT expected to be encountered in developing countries were identified. The definitions, typical treatment courses, and clinical results were presented. Thereafter, minimal methodology/technology requirements for SBRT were evaluated. Finally, characteristics of SBRT for developing countries were recommended. Patients for SBRT should be carefully selected, because single high-dose radiotherapy may cause serious complications in some serial organs at risk. Clinical experiences have been reported in some populations of lung cancer, lung oligometastases, liver cancer, pancreas cancer, and kidney cancer. Despite the disadvantages expected to be experienced in developing countries, SBRT using fewer fractions may be useful in selected patients with various extracranial cancers with favorable outcome and low toxicity.
Collapse
|
37
|
Panettieri V, Malik ZI, Eswar CV, Landau DB, Thornton JM, Nahum AE, Mayles WPM, Fenwick JD. Influence of dose calculation algorithms on isotoxic dose-escalation of non-small cell lung cancer radiotherapy. Radiother Oncol 2010; 97:418-24. [DOI: 10.1016/j.radonc.2010.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/01/2010] [Accepted: 06/06/2010] [Indexed: 12/25/2022]
|
38
|
Buyyounouski MK, Balter P, Lewis B, D'Ambrosio DJ, Dilling TJ, Miller RC, Schefter T, Tomé W, Harris EER, Price RA, Konski AA, Wallner PE. Stereotactic body radiotherapy for early-stage non-small-cell lung cancer: report of the ASTRO Emerging Technology Committee. Int J Radiat Oncol Biol Phys 2010; 78:3-10. [PMID: 20643514 DOI: 10.1016/j.ijrobp.2010.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 04/02/2010] [Accepted: 04/02/2010] [Indexed: 12/25/2022]
|
39
|
Szegedi M, Rassiah-Szegedi P, Fullerton G, Wang B, Salter B. A proto-type design of a real-tissue phantom for the validation of deformation algorithms and 4D dose calculations. Phys Med Biol 2010; 55:3685-99. [PMID: 20530851 DOI: 10.1088/0031-9155/55/13/008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of this study is to design a real-tissue phantom for use in the validation of deformation algorithms. A phantom motion controller that runs sinusoidal and non-regular patient-based breathing pattern, via a piston, was applied to porcine liver tissue. It was regulated to simulate movement ranges similar to recorded implanted liver markers from patients. 4D CT was applied to analyze deformation. The suitability of various markers in the liver and the position reproducibility of markers and of reference points were studied. The similarity of marker motion pattern in the liver phantom and in real patients was evaluated. The viability of the phantom over time and its use with electro-magnetic tracking devices were also assessed. High contrast markers, such as carbon markers, implanted in the porcine liver produced less image artifacts on CT and were well visualized compared to metallic ones. The repositionability of markers was within a measurement accuracy of +/-2 mm. Similar anatomical patient motions were reproducible up to elongations of 3 cm for a time period of at least 90 min. The phantom is compatible with electro-magnetic tracking devices and 4D CT. The phantom motion is reproducible and simulates realistic patient motion and deformation. The ability to carry out voxel-based tracking allows for the evaluation of deformation algorithms in a controlled environment with recorded patient traces. The phantom is compatible with all therapy devices clinically encountered in our department.
Collapse
Affiliation(s)
- M Szegedi
- Health Science Center, University of Texas, San Antonio, TX, USA.
| | | | | | | | | |
Collapse
|
40
|
Moiseenko V, Liu M, Bergman AM, Gill B, Kristensen S, Teke T, Popescu IA. Monte Carlo calculation of dose distribution in early stage NSCLC patients planned for accelerated hypofractionated radiation therapy in the NCIC-BR25 protocol. Phys Med Biol 2010; 55:723-33. [PMID: 20071759 DOI: 10.1088/0031-9155/55/3/012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The dosimetric consequences of plans optimized using a commercial treatment planning system (TPS) for hypofractionated radiation therapy are evaluated by re-calculating with Monte Carlo (MC). Planning guidelines were in strict accordance with the Canadian BR25 protocol which is similar to the RTOG 0236 and 0618 protocols in patient eligibility and total dose, but has a different hypofractionation schedule (60 Gy in 15 fractions versus 60 Gy in 3 fractions). A common requirement of the BR25 and RTOG protocols is that the dose must be calculated by the TPS without tissue heterogeneity (TH) corrections. Our results show that optimizing plans using the pencil beam algorithm with no TH corrections does not ensure that the BR25 planning constraint of 99% of the PTV receiving at least 95% of the prescription dose would be achieved as revealed by MC simulations. This is due to poor modelling of backscatter and lateral electronic equilibrium by the TPS. MC simulations showed that as little as 75% of the PTV was actually covered by the 95% isodose line. The under-dosage of the PTV was even more pronounced if plans were optimized with the TH correction applied. In the most extreme case, only 23% of the PTV was covered by the 95% isodose.
Collapse
Affiliation(s)
- V Moiseenko
- British Columbia Cancer Agency-Vancouver, 600 W.10th Ave,Vancouver, BC V5Z 4E6, Canada.
| | | | | | | | | | | | | |
Collapse
|
41
|
Künzler T, Fotina I, Stock M, Georg D. Experimental verification of a commercial Monte Carlo-based dose calculation module for high-energy photon beams. Phys Med Biol 2009; 54:7363-77. [DOI: 10.1088/0031-9155/54/24/008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
42
|
Panettieri V, Barsoum P, Westermark M, Brualla L, Lax I. AAA and PBC calculation accuracy in the surface build-up region in tangential beam treatments. Phantom and breast case study with the Monte Carlo code penelope. Radiother Oncol 2009; 93:94-101. [DOI: 10.1016/j.radonc.2009.05.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 05/05/2009] [Accepted: 05/10/2009] [Indexed: 11/30/2022]
|
43
|
Chow JCL, Leung MKK, Van Dyk J. Variations of lung density and geometry on inhomogeneity correction algorithms: a Monte Carlo dosimetric evaluation. Med Phys 2009; 36:3619-30. [PMID: 19746796 DOI: 10.1118/1.3168966] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
This work contributed the following new information to the study of inhomogeneity correction algorithm: (1) Evaluation of lung dose calculation methods as a function of lung relative electron density (rhoe,lung) and treatment geometry and (2) comparison of doses calculated using the collapsed cone convolution (CCC) and adaptive convolution (AC) in lung using the Monte Carlo (MC) simulation with the EGSnrc-based code. The variations of rhoe,lung and geometry such as the position and dimension of the lung were studied with different photon beam energies and field sizes. Three groups of inhomogeneous lung phantoms, namely, "slab," "column," and "cube," with different positions, volumes, and shapes of lung in water as well as clinical computed tomography lung images were used. The rhoe,lung in each group of phantoms vary from 0.05 to 0.7. 6 and 18 MV photon beams with small (4 x 4 cm2) and medium (10 x 10 cm2) field sizes produced by a Varian 21 EX linear accelerator were used. This study reveals that doses in the inhomogeneous lung calculated by the CCC match well with those by AC within +/- 1%, indicating that the AC, with an advantage of shorter computing times (three to four times shorter than CCC), is a good substitute for CCC. Comparing the CCC and AC to MC in general, significant dose deviations are found when the rhoe,lung is < or =0.3. The degree of deviation depends on the photon beam energy and field size and is relatively large when high-energy photon beams with small fields are used. For penumbra widths (20%-80%), the CCC and AC agree well with MC for the slab and cube phantoms with the lung volumes at the central beam axis (CAX). However, deviations (>2 mm) occur in the column phantoms, with two lung volumes separated by a unit density column along the CAX in the middle using the 18 MV beam with 4 x 4 cm2 field for rhoe,lung < or =0.1. This study provides new dosimetric data to evaluate the impact of the variations of rhoe,lung and geometry on dose calculations in inhomogeneous media using CCC and AC.
Collapse
Affiliation(s)
- James C L Chow
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9, Canada.
| | | | | |
Collapse
|
44
|
Richter A, Sweeney R, Baier K, Flentje M, Guckenberger M. Effect of breathing motion in radiotherapy of breast cancer: 4D dose calculation and motion tracking via EPID. Strahlenther Onkol 2009; 185:425-30. [PMID: 19714303 DOI: 10.1007/s00066-009-1980-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 02/12/2009] [Indexed: 11/25/2022]
Abstract
PURPOSE To evaluate the influence of breathing motion in postoperative whole-breast radiotherapy. PATIENTS AND METHODS For ten patients with left-sided breast cancer, radiotherapy treatment plans were generated based on conventional three-dimensional computed tomography (3D CT) studies: two techniques (segmented and wedge-based tangential fields) were compared. The influence of breathing motion on the dose to the target and organs at risk (OARs) was evaluated with four-dimensional (4D) dose calculation based on respiration-correlated CTs. Reproducibility of breathing motion was evaluated with electronic portal images (EPID) acquired in cine mode during treatment. RESULTS Differences in dose distributions were small between segmented and wedge techniques based on 3D studies. Because of small motion amplitude of the chest in the 4D CT studies (1.8 mm +/- 0.9 mm), target coverage was reduced by < 5% due to breathing motion. Differences between 3D and 4D dose calculation were similar for segmented and wedge techniques. Blurring of the dose distribution in 4D dose calculation resulted in lower doses to the OARs. Analysis of EPID movies proved good reproducibility of breathing motion observed in the 4D CT study. CONCLUSION Breathing motion was of minor relevance in postoperative radiotherapy treatment of breast cancer for both segmented and wedge tangential field techniques.
Collapse
Affiliation(s)
- Anne Richter
- University of Würzburg, Department of Radiation Oncology, Würzburg, Germany.
| | | | | | | | | |
Collapse
|
45
|
Aarup LR, Nahum AE, Zacharatou C, Juhler-Nøttrup T, Knöös T, Nyström H, Specht L, Wieslander E, Korreman SS. The effect of different lung densities on the accuracy of various radiotherapy dose calculation methods: Implications for tumour coverage. Radiother Oncol 2009; 91:405-14. [PMID: 19297051 DOI: 10.1016/j.radonc.2009.01.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 01/22/2009] [Accepted: 01/24/2009] [Indexed: 11/27/2022]
|
46
|
Baumann P, Nyman J, Hoyer M, Wennberg B, Gagliardi G, Lax I, Drugge N, Ekberg L, Friesland S, Johansson KA, Lund JA, Morhed E, Nilsson K, Levin N, Paludan M, Sederholm C, Traberg A, Wittgren L, Lewensohn R. Outcome in a prospective phase II trial of medically inoperable stage I non-small-cell lung cancer patients treated with stereotactic body radiotherapy. J Clin Oncol 2009; 27:3290-6. [PMID: 19414667 DOI: 10.1200/jco.2008.21.5681] [Citation(s) in RCA: 620] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE The impact of stereotactic body radiotherapy (SBRT) on 3-year progression-free survival of medically inoperable patients with stage I non-small-cell lung cancer (NSCLC) was analyzed in a prospective phase II study. PATIENTS AND METHODS Fifty-seven patients with T1NOMO (70%) and T2N0M0 (30%) were included between August 2003 and September 2005 at seven different centers in Sweden, Norway, and Denmark and observed up to 36 months. SBRT was delivered with 15 Gy times three at the 67% isodose of the planning target volume. RESULTS Progression-free survival at 3 years was 52%. Overall- and cancer-specific survival at 1, 2, and 3 years was 86%, 65%, 60%, and 93%, 88%, 88%, respectively. There was no statistically significant difference in survival between patients with T1 or T2 tumors. At a median follow-up of 35 months (range, 4 to 47 months), 27 patients (47%) were deceased, seven as a result of lung cancer and 20 as a result of concurrent disease. Kaplan-Meier estimated local control at 3 years was 92%. Local relapse was observed in four patients (7%). Regional relapse was observed in three patients (5%). Nine patients (16%) developed distant metastases. The estimated risk of all failure (local, regional, or distant metastases) was increased in patients with T2 (41%) compared with those with T1 (18%) tumors (P = .027). CONCLUSION With a 3-year local tumor control rate higher than 90% with limited toxicity, SBRT emerges as state-of-the-art treatment for medically inoperable stage I NSCLC and may even challenge surgery in operable instances.
Collapse
Affiliation(s)
- Pia Baumann
- Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Xiao Y, Papiez L, Paulus R, Timmerman R, Straube WL, Bosch WR, Michalski J, Galvin JM. Dosimetric evaluation of heterogeneity corrections for RTOG 0236: stereotactic body radiotherapy of inoperable stage I-II non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2009; 73:1235-42. [PMID: 19251095 DOI: 10.1016/j.ijrobp.2008.11.019] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/11/2008] [Accepted: 11/13/2008] [Indexed: 02/08/2023]
Abstract
PURPOSE Using a retrospective analysis of treatment plans submitted from multiple institutions accruing patients to the Radiation Therapy Oncology Group (RTOG) 0236 non-small-cell stereotactic body radiotherapy protocol, the present study determined the dose prescription and critical structure constraints for future stereotactic body radiotherapy lung protocols that mandate density-corrected dose calculations. METHOD AND MATERIALS A subset of 20 patients from four institutions participating in the RTOG 0236 protocol and using superposition/convolution algorithms were compared. The RTOG 0236 protocol required a prescription dose of 60 Gy delivered in three fractions to cover 95% of the planning target volume. Additional requirements were specified for target dose heterogeneity and the dose to normal tissue/structures. The protocol required each site to plan the patient's treatment using unit density, and another plan with the same monitor units and applying density corrections was also submitted. These plans were compared to determine the dose differences. Two-sided, paired Student's t tests were used to evaluate these differences. RESULTS With heterogeneity corrections applied, the planning target volume receiving >/=60 Gy decreased, on average, 10.1% (standard error, 2.7%) from 95% (p = .001). The maximal dose to any point >/=2 cm away from the planning target volume increased from 35.2 Gy (standard error, 1.7) to 38.5 Gy (standard error, 2.2). CONCLUSION Statistically significant dose differences were found with the heterogeneity corrections. The information provided in the present study is being used to design future heterogeneity-corrected RTOG stereotactic body radiotherapy lung protocols to match the true dose delivered for RTOG 0236.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Radiation Oncology, Jefferson Medical College, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
España S, Herraiz JL, Vicente E, Vaquero JJ, Desco M, Udias JM. PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation. Phys Med Biol 2009; 54:1723-42. [PMID: 19242053 DOI: 10.1088/0031-9155/54/6/021] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monte Carlo simulations play an important role in positron emission tomography (PET) imaging, as an essential tool for the research and development of new scanners and for advanced image reconstruction. PeneloPET, a PET-dedicated Monte Carlo tool, is presented and validated in this work. PeneloPET is based on PENELOPE, a Monte Carlo code for the simulation of the transport in matter of electrons, positrons and photons, with energies from a few hundred eV to 1 GeV. PENELOPE is robust, fast and very accurate, but it may be unfriendly to people not acquainted with the FORTRAN programming language. PeneloPET is an easy-to-use application which allows comprehensive simulations of PET systems within PENELOPE. Complex and realistic simulations can be set by modifying a few simple input text files. Different levels of output data are available for analysis, from sinogram and lines-of-response (LORs) histogramming to fully detailed list mode. These data can be further exploited with the preferred programming language, including ROOT. PeneloPET simulates PET systems based on crystal array blocks coupled to photodetectors and allows the user to define radioactive sources, detectors, shielding and other parts of the scanner. The acquisition chain is simulated in high level detail; for instance, the electronic processing can include pile-up rejection mechanisms and time stamping of events, if desired. This paper describes PeneloPET and shows the results of extensive validations and comparisons of simulations against real measurements from commercial acquisition systems. PeneloPET is being extensively employed to improve the image quality of commercial PET systems and for the development of new ones.
Collapse
Affiliation(s)
- S España
- Grupo de Física Nuclear, Departmento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
49
|
España S, Herraiz JL, Vicente E, Vaquero JJ, Desco M, Udias JM. PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation. Phys Med Biol 2009. [DOI: https://doi.org/10.1088/0031-9155/54/6/021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Gagne IM, Ansbacher W, Zavgorodni S, Popescu C, Beckham WA. A Monte Carlo evaluation of RapidArc dose calculations for oropharynx radiotherapy. Phys Med Biol 2008; 53:7167-85. [DOI: 10.1088/0031-9155/53/24/011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|