1
|
Shegani A, Kealey S, Luzi F, Basagni F, Machado JDM, Ekici SD, Ferocino A, Gee AD, Bongarzone S. Radiosynthesis, Preclinical, and Clinical Positron Emission Tomography Studies of Carbon-11 Labeled Endogenous and Natural Exogenous Compounds. Chem Rev 2023; 123:105-229. [PMID: 36399832 PMCID: PMC9837829 DOI: 10.1021/acs.chemrev.2c00398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 11/19/2022]
Abstract
The presence of positron emission tomography (PET) centers at most major hospitals worldwide, along with the improvement of PET scanner sensitivity and the introduction of total body PET systems, has increased the interest in the PET tracer development using the short-lived radionuclides carbon-11. In the last few decades, methodological improvements and fully automated modules have allowed the development of carbon-11 tracers for clinical use. Radiolabeling natural compounds with carbon-11 by substituting one of the backbone carbons with the radionuclide has provided important information on the biochemistry of the authentic compounds and increased the understanding of their in vivo behavior in healthy and diseased states. The number of endogenous and natural compounds essential for human life is staggering, ranging from simple alcohols to vitamins and peptides. This review collates all the carbon-11 radiolabeled endogenous and natural exogenous compounds synthesised to date, including essential information on their radiochemistry methodologies and preclinical and clinical studies in healthy subjects.
Collapse
Affiliation(s)
- Antonio Shegani
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Steven Kealey
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Federico Luzi
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Filippo Basagni
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum−University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Joana do Mar Machado
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Sevban Doğan Ekici
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Alessandra Ferocino
- Institute
of Organic Synthesis and Photoreactivity, Italian National Research Council, via Piero Gobetti 101, 40129 Bologna, Italy
| | - Antony D. Gee
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Salvatore Bongarzone
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, United Kingdom
| |
Collapse
|
2
|
Koyama H, Ikenuma H, Toda H, Kondo G, Hirano M, Kato M, Abe J, Yamada T, Wakabayashi T, Ito K, Natsume A, Suzuki M. Synthesis of PET probe O 6-[(3-[ 11C]methyl)benzyl]guanine by Pd 0-mediated rapid C-[ 11C]methylation toward imaging DNA repair protein O 6-methylguanine-DNA methyltransferase in glioblastoma. Bioorg Med Chem Lett 2017; 27:1892-1896. [PMID: 28363750 DOI: 10.1016/j.bmcl.2017.03.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/28/2017] [Accepted: 03/17/2017] [Indexed: 12/31/2022]
Abstract
O6-Benzylguanine (O6-BG) is a substrate of O6-methylguanine-DNA methyltransferase (MGMT), which is involved in drug resistance of chemotherapy in the majority of glioblastoma multiform. For clinical diagnosis, it is hoped that the MGMT expression level could be determined by a noninvasive method to understand the detailed biological properties of MGMT-specific tumors. We synthesized 11C-labeled O6-[(3-methyl)benzyl]guanine ([11C]mMeBG) as a positron emission tomography probe. Thus, a mixed amine-protected stannyl precursor, N9-(tert-butoxycarbonyl)-O6-[3-(tributylstannyl)benzyl]-N2-(trifluoroacetyl)guanine, was subjected to rapid C-[11C]methylation under [11C]CH3I/[Pd2(dba)3]/P(o-CH3C6H4)3/CuCl/K2CO3 in NMP, followed by quick deprotection with LiOH/H2O, giving [11C]mMeBG with total radioactivity of 1.34GBq and ≥99% radiochemical and chemical purities.
Collapse
Affiliation(s)
- Hiroko Koyama
- Division of Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Hiroshi Ikenuma
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu-shi, Aichi 474-8511, Japan
| | - Hiroshi Toda
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Goro Kondo
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masaki Hirano
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masaya Kato
- Division of Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Junichiro Abe
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu-shi, Aichi 474-8511, Japan
| | - Takashi Yamada
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University, Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kengo Ito
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu-shi, Aichi 474-8511, Japan
| | - Atsushi Natsume
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Masaaki Suzuki
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu-shi, Aichi 474-8511, Japan.
| |
Collapse
|
3
|
Toyohara J. Evaluation of DNA synthesis with carbon-11-labeled 4′-thiothymidine. World J Radiol 2016; 8:799-808. [PMID: 27721942 PMCID: PMC5039675 DOI: 10.4329/wjr.v8.i9.799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/02/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
In the cancer research field, the preferred method for evaluating the proliferative activity of cancer cells in vivo is to measure DNA synthesis rates. The cellular proliferation rate is one of the most important cancer characteristics, and represents the gold standard of pathological diagnosis. Positron emission tomography (PET) has been used to evaluate in vivo DNA synthetic activity through visualization of enhanced nucleoside metabolism. However, methods for the quantitative measurement of DNA synthesis rates have not been fully clarified. Several groups have been engaged in research on 4′-[methyl-11C]-thiothymidine (11C-4DST) in an effort to develop a PET tracer that allows quantitative measurement of in vivo DNA synthesis rates. This mini-review summarizes the results of recent studies of the in vivo measurement of cancer DNA synthesis rates using 11C-4DST.
Collapse
|
4
|
Doi H. Pd-mediated rapid cross-couplings using [11C]methyl iodide: groundbreaking labeling methods in11C radiochemistry. J Labelled Comp Radiopharm 2015; 58:73-85. [DOI: 10.1002/jlcr.3253] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/28/2014] [Accepted: 11/28/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Hisashi Doi
- Labeling Chemistry Team; Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST); 6-7-3 Minatojima-minamimachi, Chuo-ku Kobe Hyogo 650-0047 Japan
| |
Collapse
|
5
|
Suzuki M, Takashima-Hirano M, Ishii H, Watanabe C, Sumi K, Koyama H, Doi H. Synthesis of 11C-labeled retinoic acid, [11C]ATRA, via an alkenylboron precursor by Pd(0)-mediated rapid C-[11C]methylation. Bioorg Med Chem Lett 2014; 24:3622-5. [DOI: 10.1016/j.bmcl.2014.05.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/06/2014] [Accepted: 05/08/2014] [Indexed: 11/30/2022]
|
6
|
Zhang Z, Doi H, Koyama H, Watanabe Y, Suzuki M. Efficient syntheses of [¹¹C]zidovudine and its analogs by convenient one-pot palladium(0)-copper(I) co-mediated rapid C-[¹¹C]methylation. J Labelled Comp Radiopharm 2014; 57:540-9. [PMID: 24992010 DOI: 10.1002/jlcr.3213] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 12/17/2022]
Abstract
The nucleosides zidovudine (AZT), stavudine (d4T), and telbivudine (LdT) are approved for use in the treatment of human immunodeficiency virus (HIV) and hepatitis B virus (HBV) infections. To promote positron emission tomography (PET) imaging studies on their pharmacokinetics, pharmacodynamics, and applications in cancer diagnosis, a convenient one-pot method for Pd(0)-Cu(I) co-mediated rapid C-C coupling of [(11)C]methyl iodide with stannyl precursor was successfully established and applied to synthesize the PET tracers [(11)C]zidovudine, [(11)C]stavudine, and [(11)C]telbivudine. After HPLC purification and radiopharmaceutical formulation, the desired PET tracers were obtained with high radioactivity (6.4-7.0 GBq) and specific radioactivity (74-147 GBq/µmol) and with high chemical (>99%) and radiochemical (>99.5%) purities. This one-pot Pd(0)-Cu(I) co-mediated rapid C-[(11)C]methylation also worked well for syntheses of [methyl-(11)C]thymidine and [methyl-(11)C]4'-thiothymidine, resulting twice the radioactivity of those prepared by a previous two-pot method. The mechanism of one-pot Pd(0)-Cu(I) co-mediated rapid C-[(11)C]methylation was also discussed.
Collapse
Affiliation(s)
- Zhouen Zhang
- Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST), Kobe, Hyogo, 650-0047, Japan; RIKEN Center for Molecular Imaging Science, Kobe, Hyogo, 650-0047, Japan
| | | | | | | | | |
Collapse
|
7
|
Suzuki M, Doi H, Koyama H, Zhang Z, Hosoya T, Onoe H, Watanabe Y. Pd0-Mediated Rapid Cross-Coupling Reactions, the RapidC-[11C]Methylations, Revolutionarily Advancing the Syntheses of Short-Lived PET Molecular Probes. CHEM REC 2014; 14:516-41. [DOI: 10.1002/tcr.201400002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Masaaki Suzuki
- National Center for Geriatrics and Gerontology; 35 Gengo Morioka-cho Obu-shi Aichi 474-8511 Japan
| | - Hisashi Doi
- Division of Bio-Function Dynamics Imaging; Riken Center for Life Science Technologies (CLST); 6-7-3 Minatojima-minamimachi Chuo-ku Kobe 650-0047 Japan
| | - Hiroko Koyama
- Division of Regeneration and Advanced Medical Science; Graduate School of Medicine; Gifu University; 1-1 Yanagido Gifu 501-1194 Japan
| | - Zhouen Zhang
- Division of Bio-Function Dynamics Imaging; Riken Center for Life Science Technologies (CLST); 6-7-3 Minatojima-minamimachi Chuo-ku Kobe 650-0047 Japan
| | - Takamitsu Hosoya
- Division of Regeneration and Advanced Medical Science; Graduate School of Medicine; Gifu University; 1-1 Yanagido Gifu 501-1194 Japan
| | - Hirotaka Onoe
- Division of Bio-Function Dynamics Imaging; Riken Center for Life Science Technologies (CLST); 6-7-3 Minatojima-minamimachi Chuo-ku Kobe 650-0047 Japan
| | - Yasuyoshi Watanabe
- Division of Bio-Function Dynamics Imaging; Riken Center for Life Science Technologies (CLST); 6-7-3 Minatojima-minamimachi Chuo-ku Kobe 650-0047 Japan
| |
Collapse
|
8
|
Bordenave T, Hazari PP, James D, Mishra AK, Szlosek-Pinaud M, Fouquet E. 11C Click Chemistry Using [11C]Methyl Azide: Simplified, Versatile, and Practical Alternative Access to [11C]Nucleosides and [11C]Oligonucleotides for PET Imaging. European J Org Chem 2013. [DOI: 10.1002/ejoc.201201379] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
9
|
Koyama H, Zhang Z, Ijuin R, Siqin, Son J, Hatta Y, Ohta M, Wakao M, Hosoya T, Doi H, Suzuki M. Pd0-mediated rapid coupling of methyl iodide with excess amounts of benzyl- and cinnamylboronic acid esters: efficient method for incorporation of positron-emitting 11C radionuclide into organic frameworks by coupling between two sp3-hybridized carbons. RSC Adv 2013. [DOI: 10.1039/c3ra40815a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
10
|
Herth MM, Volk B, Pallagi K, Kofoed Bech L, Antoni FA, Knudsen GM, Kristensen JL. Synthesis and in vitro evaluation of oxindole derivatives as potential radioligands for 5-HT(7) receptor imaging with PET. ACS Chem Neurosci 2012; 3:1002-7. [PMID: 23259035 DOI: 10.1021/cn3001137] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/31/2012] [Indexed: 01/15/2023] Open
Abstract
The most recently discovered serotonin (5-HT) receptor subtype, 5-HT(7), is considered to be associated with several CNS disorders. Noninvasive in vivo positron emission tomography (PET) studies of cerebral 5-HT(7) receptors could provide a significant advance in the understanding of the neurobiology and eventual dysfunctions of the 5-HT(7) receptor. To date, no appropriate 5-HT(7) receptor PET ligand has been developed. Here, we modified known 5-HT(7) selective phenylpiperazinyl-butyloxindole derivatives so that they may be labeled either with carbon-11 or fluorine-18. A set of potential 5-HT(7) ligands for PET molecular imaging was successfully synthesized. Two compounds (10 and 14) were tested against a range of targets. Both compounds display a promising in vitro profile with respect to PET imaging of the 5-HT(7) receptor in thalamic regions.
Collapse
Affiliation(s)
- Matthias M. Herth
- Center for Integrated Molecular Brain
Imaging, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, DK-2100
Copenhagen, Denmark
- Department
of Drug Design and
Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100
Copenhagen, Denmark
| | - Balázs Volk
- Chemical
Research Division, Egis Pharmaceuticals Plc., P.O. Box 100, H-1475 Budapest,
Hungary
| | - Katalin Pallagi
- Division of Preclinical
Research, Egis Pharmaceuticals Plc., P.O.
Box 100, H-1475 Budapest,
Hungary
| | - Lasse Kofoed Bech
- Center for Integrated Molecular Brain
Imaging, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, DK-2100
Copenhagen, Denmark
| | - Ferenc A. Antoni
- Division of Preclinical
Research, Egis Pharmaceuticals Plc., P.O.
Box 100, H-1475 Budapest,
Hungary
| | - Gitte M. Knudsen
- Center for Integrated Molecular Brain
Imaging, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, DK-2100
Copenhagen, Denmark
| | - Jesper L. Kristensen
- Center for Integrated Molecular Brain
Imaging, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, DK-2100
Copenhagen, Denmark
- Department
of Drug Design and
Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100
Copenhagen, Denmark
| |
Collapse
|
11
|
Doi H, Goto M, Suzuki M. Pd0-Mediated Rapid C-[18F]Fluoromethylation by the Cross-Coupling Reaction of a [18F]Fluoromethyl Halide with an Arylboronic Acid Ester: Novel Method for the Synthesis of a 18F-Labeled Molecular Probe for Positron Emission Tomography. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2012. [DOI: 10.1246/bcsj.20120151] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hisashi Doi
- RIKEN Center for Molecular Imaging Science (CMIS)
| | - Miki Goto
- RIKEN Center for Molecular Imaging Science (CMIS)
| | | |
Collapse
|
12
|
Suzuki M, Takashima-Hirano M, Koyama H, Yamaoka T, Sumi K, Nagata H, Hidaka H, Doi H. Efficient synthesis of [11C]H-1152, a PET probe specific for Rho-kinases, highly potential targets in diagnostic medicine and drug development. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.01.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Smith G, Sala R, Carroll L, Behan K, Glaser M, Robins E, Nguyen QD, Aboagye EO. Synthesis and evaluation of nucleoside radiotracers for imaging proliferation. Nucl Med Biol 2012; 39:652-65. [PMID: 22321533 DOI: 10.1016/j.nucmedbio.2011.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 11/29/2011] [Accepted: 12/07/2011] [Indexed: 10/14/2022]
Abstract
INTRODUCTION Uncontrolled proliferation is a fundamental characteristic of cancer, and consequently, imaging of tumor proliferative status finds interest clinically both as a diagnostic tool and for evaluation of response to treatment. Positron emission tomography (PET) radiotracers based on a nucleoside core, such as 3'-[18F]fluoro-3'-deoxythymidine ([18F]FLT), have been extensively studied for this purpose. However, [18F]FLT suffers from poor DNA incorporation leading to occasional poor correlation of [18F]FLT tumor uptake with other proliferation indicators such as Ki-67 immunostaining. METHODS N3-((1-(2-[18F]fluoroethyl)-1H-[1,2,3]-triazol-4-yl)methyl)thymidine ([18F]2) and N3-((1-(2-[18F]fluoroethyl)-1H-[1,2,3]-triazol-4-yl)methyl)-4'-thio-β-thymidine ([18F]3) were synthesized by click chemistry from [18F]fluoroethyl azide and by direct nucleophilic substitution of a tosylate precursor. Metabolic stability and phosphorylation potential of the radiotracers were evaluated in vitro and compared to [18F]FLT. Further, metabolic stability and biodistribution analysis of [18F]2 and [18F]3 were evaluated in vivo. RESULTS Stable isotope standards and radiochemistry precursors were synthesized by modification of existing literature procedures. [18F]2 and [18F]3 were synthesized in a radiochemical yield of 8%-12% (end of synthesis, non-decay corrected). Both nucleosides were stable to metabolic degradation by thymidine phosphorylase, and in vivo stability analysis showed only one metabolite for [18F]3. No phosphorylation of [18F]2 could be detected in HCT116 cell homogenates, and in the same assay, only minor (∼8%) phosphorylation of [18F]3 was observed. Biodistribution in Balb/c mice indicated rapid clearance for [18F]2 and [18F]3 to a lesser extent. CONCLUSIONS The favorable biodistribution and metabolic profile of [18F]3 warrant further investigation as a next-generation PET proliferation marker.
Collapse
Affiliation(s)
- Graham Smith
- Comprehensive Cancer Imaging Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital, W12 0NN London, UK
| | | | | | | | | | | | | | | |
Collapse
|