1
|
Zheng D, Preuss K, Milano MT, He X, Gou L, Shi Y, Marples B, Wan R, Yu H, Du H, Zhang C. Mathematical modeling in radiotherapy for cancer: a comprehensive narrative review. Radiat Oncol 2025; 20:49. [PMID: 40186295 PMCID: PMC11969940 DOI: 10.1186/s13014-025-02626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/17/2025] [Indexed: 04/07/2025] Open
Abstract
Mathematical modeling has long been a cornerstone of radiotherapy for cancer, guiding treatment prescription, planning, and delivery through versatile applications. As we enter the era of medical big data, where the integration of molecular, imaging, and clinical data at both the tumor and patient levels could promise more precise and personalized cancer treatment, the role of mathematical modeling has become even more critical. This comprehensive narrative review aims to summarize the main applications of mathematical modeling in radiotherapy, bridging the gap between classical models and the latest advancements. The review covers a wide range of applications, including radiobiology, clinical workflows, stereotactic radiosurgery/stereotactic body radiotherapy (SRS/SBRT), spatially fractionated radiotherapy (SFRT), FLASH radiotherapy (FLASH-RT), immune-radiotherapy, and the emerging concept of radiotherapy digital twins. Each of these areas is explored in depth, with a particular focus on how newer trends and innovations are shaping the future of radiation cancer treatment. By examining these diverse applications, this review provides a comprehensive overview of the current state of mathematical modeling in radiotherapy. It also highlights the growing importance of these models in the context of personalized medicine and multi-scale, multi-modal data integration, offering insights into how they can be leveraged to enhance treatment precision and patient outcomes. As radiotherapy continues to evolve, the insights gained from this review will help guide future research and clinical practice, ensuring that mathematical modeling continues to propel innovations in radiation cancer treatment.
Collapse
Affiliation(s)
- Dandan Zheng
- Department of Radiation Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box 647, Rochester, NY, 14642, USA.
| | | | - Michael T Milano
- Department of Radiation Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box 647, Rochester, NY, 14642, USA
| | - Xiuxiu He
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Lang Gou
- Department of Radiation Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box 647, Rochester, NY, 14642, USA
| | - Yu Shi
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, USA
| | - Brian Marples
- Department of Radiation Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box 647, Rochester, NY, 14642, USA
| | - Raphael Wan
- Department of Radiation Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box 647, Rochester, NY, 14642, USA
| | - Hongfeng Yu
- Department of Computer Science, University of Nebraska Lincoln, Lincoln, USA
| | - Huijing Du
- Department of Mathematics, University of Nebraska Lincoln, Lincoln, USA
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, USA
| |
Collapse
|
2
|
Häger W, Toma-Dașu I, Astaraki M, Lazzeroni M. Role of modeled high-grade glioma cell invasion and survival on the prediction of tumor progression after radiotherapy. Phys Med Biol 2025; 70:065017. [PMID: 40043359 DOI: 10.1088/1361-6560/adbcf4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
Objective.Glioblastoma (GBM) prognosis remains poor despite progress in radiotherapy and imaging techniques. Tumor recurrence has been attributed to the widespread tumor invasion of normal tissue. Since the complete extension of invasion is undetectable on imaging, it is not deliberately treated. To improve the treatment outcome, models have been developed to predict tumor invasion based standard imaging data. This study aimed to investigate whether a tumor invasion model, together with the predicted number of surviving cells after radiotherapy, could predict tumor progression post-treatment.Approach.A tumor invasion model was applied to 56 cases of GBMs treated with radiotherapy. The invasion was quantified as the volume encompassed by the 100 cells mm-3isocontour (V100). A new metric, cell-volume-product, was defined as the product of the volume with cell density greater than a threshold value (in cells mm-3), and the number of surviving cells within that volume, post-treatment. Tumor progression was assessed at 20 ± 10 d and 90 ± 20 d after treatment. Correlations between the disease progression and the gross tumor volume (GTV),V100, and cell-volume-product, were determined using receiver operating characteristic curves.Main results.For the early follow-up time, the correlation between GTV and tumor progression was not statistically significant (p= 0.684). However, statistically significant correlations with progression were found betweenV100and cell-volume-product with a cell threshold of 10-6cells mm-3with areas-under-the-curve of 0.69 (p= 0.023) and 0.66 (p= 0.045), respectively. No significant correlations were found for the late follow-up time.Significance.Modeling tumor spread otherwise undetectable on conventional imaging, as well as radiobiological model predictions of cell survival after treatment, may provide useful information regarding the likelihood of tumor progression at an early follow-up time point, which could potentially lead to improved treatment decisions for patients with GBMs.
Collapse
Affiliation(s)
- Wille Häger
- Department of Physics, Stockholm University, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Iuliana Toma-Dașu
- Department of Physics, Stockholm University, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Mehdi Astaraki
- Department of Biomedical Engineering and Health Systems, Royal Institute of Technology, Huddinge, Sweden
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Marta Lazzeroni
- Department of Physics, Stockholm University, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
3
|
Dattoli Viegas AM, Carando D, Koivunoro H, Joensuu H, González SJ. Predicting radiotoxic effects after BNCT for brain cancer using a novel dose calculation model. Phys Med 2024; 128:104840. [PMID: 39520731 DOI: 10.1016/j.ejmp.2024.104840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/09/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE The normal brain is an important dose-limiting organ for brain cancer patients undergoing radiotherapy. This study aims to develop a model to calculate photon isoeffective doses (DIsoE) to normal brain that can explain the incidence of grade 2 or higher somnolence syndrome (SS⩾2) after Boron Neutron Capture Therapy (BNCT). METHODS A DIsoE model was constructed to find the reference photon dose that equals the Normal Tissue Complication Probability (NTCP) of the absorbed dose from BNCT. Limb paralysis rates from the rat spinal cord model exposed to conventional or BNCT irradiation were used to determine model parameters. NTCP expressions for both irradiations were constructed based on Lyman's model accordingly. DIsoE values were calculated for BNCT treatments performed in Finland and USA. An equivalent uniform dose (EUD) based on peak and average whole-brain doses and treatment fields was also introduced. Combining DIsoE and EUD models, a dose-response curve for SS⩾2 in BNCT patients was constructed and compared to conventional radiotherapy outcomes. RESULTS The DIsoE model reveals higher than expected photon-equivalent doses in the brain, indicating the need to modify standard dose calculation methods. Neither peak dose nor average whole-brain dose alone predicts SS⩾2 development. However, the dose-response curve derived from combining DIsoE and EUD models effectively explains the incidence of SS⩾2 after BNCT. CONCLUSIONS The introduced DIsoE and EUD models predict the incidence of somnolence syndrome after BNCT. The first dose-response relationship for SS⩾2 derived entirely from brain tumour patients treated with BNCT, consistent with photon radiotherapy responses, is presented.
Collapse
Affiliation(s)
- Ana Mailén Dattoli Viegas
- División Física Computacional y Biofísica de las Radiaciones, Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, B1650KNA, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2270, C1425FQD, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Daniel Carando
- Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and IMAS (UBA-CONICET), Pabellón I, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
| | - Hanna Koivunoro
- Neutron Therapeutics, 1 Industrial Drive, Danvers, Massachusetts (01923), United States; Department of Oncology, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, P.O.B. 180, FIN-00029, Helsinki, Finland.
| | - Heikki Joensuu
- Department of Oncology, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, P.O.B. 180, FIN-00029, Helsinki, Finland.
| | - Sara Josefina González
- División Física Computacional y Biofísica de las Radiaciones, Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, B1650KNA, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2270, C1425FQD, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
4
|
Zhang Z, Zhang J, Zheng R, Ye J, Xu B. A Population-Based Tumor-Volume Model for Head and Neck Cancer During Radiation Therapy With a Dynamic Oxygenated Compartment. Int J Radiat Oncol Biol Phys 2024; 120:1159-1171. [PMID: 38871196 DOI: 10.1016/j.ijrobp.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 04/13/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE With the coming era of digital medicine and healthcare technology, mathematical modeling of tumors has become a key step to optimize and realize precision radiation therapy. The purpose of this study was to develop a mathematical model for simulating the change of head and neck (HN) tumor volume during radiation therapy. METHODS AND MATERIALS A formula was developed to describe the dynamic change of oxygenated compartment within a tumor, which was combined with the lethal lesions model to describe various cell processes during radiation therapy, including potentially lethal lesion repair and misrepair, cell proliferation/loss, and tumor reoxygenation. Parameter sensitivity analysis was performed to evaluate the impacts of lesion- and repair-related biological factors on radiation therapy outcomes. RESULTS We tested our model on 14 available patients with HN cancer and compared the performance with 3 other models. The mean error of our model for the 12 good fit cases was 12.2%, which is considerably smaller than that of the linear quadratic model (19.7%), the generalized linear quadratic model (19.1%), and a 4-level cell population model (16.6%). Correlation analysis results revealed that for small tumors, there was a positive correlation (correlation coefficient r=0.9416) between hypoxic fraction (hf) and tumor volume, whereas the correlation became negative and not significant (r=-0.4365) for large tumors. It is demonstrated from sensitivity analysis that the production rate of lethal lesions (ηl) has a far greater impact on tumor volume than other parameters. The hf had an insignificant impact on tumor volume but had a notable influence on the volume of surviving cells. The final volume of surviving cells athf=0.5 was almost 8 ×102 times that of hf=0.01. The potentially lethal lesion-related parameters (the production rate of potentially lethal lessions per unit dose ηpl, the rate of correct repair per unit time εpl, and the rate of binary misrepair per unit time ε2pl) had rather small impacts (<1%) on both tumor volume and the volume of surviving cells, which indicates that the repaired and misrepaired sublethal cells only take up a small portion of the total cancer cell population. CONCLUSIONS A population-based tumor-volume model for HN cancer during radiation therapy with a dynamic oxygenated compartment was developed in this study. Comprehensively considering the damage process of tumor cells caused by radiation therapy, the accurate prediction of the volume change of HN tumors during treatment was revealed. Meanwhile, various cell activities and their principles in the process of antitumor treatment were reflected, which has positive clinical reference significance for radiobiology.
Collapse
Affiliation(s)
- Zhengying Zhang
- School of Mathematics and Statistics, Fujian Normal University, Fuzhou, People's Republic of China
| | - Jianping Zhang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China; Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, People's Republic of China; Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, People's Republic of China
| | - Rong Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China; Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, People's Republic of China; Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, People's Republic of China
| | - Jianxiong Ye
- School of Mathematics and Statistics, Fujian Normal University, Fuzhou, People's Republic of China; Key Laboratory of Analytical Mathematics and Applications (Ministry of Education), Fujian Normal University, Fuzhou, People's Republic of China; Fujian Key Laboratory of Analytical Mathematics and Applications, Fujian Normal University, Fuzhou, People's Republic of China; Center for Applied Mathematics of Fujian Province (FJNU), Fuzhou, People's Republic of China.
| | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China; Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, People's Republic of China; Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, People's Republic of China.
| |
Collapse
|
5
|
Cotrutz C, Levivier M, Tuleasca C. Comparison of two biologically effective dose calculation models applied to single fraction stereotactic radiosurgery. Phys Med 2024; 126:104820. [PMID: 39341175 DOI: 10.1016/j.ejmp.2024.104820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/26/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Recent studies suggest strong correlations between Biologically Effective Doses (BED) and single fraction stereotactic radiosurgery treatment outcomes, as demonstrated for vestibular schwannomas (VS), arterio-venous malformations and pituitary adenomas. The BEDs calculated in these studies consider an uniform dose delivery where the spatio-temporal aspects of dose delivery were neglected. PURPOSE The aim of the study is to quantify the discrepancies between the BED values calculated with a simplified model of uniform dose delivery against the more complex model that incorporates the temporo-spatial incrementation of dose delivery and the bi-exponential effect of the sub-lethal damage repair. METHODS A software tool that computes the BED distributions based on individual isocenter dose matrices extracted from the GammaPlan (Elekta) treatment planning was developed. Two cohorts 5 VS and 5 jugular foramen schwannoma cases of various tumor volumes and isocenter number were utilized to benchmark the method. Their BEDs covering 98% of tumor volumes were compared against those determined with the uniform delivery model. RESULTS The BEDs covering 98% of the tumor volumes as calculated with both models show an approximately linear dependency with the treatment time. For all studied cases, the uniform delivery model overestimates the BEDs calculated with the full spatio-temporal delivery model. This discrepancy seems to accentuate with the tumor volume and treatment complexity. CONCLUSIONS Despite their resemblance, the BED distributions provide a plethora of BED measures more suitable to characterize clinical outcomes than the unique peripheral BED value calculated with the simplified model of uniform dose delivery.
Collapse
Affiliation(s)
- Cristian Cotrutz
- Lausanne University Hospital (CHUV), Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Switzerland.
| | - Marc Levivier
- Lausanne University Hospital (CHUV), Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Switzerland; University of Lausanne (UNIL), Faculty of Biology and Medicine (FBM), Switzerland
| | - Constantin Tuleasca
- Lausanne University Hospital (CHUV), Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Switzerland; University of Lausanne (UNIL), Faculty of Biology and Medicine (FBM), Switzerland; Ecole Polytechnique Fédérale de Lausanne (EPFL, LTS-5), Switzerland
| |
Collapse
|
6
|
Abdollahi H, Fele-Paranj A, Rahmim A. Model-Informed Radiopharmaceutical Therapy Optimization: A Study on the Impact of PBPK Model Parameters on Physical, Biological, and Statistical Measures in 177Lu-PSMA Therapy. Cancers (Basel) 2024; 16:3120. [PMID: 39335092 PMCID: PMC11430653 DOI: 10.3390/cancers16183120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Purpose: To investigate the impact of physiologically based pharmacokinetic (PBPK) parameters on physical, biological, and statistical measures in lutetium-177-labeled radiopharmaceutical therapies (RPTs) targeting the prostate-specific membrane antigen (PSMA). Methods: Using a clinically validated PBPK model, realistic time-activity curves (TACs) for tumors, salivary glands, and kidneys were generated based on various model parameters. These TACs were used to calculate the area-under-the-TAC (AUC), dose, biologically effective dose (BED), and figure-of-merit BED (fBED). The effects of these parameters on radiobiological, pharmacokinetic, time, and statistical features were assessed. Results: Manipulating PBPK parameters significantly influenced AUC, dose, BED, and fBED outcomes across four different BED models. Higher association rates increased AUC, dose, and BED values for tumors, with minimal impact on non-target organs. Increased internalization rates reduced AUC and dose for tumors and kidneys. Higher serum protein-binding rates decreased AUC and dose for all tissues. Elevated tumor receptor density and ligand amounts enhanced uptake and effectiveness in tumors. Larger tumor volumes required dosimetry adjustments to maintain efficacy. Setting the tumor release rate to zero intensified the impact of association and internalization rates, enhancing tumor targeting while minimizing the effects on salivary glands and kidneys. Conclusions: Optimizing PBPK parameters can enhance the efficacy of lutetium-177-labeled RPTs targeting PSMA, providing insights for personalized and effective treatment regimens to minimize toxicity and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Hamid Abdollahi
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada;
| | - Ali Fele-Paranj
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada;
- Department of Mathematics, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Arman Rahmim
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada;
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
7
|
Goodhead DT, Weinfeld M. Clustered DNA Damage and its Complexity: Tracking the History. Radiat Res 2024; 202:385-407. [PMID: 38954537 DOI: 10.1667/rade-24-00017.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/21/2024] [Indexed: 07/04/2024]
Abstract
The concept of radiation-induced clustered damage in DNA has grown over the past several decades to become a topic of considerable interest across the scientific disciplines involved in studies of the biological effects of ionizing radiation. This paper, prepared for the 70th anniversary issue of Radiation Research, traces historical development of the three main threads of physics, chemistry, and biochemical/cellular responses that led to the hypothesis and demonstration that a key component of the biological effectiveness of ionizing radiation is its characteristic of producing clustered DNA damage of varying complexities. The physics thread has roots that started as early as the 1920s, grew to identify critical nanometre-scale clusterings of ionizations relevant to biological effectiveness, and then, by the turn of the century, had produced an extensive array of quantitative predictions on the complexity of clustered DNA damage from different radiations. Monte Carlo track structure simulation techniques played a key role through these developments, and they are now incorporated into many recent and ongoing studies modelling the effects of radiation. The chemistry thread was seeded by water-radiolysis descriptions of events in water as radical-containing "spurs," demonstration of the important role of the hydroxyl radical in radiation-inactivation of cells and the difficulty of protection by radical scavengers. This led to the concept and description of locally multiply damaged sites (LMDS) for DNA double-strand breaks and other combinations of DNA base damage and strand breakage that could arise from a spur overlapping, or created in very close proximity to, the DNA. In these ways, both the physics and the chemistry threads, largely in parallel, put out the challenge to the experimental research community to verify these predictions of clustered DNA damage from ionizing radiations and to investigate their relevance to DNA repair and subsequent cellular effects. The third thread, biochemical and cell-based research, responded strongly to the challenge by demonstrating the existence and biological importance of clustered DNA damage. Investigations have included repair of a wide variety of defined constructs of clustered damage, evaluation of mutagenic consequences, identification of clustered base-damage within irradiated cells, and identification of co-localization of repair complexes indicative of complex clustered damage after high-LET irradiation, as well as extensive studies of the repair pathways involved in repair of simple double-strand breaks. There remains, however, a great deal more to be learned because of the diversity of clustered DNA damage and of the biological responses.
Collapse
|
8
|
Bailey SM, Kunkel SR, Bedford JS, Cornforth MN. The Central Role of Cytogenetics in Radiation Biology. Radiat Res 2024; 202:227-259. [PMID: 38981612 DOI: 10.1667/rade-24-00038.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/23/2024] [Indexed: 07/11/2024]
Abstract
Radiation cytogenetics has a rich history seldom appreciated by those outside the field. Early radiobiology was dominated by physics and biophysical concepts that borrowed heavily from the study of radiation-induced chromosome aberrations. From such studies, quantitative relationships between biological effect and changes in absorbed dose, dose rate and ionization density were codified into key concepts of radiobiological theory that have persisted for nearly a century. This review aims to provide a historical perspective of some of these concepts, including evidence supporting the contention that chromosome aberrations underlie development of many, if not most, of the biological effects of concern for humans exposed to ionizing radiations including cancer induction, on the one hand, and tumor eradication on the other. The significance of discoveries originating from these studies has widened and extended far beyond their original scope. Chromosome structural rearrangements viewed in mitotic cells were first attributed to the production of breaks by the radiations during interphase, followed by the rejoining or mis-rejoining among ends of other nearby breaks. These relatively modest beginnings eventually led to the discovery and characterization of DNA repair of double-strand breaks by non-homologous end joining, whose importance to various biological processes is now widely appreciated. Two examples, among many, are V(D)J recombination and speciation. Rapid technological advancements in cytogenetics, the burgeoning fields of molecular radiobiology and third-generation sequencing served as a point of confluence between the old and new. As a result, the emergent field of "cytogenomics" now becomes uniquely positioned for the purpose of more fully understanding mechanisms underlying the biological effects of ionizing radiation exposure.
Collapse
Affiliation(s)
- Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Stephen R Kunkel
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, Texas
| | - Joel S Bedford
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Michael N Cornforth
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
9
|
Lazzeroni M, Ureba A, Rosenberg V, Schäfer H, Rühle A, Baltas D, Toma-Dasu I, Grosu AL. Evaluating the impact of a rigid and a deformable registration method of pre-treatment images for hypoxia-based dose painting. Phys Med 2024; 122:103376. [PMID: 38772061 DOI: 10.1016/j.ejmp.2024.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
PURPOSE To assess the impact of rigid and deformable image registration methods (RIR, DIR) on the outcome of a hypoxia-based dose painting strategy. MATERIALS AND METHODS Thirty head and neck cancer patients were imaged with [18F]FMISO-PET/CT before radiotherapy. [18F]FMISO-PET/CT images were registered to the planning-CT by RIR or DIR. The [18F]FMISO uptake was converted into oxygen partial pressure (pO2) maps. Hypoxic Target Volumes were contoured on pO2 maps for the deformed (HTVdef) and non-deformed (HTV) cases. A dose escalation strategy by contours, aiming at 95 % tumour control probability (TCP), was applied. HTVs were characterised based on geometry-related metrics, the underlying pO2 distribution, and the dose boost level. A dosimetric and radiobiological evaluation of selected treatment plans made considering RIR and DIR was performed. Moreover, the TCP of the RIR dose distribution was evaluated when considering the deformed [18F]FMISO-PET image as an indicator of the actual target radiosensitivity to determine the potential impact of an unalignment. RESULTS Statistically significant differences were found between HTV and HTVdef for volume-based metrics and underlying pO2 distribution. Eight out of nine treatment plans for HTV and HTVdef showed differences on the level 10 %/3 mm on a gamma analysis. The TCP difference, however, between RIR and the case when the RIR dose distribution was used with the deformed radiosensitivity map was below 2 pp. CONCLUSIONS Although the choice of the CTplan-to-PET registration method pre-treatment impacts the HTV localisation and morphology and the corresponding dose distribution, it negligibly affects the TCP in the proposed dose escalation strategy by contours.
Collapse
Affiliation(s)
- M Lazzeroni
- Department of Physics, Stockholm University, Sweden; Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden.
| | - A Ureba
- Department of Physics, Stockholm University, Sweden; Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - V Rosenberg
- Royal Institute of Technology (KTH), Stockholm, Sweden
| | - H Schäfer
- Department of Radiation Oncology, Medical Center, Medical Faculty Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, Germany
| | - A Rühle
- Department of Radiation Oncology, Medical Center, Medical Faculty Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, Germany; University of Leipzig Medical Center, Department of Radiation Oncology, Leipzig, Germany
| | - D Baltas
- Department of Radiation Oncology, Medical Center, Medical Faculty Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, Germany
| | - I Toma-Dasu
- Department of Physics, Stockholm University, Sweden; Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - A L Grosu
- Department of Radiation Oncology, Medical Center, Medical Faculty Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, Germany
| |
Collapse
|
10
|
Chen ZJ, Li XA, Brenner DJ, Hellebust TP, Hoskin P, Joiner MC, Kirisits C, Nath R, Rivard MJ, Thomadsen BR, Zaider M. AAPM Task Group Report 267: A joint AAPM GEC-ESTRO report on biophysical models and tools for the planning and evaluation of brachytherapy. Med Phys 2024; 51:3850-3923. [PMID: 38721942 DOI: 10.1002/mp.17062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 06/05/2024] Open
Abstract
Brachytherapy utilizes a multitude of radioactive sources and treatment techniques that often exhibit widely different spatial and temporal dose delivery patterns. Biophysical models, capable of modeling the key interacting effects of dose delivery patterns with the underlying cellular processes of the irradiated tissues, can be a potentially useful tool for elucidating the radiobiological effects of complex brachytherapy dose delivery patterns and for comparing their relative clinical effectiveness. While the biophysical models have been used largely in research settings by experts, it has also been used increasingly by clinical medical physicists over the last two decades. A good understanding of the potentials and limitations of the biophysical models and their intended use is critically important in the widespread use of these models. To facilitate meaningful and consistent use of biophysical models in brachytherapy, Task Group 267 (TG-267) was formed jointly with the American Association of Physics in Medicine (AAPM) and The Groupe Européen de Curiethérapie and the European Society for Radiotherapy & Oncology (GEC-ESTRO) to review the existing biophysical models, model parameters, and their use in selected brachytherapy modalities and to develop practice guidelines for clinical medical physicists regarding the selection, use, and interpretation of biophysical models. The report provides an overview of the clinical background and the rationale for the development of biophysical models in radiation oncology and, particularly, in brachytherapy; a summary of the results of literature review of the existing biophysical models that have been used in brachytherapy; a focused discussion of the applications of relevant biophysical models for five selected brachytherapy modalities; and the task group recommendations on the use, reporting, and implementation of biophysical models for brachytherapy treatment planning and evaluation. The report concludes with discussions on the challenges and opportunities in using biophysical models for brachytherapy and with an outlook for future developments.
Collapse
Affiliation(s)
- Zhe Jay Chen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Medical Center, New York, New York, USA
| | - Taran P Hellebust
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Peter Hoskin
- Mount Vernon Cancer Center, Mount Vernon Hospital, Northwood, UK
- University of Manchester, Manchester, UK
| | - Michael C Joiner
- Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Christian Kirisits
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Ravinder Nath
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mark J Rivard
- Department of Radiation Oncology, Brown University School of Medicine, Providence, Rhode Island, USA
| | - Bruce R Thomadsen
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Marco Zaider
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
11
|
Inaniwa T, Kanematsu N, Nakajima M. Modeling of the resensitization effect on carbon-ion radiotherapy for stage I non-small cell lung cancer. Phys Med Biol 2024; 69:105015. [PMID: 38604184 DOI: 10.1088/1361-6560/ad3dbb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Objective. To investigate the effect of redistribution and reoxygenation on the 3-year tumor control probability (TCP) of patients with stage I non-small cell lung cancer (NSCLC) treated with carbon-ion radiotherapy.Approach. A meta-analysis of published clinical data of 233 NSCLC patients treated by carbon-ion radiotherapy under 18-, 9-, 4-, and single-fraction schedules was conducted. The linear-quadratic (LQ)-based cell-survival model incorporating the radiobiological 5Rs, radiosensitivity, repopulation, repair, redistribution, and reoxygenation, was developed to reproduce the clinical TCP data. Redistribution and reoxygenation were regarded together as a single phenomenon and termed 'resensitization' in the model. The optimum interval time between fractions was investigated for each fraction schedule using the determined model parameters.Main results.The clinical TCP data for 18-, 9-, and 4-fraction schedules were reasonably reproduced by the model without the resensitization effect, whereas its incorporation was essential to reproduce the TCP data for all fraction schedules including the single fraction. The curative dose for the single-fraction schedule was estimated to be 49.0 Gy (RBE), which corresponds to the clinically adopted dose prescription of 50.0 Gy (RBE). For 18-, 9-, and 4-fraction schedules, a 2-to-3-day interval is required to maximize the resensitization effect during the time interval. In contrast, the single-fraction schedule cannot benefit from the resensitization effect, and the shorter treatment time is preferable to reduce the effect of sub-lethal damage repair during the treatment.Significance.The LQ-based cell-survival model incorporating the radiobiological 5Rs was developed and used to evaluate the effect of the resensitization on clinical results of NSCLC patients treated with hypo-fractionated carbon-ion radiotherapy. The incorporation of the resensitization into the cell-survival model improves the reproducibility to the clinical TCP data. A shorter treatment time is preferable in the single-fraction schedule, while a 2-to-3-day interval between fractions is preferable in the multi-fraction schedules for effective treatments.
Collapse
Affiliation(s)
- Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Medical Physics and Engineering, Graduate School of Medicine, Division of Health Sciences, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobuyuki Kanematsu
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Mio Nakajima
- QST Hospital, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
12
|
Khaledi N, Khan R, Gräfe JL. Historical Progress of Stereotactic Radiation Surgery. J Med Phys 2023; 48:312-327. [PMID: 38223793 PMCID: PMC10783188 DOI: 10.4103/jmp.jmp_62_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 01/16/2024] Open
Abstract
Radiosurgery and stereotactic radiotherapy have established themselves as precise and accurate areas of radiation oncology for the treatment of brain and extracranial lesions. Along with the evolution of other methods of radiotherapy, this type of treatment has been associated with significant advances in terms of a variety of modalities and techniques to improve the accuracy and efficacy of treatment. This paper provides a comprehensive overview of the progress in stereotactic radiosurgery (SRS) over several decades, and includes a review of various articles and research papers, commencing with the emergence of stereotactic techniques in radiotherapy. Key clinical aspects of SRS, such as fixation methods, radiobiology considerations, quality assurance practices, and treatment planning strategies, are presented. In addition, the review highlights the technological advancements in treatment modalities, encompassing the transition from cobalt-based systems to linear accelerator-based modalities. By addressing these topics, this study aims to offer insights into the advancements that have shaped the field of SRS, that have ultimately enhanced the accuracy and effectiveness of treatment.
Collapse
Affiliation(s)
- Navid Khaledi
- Department of Medical Physics, Cancer Care Manitoba, Winnipeg, MB, Canada
| | - Rao Khan
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
- Department of Physics and Astronomy and Department of Radiation Oncology, Howard University, Washington, District of Columbia, USA
| | - James L. Gräfe
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
- Cancer Care Program, Dr. H. Bliss Murphy Cancer Center. 300 Prince Philip Drive St. John’s, NL, Canada
| |
Collapse
|
13
|
Smieja J. Mathematical Modeling Support for Lung Cancer Therapy-A Short Review. Int J Mol Sci 2023; 24:14516. [PMID: 37833963 PMCID: PMC10572824 DOI: 10.3390/ijms241914516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023] Open
Abstract
The paper presents a review of models that can be used to describe dynamics of lung cancer growth and its response to treatment at both cell population and intracellular processes levels. To address the latter, models of signaling pathways associated with cellular responses to treatment are overviewed. First, treatment options for lung cancer are discussed, and main signaling pathways and regulatory networks are briefly reviewed. Then, approaches used to model specific therapies are discussed. Following that, models of intracellular processes that are crucial in responses to therapies are presented. The paper is concluded with a discussion of the applicability of the presented approaches in the context of lung cancer.
Collapse
Affiliation(s)
- Jaroslaw Smieja
- Department of Systems Biology and Engineering, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
| |
Collapse
|
14
|
Hernández A, Endesfelder D, Einbeck J, Puig P, Benadjaoud MA, Higueras M, Ainsbury E, Gruel G, Oestreicher U, Barrios L, Barquinero JF. Biodose Tools: an R shiny application for biological dosimetry. Int J Radiat Biol 2023; 99:1378-1390. [PMID: 36731491 DOI: 10.1080/09553002.2023.2176564] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
INTRODUCTION In the event of a radiological accident or incident, the aim of biological dosimetry is to convert the yield of a specific biomarker of exposure to ionizing radiation into an absorbed dose. Since the 1980s, various tools have been used to deal with the statistical procedures needed for biological dosimetry, and in general those who made several calculations for different biomarkers were based on closed source software. Here we present a new open source program, Biodose Tools, that has been developed under the umbrella of RENEB (Running the European Network of Biological and retrospective Physical dosimetry). MATERIALS AND METHODS The application has been developed using the R programming language and the shiny package as a framework to create a user-friendly online solution. Since no unique method exists for the different mathematical processes, several meetings and periodic correspondence were held in order to reach a consensus on the solutions to be implemented. RESULTS The current version 3.6.1 supports dose-effect fitting for dicentric and translocation assay. For dose estimation Biodose Tools implements those methods indicated in international guidelines and a specific method to assess heterogeneous exposures. The app can include information on the irradiation conditions to generate the calibration curve. Also, in the dose estimate, information about the accident can be included as well as the explanation of the results obtained. Because the app allows generating a report in various formats, it allows traceability of each biological dosimetry study carried out. The app has been used globally in different exercises and training, which has made it possible to find errors and improve the app itself. There are some features that still need consensus, such as curve fitting and dose estimation using micronucleus analysis. It is also planned to include a package dedicated to interlaboratory comparisons and the incorporation of Bayesian methods for dose estimation. CONCLUSION Biodose Tools provides an open-source solution for biological dosimetry laboratories. The consensus reached helps to harmonize the way in which uncertainties are calculated. In addition, because each laboratory can download and customize the app's source code, it offers a platform to integrate new features.
Collapse
Affiliation(s)
- Alfredo Hernández
- Department of Animal Biology, Plant Biology and Ecology (BABVE), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - David Endesfelder
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| | - Jochen Einbeck
- Department of Mathematical Sciences, and Durham Research Methods Centre, Durham University, Durham, UK
| | - Pedro Puig
- Department of Mathematics, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centre de Recerca Matemàtica, Bellaterra, Spain
| | - Mohamed Amine Benadjaoud
- Radiobiology and Regenerative Medicine Research Service (SERAMED), Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Manuel Higueras
- Scientific Computation & Technological Innovation Center (SCoTIC), Universidad de La Rioja, Logroño, Spain
| | | | - Gaëtan Gruel
- Radiobiology of Accidental Exposure Laboratory (LRAcc), Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Ursula Oestreicher
- Department of Effects and Risks of Ionising and Non-Ionising Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| | - Leonardo Barrios
- Department of Cell Biology, Physiology and Immunology (BCFI), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joan Francesc Barquinero
- Department of Animal Biology, Plant Biology and Ecology (BABVE), Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
15
|
Dieudonné A, Sanchez-Garcia M, Bando-Delaunay A, Lebtahi R. Concepts and methods for the dosimetry of radioembolisation of the liver with Y-90-loaded microspheres. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:998793. [PMID: 39390993 PMCID: PMC11464973 DOI: 10.3389/fnume.2022.998793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/22/2022] [Indexed: 10/12/2024]
Abstract
This article aims at presenting in a didactic way, dosimetry concepts and methods that are relevant for radio-embolization of the liver with 90Y-microspheres. The application of the medical internal radiation dose formalism to radio-embolization is introduced. This formalism enables a simplified dosimetry, where the absorbed dose in a given tissue depends on only its mass and initial activity. This is applied in the single-compartment method, partition model, for the liver, tumour and lung dosimetry, and multi-compartment method, allowing identification of multiple tumours. Voxel-based dosimetry approaches are also discussed. This allows taking into account the non-uniform uptake within a compartment, which translates into a non-uniform dose distribution, represented as a dose-volume histogram. For this purpose, dose-kernel convolution allows propagating the energy deposition around voxel-sources in a computationally efficient manner. Alternatively, local-energy deposition is preferable when the spatial resolution is comparable or larger than the beta-particle path. Statistical tools may be relevant in establishing dose-effect relationships in a given population. These include tools such as the logistic regression or receiver operator characteristic analysis. Examples are given for illustration purpose. Moreover, tumour control probability modelling can be assessed through the linear-quadratic model of Lea and Catcheside and its counterpart, the normal-tissue complication probability model of Lyman, which is suitable to the parallel structure of the liver. The selectivity of microsphere administration allows tissue sparing, which can be considered with the concept of equivalent uniform dose, for which examples are also given. The implication of microscopic deposition of microspheres is also illustrated through a liver toxicity model, even though it is not clinically validated. Finally, we propose a reflection around the concept of therapeutic index (TI), which could help tailor treatment planning by determining the treatment safety through the evaluation of TI based on treatment-specific parameters.
Collapse
Affiliation(s)
- Arnaud Dieudonné
- Department of Nuclear Medicine, Beaujon Hospital, APHP, Nord, University of Paris Cité, Clichy, France
- Department of Nuclear Medicine, Henri Becquerel Center, Rouen, France
| | - Manuel Sanchez-Garcia
- Servicio de Radiofisica y Proteccion Radiologica, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Aurélie Bando-Delaunay
- Department of Nuclear Medicine, Beaujon Hospital, APHP, Nord, University of Paris Cité, Clichy, France
| | - Rachida Lebtahi
- Department of Nuclear Medicine, Beaujon Hospital, APHP, Nord, University of Paris Cité, Clichy, France
| |
Collapse
|
16
|
Compact and very high dose-rate plasma focus radiation sources for medical applications. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Chow B, Warkentin B, Nanda K, Ghosh S, Huang F, Gamper AM, Menon G. BAIRDA: a novel in vitro setup to quantify radiobiological parameters for cervical cancer brachytherapy dose estimations. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac4fa3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/27/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. Brachytherapy (BT) dose prescriptions for locally advanced cervical cancer are made with account for the radiobiological parameters, α/β ratio and halftime of repair (T
1/2
). However, a wide range of parameter values has been reported which can challenge commonly held equivalencies between dose prescriptions. This is the first reported study that aims to develop an in vitro experimental technique using clinical high-dose-rate (HDR) and pulsed-dose-rate (PDR) Ir-192 brachytherapy afterloaders to quantify these parameters in vitro and to contextualize findings within contemporary practice. Approach. To efficiently quantify α/β and T
1/2
, in vitro experiments more reflective of clinical BT practice than traditional clonogenic survival assays were developed and applied to four squamous cell carcinoma cell lines (CaSki, C-33A, SiHa, and SW756). Radiation was delivered using single acute and fractionated dose treatments with a conventional irradiator and clinical HDR and PDR BT afterloaders. For the latter, a novel brachytherapy afterloader
in vitro
radiation delivery apparatus (BAIRDA) was developed. Main Results. The α/β and T
1/2
values determined using BAIRDA and the conventional irradiator showed close agreement, validating the novel apparatus and technique. For CaSki, C-33A, SiHa, and SW756, the BAIRDA-measured α/β ratios (5.2 [4.6–5.8], 5.6 [4.5–6.6], 6.3 [4.9–7.7], and 5.3 [4.7–6.0] Gy, respectively) were consistently smaller, while the T
1/2
(3.3 [2.7–3.9], 2.7 [2.0–3.3], 2.8 (2.4–3.1], and 4.8 [4.1–5.4] hours) larger, than the widely accepted values in clinical practice (α/β = 10 Gy; T
1/2
= 1.5 h). Significance. In vitro experiments using BAIRDA provided evidence for differences between the conventionally selected and experimentally determined α/β ratio and T
1/2
. Treatment regimens using HDR-BT and PDR-BT, designed to deliver equivalent radiobiological doses based on conventional values, were shown to differ by up to 27 Gy EQD2 – an effect that could impact treatment outcomes in cervical cancer. Furthermore, with BAIRDA, we have developed a novel method for radiobiological research in BT.
Collapse
|
18
|
Hamid MB, Serafin AM, Akudugu JM. Selective therapeutic benefit of X-rays and inhibitors of EGFR, PI3K/mTOR, and Bcl-2 in breast, lung, and cervical cancer cells. Eur J Pharmacol 2021; 912:174612. [PMID: 34736967 DOI: 10.1016/j.ejphar.2021.174612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
Cancer continues to be a growing burden, especially in the resource limited regions of the world, and more effective and affordable therapies are highly desirable. In this study, the effect of X-ray irradiation and four inhibitors, viz. those against epidermal growth factor receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), mammalian target of rapamycin (mTOR) and B-cell lymphoma 2 (Bcl-2) was evaluated in lung, breast, and cervical cancer cell lines, including normal cell lines to determine and compare the potential therapeutic benefit of these treatment modalities. A clonogenic survival assay was used to determine the radiosensitivity and cytotoxicity of inhibitors of EGFR, PI3K/mTOR, and Bcl-2 in the cell lines. From the data, the equivalent dose at which 50% of the cell populations were killed, for cancer and normal cells, was used to determine the relative cellular sensitivity to X-ray irradiation and inhibitor treatment. It was found that breast cancer cell lines were more sensitive to X-ray irradiation, whilst cervical and lung cancer cell lines were more sensitive to EGFR and PI3K/mTOR inhibitor therapy. These data suggest that patients with breast cancer possessing similar characteristics to MDA-MB-231 and MCF-7 cells may derive therapeutic benefit from X-ray irradiation, whilst EGFR and PI3K/mTOR inhibitor therapy may potentially benefit cancer patients possessing cancers similar to HeLa and A549 cells.
Collapse
Affiliation(s)
- Mogammad Baaghith Hamid
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - Antonio Mendes Serafin
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa.
| | - John Mbabuni Akudugu
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa.
| |
Collapse
|
19
|
Capala J, Graves SA, Scott A, Sgouros G, James SS, Zanzonico P, Zimmerman BE. Dosimetry for Radiopharmaceutical Therapy: Current Practices and Commercial Resources. J Nucl Med 2021; 62:3S-11S. [PMID: 34857621 PMCID: PMC12079727 DOI: 10.2967/jnumed.121.262749] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
With the ongoing dramatic growth of radiopharmaceutical therapy, research and development in internal radiation dosimetry continue to advance both at academic medical centers and in industry. The basic paradigm for patient-specific dosimetry includes administration of a pretreatment tracer activity of the therapeutic radiopharmaceutical; measurement of its time-dependent biodistribution; definition of the pertinent anatomy; integration of the measured time-activity data to derive source-region time-integrated activities; calculation of the tumor, organ-at-risk, and/or whole-body absorbed doses; and prescription of the therapeutic administered activity. This paper provides an overview of the state of the art of patient-specific dosimetry for radiopharmaceutical therapy, including current methods and commercially available software and other resources.
Collapse
Affiliation(s)
| | | | - Aaron Scott
- Johns Hopkins University, Baltimore, Maryland
| | | | | | - Pat Zanzonico
- Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Brian E Zimmerman
- National Institute of Standards and Technology, Gaithersburg, Maryland
| |
Collapse
|
20
|
Amula S, Rao T S, B V, Kumar A AA. Translocation dose-response curve for 137Cs γ-rays: Dose validation at various dose rate and changing dose rate conditions. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 870-871:503406. [PMID: 34583822 DOI: 10.1016/j.mrgentox.2021.503406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/25/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
A Fluorescence In-Situ Hybridization (FISH) based translocation dose-response curve has been constructed for biodosimetry application in our nuclear establishment at Kalpakkam, India. Peripheral blood sample from a healthy male donor (27 years) was exposed to nine different doses (0.1 Gy-5 Gy) of 137Cs γ-rays (100 mGy/min) in an automated calibration facility with a linear distancing system and subjected to FISH assay using chromosome 1, 2 and 4 specific fluorescent probes. Validation of the dose-response curve was done following three different approaches i) by blind test method ii) using blood samples exposed to γ doses (0.5, 1 & 2 Gy) at different dose rates (124, 23 & 10 mGy/min) and iii) with blood samples exposed to 0.5, 1 & 2 Gy γ doses at changing dose rates (increasing and decreasing dose rates). Results showed that a predefined dose-response curve constructed at a particular acute dose rate can be used for dose estimation in exposures involving varying dose rates and changing dose rate scenarios.
Collapse
Affiliation(s)
- Saitya Amula
- Homi Bhabha National Institute, Anushakthi Nagar, Mumbai, India; Radiological and Environment Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu, India
| | - Subba Rao T
- Homi Bhabha National Institute, Anushakthi Nagar, Mumbai, India; Water and Steam Chemistry Division, Bhabha Atomic Research Centre (F), Kalpakkam, Tamilnadu, India
| | - Venkatraman B
- Radiological and Environment Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu, India
| | - Arul Anantha Kumar A
- Radiological and Environment Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu, India.
| |
Collapse
|
21
|
Endesfelder D, Oestreicher U, Kulka U, Ainsbury EA, Moquet J, Barnard S, Gregoire E, Martinez JS, Trompier F, Ristic Y, Woda C, Waldner L, Beinke C, Vral A, Barquinero JF, Hernandez A, Sommer S, Lumniczky K, Hargitai R, Montoro A, Milic M, Monteiro Gil O, Valente M, Bobyk L, Sevriukova O, Sabatier L, Prieto MJ, Moreno Domene M, Testa A, Patrono C, Terzoudi G, Triantopoulou S, Histova R, Wojcik A. RENEB/EURADOS field exercise 2019: robust dose estimation under outdoor conditions based on the dicentric chromosome assay. Int J Radiat Biol 2021; 97:1181-1198. [PMID: 34138666 DOI: 10.1080/09553002.2021.1941380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/19/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Biological and/or physical assays for retrospective dosimetry are valuable tools to recover the exposure situation and to aid medical decision making. To further validate and improve such biological and physical assays, in 2019, EURADOS Working Group 10 and RENEB performed a field exercise in Lund, Sweden, to simulate various real-life exposure scenarios. MATERIALS AND METHODS For the dicentric chromosome assay (DCA), blood tubes were located at anthropomorphic phantoms positioned in different geometries and were irradiated with a 1.36 TBq 192Ir-source. For each exposure condition, dose estimates were provided by at least one laboratory and for four conditions by 17 participating RENEB laboratories. Three radio-photoluminescence glass dosimeters were placed at each tube to assess reference doses. RESULTS The DCA results were homogeneous between participants and matched well with the reference doses (≥95% of estimates within ±0.5 Gy of the reference). For samples close to the source systematic underestimation could be corrected by accounting for exposure time. Heterogeneity within and between tubes was detected for reference doses as well as for DCA doses estimates. CONCLUSIONS The participants were able to successfully estimate the doses and to provide important information on the exposure scenarios under conditions closely resembling a real-life situation.
Collapse
Affiliation(s)
| | | | - Ulrike Kulka
- Bundesamt für Strahlenschutz, BfS, Oberschleissheim, Germany
| | | | | | | | - Eric Gregoire
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Juan S Martinez
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - François Trompier
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Yoann Ristic
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Clemens Woda
- Helmholtz Zentrum München, Institute of Radiation Medicine, Neuherberg, Germany
| | - Lovisa Waldner
- Department of Translational Medicine, Medical Radiation Physics, Lund University, Malmö, Sweden
| | | | - Anne Vral
- Faculty of Medicine and Health Sciences, Universiteit Gent, Gent, Belgium
| | - Joan-Francesc Barquinero
- Department of Animal Biology, Plant Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alfredo Hernandez
- Department of Animal Biology, Plant Biology and Ecology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Independent Researcher, London, UK
| | | | - Katalin Lumniczky
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, Budapest, Hungary
| | - Rita Hargitai
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, Budapest, Hungary
| | - Alegría Montoro
- Laboratorio de Dosimetría Biológica, Servicio de Protección Radiológica Hospital, Universitario Politécnico la Fe, Valencia, Spain
| | - Mirta Milic
- Institute for Medical Research and Occupational Health Mutagenesis Unit, Zagreb, Croatia
| | - Octávia Monteiro Gil
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Marco Valente
- Department of Radiation Biological, Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Laure Bobyk
- Department of Radiation Biological, Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Olga Sevriukova
- Department of Expertise and Exposure Monitoring, Radiation Protection Centre, Vilnius, Lithuania
| | - Laure Sabatier
- PROCyTOX, Commissariat à l'Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, France
- Graduate School Life Science and Health, Université Paris, Saclay, France
| | - María Jesús Prieto
- Laboratorio de Dosimetría Biológica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Mercedes Moreno Domene
- Laboratorio de Dosimetría Biológica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Antonella Testa
- Agenzia Nazionale per le Nuove Tecnologie, L'energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Clarice Patrono
- Agenzia Nazionale per le Nuove Tecnologie, L'energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| | - Georgia Terzoudi
- Health Physics, Radiobiology and Cytogenetics Laboratory, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Sotiria Triantopoulou
- Health Physics, Radiobiology and Cytogenetics Laboratory, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Rositsa Histova
- Department of Radiobiology, National Centre of Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - Andrzej Wojcik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
- Institute of Biology, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
22
|
Mathematical model for the thermal enhancement of radiation response: thermodynamic approach. Sci Rep 2021; 11:5503. [PMID: 33750833 PMCID: PMC7970926 DOI: 10.1038/s41598-021-84620-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/15/2021] [Indexed: 02/08/2023] Open
Abstract
Radiotherapy can effectively kill malignant cells, but the doses required to cure cancer patients may inflict severe collateral damage to adjacent healthy tissues. Recent technological advances in the clinical application has revitalized hyperthermia treatment (HT) as an option to improve radiotherapy (RT) outcomes. Understanding the synergistic effect of simultaneous thermoradiotherapy via mathematical modelling is essential for treatment planning. We here propose a theoretical model in which the thermal enhancement ratio (TER) relates to the cell fraction being radiosensitised by the infliction of sublethal damage through HT. Further damage finally kills the cell or abrogates its proliferative capacity in a non-reversible process. We suggest the TER to be proportional to the energy invested in the sensitisation, which is modelled as a simple rate process. Assuming protein denaturation as the main driver of HT-induced sublethal damage and considering the temperature dependence of the heat capacity of cellular proteins, the sensitisation rates were found to depend exponentially on temperature; in agreement with previous empirical observations. Our findings point towards an improved definition of thermal dose in concordance with the thermodynamics of protein denaturation. Our predictions well reproduce experimental in vitro and in vivo data, explaining the thermal modulation of cellular radioresponse for simultaneous thermoradiotherapy.
Collapse
|
23
|
Seniwal B, Freitas LF, Mendes BM, Lugão AB, Katti KV, Fonseca TCF. In silico dosimetry of low-dose rate brachytherapy using radioactive nanoparticles. Phys Med Biol 2021; 66:045016. [PMID: 33561008 DOI: 10.1088/1361-6560/abd671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE Nanoparticles (NPs) with radioactive atoms incorporated within the structure of the NP or bound to its surface, functionalized with biomolecules are reported as an alternative to low-dose-rate seed-based brachytherapy. In this study, authors report a mathematical dosimetric study on low-dose rate brachytherapy using radioactive NPs. METHOD Single-cell dosimetry was performed by calculating cellular S-values for spherical cell model using Au-198, Pd-103 and Sm-153 NPs. The cell survival and tumor volume versus time curves were calculated and compared to the experimental studies on radiotherapeutic efficiency of radioactive NPs published in the literature. Finally, the radiotherapeutic efficiency of Au-198, Pd-103 and Sm-153 NPs was tested for variable: administered radioactivity, tumor volume and tumor cell type. RESULT At the cellular level Sm-153 presented the highest S-value, followed by Pd-103 and Au-198. The calculated cell survival and tumor volume curves match very well with the published experimental results. It was found that Au-198 and Sm-153 can effectively treat highly aggressive, large tumor volumes with low radioactivity. CONCLUSION The accurate knowledge of uptake rate, washout rate of NPs, radio-sensitivity and tumor repopulation rate is important for the calculation of cell survival curves. Self-absorption of emitted radiation and dose enhancement due to AuNPs must be considered in the calculations. Selection of radionuclide for radioactive NP must consider size of tumor, repopulation rate and radiosensitivity of tumor cells. Au-198 NPs functionalized with Mangiferin are a suitable choice for treating large, radioresistant and rapidly growing tumors.
Collapse
Affiliation(s)
- Baljeet Seniwal
- Departamento de Engenharia Nuclear-Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brasil
| | | | | | | | | | | |
Collapse
|
24
|
Sagara T, Kato T, Murakami M. Biological impact of dosimetric perturbations of a fiducial marker and the daily number of fields in proton therapy for prostate cancer. Biomed Phys Eng Express 2021; 7:025007. [PMID: 33522497 DOI: 10.1088/2057-1976/abd9d4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to estimate the biological impact of dosimetric perturbations of a fiducial marker and the daily number of fields in proton therapy for prostate cancer. Using a linear-quadratic model, normalized total doses (NTDs) of points where deposited dose was reduced from the prescribed dose by dosimetric perturbation of a fiducial marker were calculated in two hypothetical prostate cancer treatment schedules: a) irradiation of both parallel-opposed lateral fields and b) irradiation of alternate field in each daily treatment. The impact of hypofractionation and sublethal damage repair between irradiation on NTD was also estimated. The NTD of two fields/day schedule becomes lower than that of one field/day schedule. The difference becomes larger as dose reduction from one of two fields becomes more enhanced. The NTD reduction from the total dose in the two fields/day schedule is largest (30% of total dose) where the dose from one beam is completely lost by a fiducial marker. In contrast, the NTD reduction from the total dose in the one field/day schedule is largest (9% of total dose) where the half dose from one beam is decreased by a fiducial marker. In addition, the NTD reduction becomes larger as the fractional dose increases in a hypofractionated regimen, and when the effect of sublethal damage repair was incorporated. These influences become significant in prostate cancer since the radiobiological sensitivity α/β of prostate cancer is lower than other cancer types and normal tissues late complication. Treating with one alternate field in a daily treatment can improve a deteriorating treatment effect by dosimetric distortion of a fiducial marker in prostate cancer treatment. However, the choice of the number of beams in a fraction must also be determined by considering the sparing of normal tissues and patient-specific status.
Collapse
Affiliation(s)
- Tatstuhiko Sagara
- Department of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center, Fukushima, Japan
| | | | | |
Collapse
|
25
|
Lee TK, Rosen II. Development of generalized time-dependent TCP model and the investigation of the effect of repopulation and weekend breaks in fractionated external beam therapy. J Theor Biol 2020; 512:110565. [PMID: 33346019 DOI: 10.1016/j.jtbi.2020.110565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
We developed a tumor control probability (TCP) model that incorporates variable time intervals between fractions and a kick-off time (Tk) for radiation-induced accelerated tumor proliferation. The resulting Lee-Rosen model, TCPLR, was used to compute TCPs for treatment courses with and without weekend treatment for tumors with different proliferation rates - slow (prostate), moderate (breast), and rapid (head and neck). TCPs were computed using ideal uniform dose distributions and actual patient plans. The doses for the uniform plans were the mean doses for the prostate and breast cases and the minimum tumor dose for the head and neck case. The TCPLR model predictions agreed with expectations that TCP increases with increasing Tk in all cases. For standard fractionation, as Tk increased from 0 to 4 weeks, TCP increased for the patient distributions by 74.7% for the head and neck cancer, by 6.2% for the breast cancer, and by 2.4% for the prostate cancers. For the uniform dose distributions, the increases were 79.2%, 5.7%, and 2.3%, respectively. TCP increased as the number of weekend breaks decreased. The effect of weekend breaks decreased as the tumor proliferation rate decreased. For the head and neck tumor, notable decreases in TCP of 6.0% (uniform dose distribution) and 6.8% (actual plan dose distribution) were observed with Friday starts compared to Monday starts for the standard 5 fx/wk schedule (Tk = 4 wk). The 7 fx/wk schedule produced increases in TCP of 17.0% and 20.5% for the uniform and patient dose distributions, respectively, compared to the standard schedule. For the breast cancer, starting the 5 fx/wk schedule on Friday decreased the TCP by 0.2% (Tk = 4 wk) compared to a Monday start. The 7 fx/wk schedule produced increases of 0.3% and 0.4% in TCP compared to the standard schedule for the uniform and patient dose distributions, respectively (Tk = 4 wk). For the prostate cancer, the change in TCP for 5 fx/wk schedules starting on different days was 0.1%. The 7 fx/wk schedule increased TCP by 0.8% compared to the standard schedule (Tk = 4 wk). TCP values for the uniform dose distributions for the standard schedule (Tk = 4 wk) agreed with the TCP values for the actual dose distributions within 4.5% for the head and neck tumor and within 0.2% for the breast and prostate tumors. This good agreement suggests that the doses chosen for the uniform dose distributions were good approximations to the clinical doses. The results for head and neck tumors support, in part, the current practice of hyperfractionated/accelerated radiotherapy. They also suggest that shortening the overall treatment time for conventional fractions by eliminating weekend breaks might be beneficial. The predicted effect on TCP of the various schedules studied was insignificant for prostate and breast tumors, suggesting that a weekend treatment might not be necessary for patients starting radiotherapy on a Friday. There is significant uncertainty in the values of the model parameters chosen for these calculations, and no consideration was given to the potential effects of these various schedules on normal tissues.
Collapse
Affiliation(s)
- Tae Kyu Lee
- Indiana University Health Arnett, Lafayette, IN, USA.
| | - Isaac I Rosen
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
26
|
Kawahara D, Nakano H, Saito A, Ochi Y, Nagata Y. Formulation of objective indices to quantify machine failure risk analysis for interruptions in radiotherapy. J Appl Clin Med Phys 2020; 22:165-173. [PMID: 33326695 PMCID: PMC7856522 DOI: 10.1002/acm2.13126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022] Open
Abstract
Objectives To evaluate the effect of interruption in radiotherapy due to machine failure in patients and medical institutions using machine failure risk analysis (MFRA). Material and methods The risk of machine failure during treatment is assigned to three scores (biological effect, B; occurrence, O; and cost of labor and repair parts, C) for each type of machine failure. The biological patient risk (BPR) and the economic institution risk (EIR) are calculated as the product of B and O (B×O) and C and O (C×O), respectively. The MFRA is performed in two linear accelerators (linacs). Result The multileaf collimator (MLC) fault has the highest BPR and second highest EIR. In particular, TrueBeam has a higher BPR and EIR for MLC failures. The total EIR in TrueBeam was significantly higher than that in Clinac iX. The minor interlock had the second highest BPR, whereas a smaller EIR. Meanwhile, the EIR for the LaserGuard fault was the highest, and that for the monitor chamber fault was the second highest. These machine failures occurred in TrueBeam. The BPR and EIR should be evaluated for each linac. Further, the sensitivity of the BPR, it decreased with higher T1/2 and α/β values. No relative difference is observed in the BPR for each machine failure when T1/2 and α/β were varied. Conclusion The risk faced by patients and institutions in machine failure may be reduced using MFRA. Advances in knowledge For clinical radiotherapy, interruption can occur from unscheduled downtime with machine failures. Interruption causes sublethal damage repair. The current study evaluated the effect of interruption in radiotherapy owing to machine failure on patients and medical institutions using a new method, that is, machine failure risk analysis.
Collapse
Affiliation(s)
- Daisuke Kawahara
- Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hisashi Nakano
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Akito Saito
- Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yusuke Ochi
- Radiation Therapy Section, Department of Clinical Support, Hiroshima University Hospital, Hiroshima, Japan
| | - Yasushi Nagata
- Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan.,Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Japan
| |
Collapse
|
27
|
Neira S, Gago-Arias A, Guiu-Souto J, Pardo-Montero J. A kinetic model of continuous radiation damage to populations of cells: comparison to the LQ model and application to molecular radiotherapy. Phys Med Biol 2020; 65:245015. [PMID: 32615551 DOI: 10.1088/1361-6560/aba21d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The linear-quadratic (LQ) model to describe the survival of irradiated cells may be the most frequently used biomathematical model in radiotherapy. There has been an intense debate on the mechanistic origin of the LQ model. An interesting approach is that of obtaining LQ-like behavior from kinetic models, systems of differential equations that model the induction and repair of damage. Development of such kinetic models is particularly interesting for application to continuous dose rate therapies, such as molecular radiotherapy or brachytherapy. In this work, we present a simple kinetic model that describes the kinetics of populations of tumor cells, rather than lethal/sub-lethal lesions, which may be especially useful for application to continuous dose rate therapies, as in molecular radiotherapy. The multi-compartment model consists of a set of three differential equations. The model incorporates in an easy way different cross-interacting compartments of cells forming a tumor, and may be of especial interest for studying dynamics of treated tumors. In the fast dose delivery limit, the model can be analytically solved, obtaining a simple closed-form expression. Fitting of several surviving curves with both this solution and the LQ model shows that they produce similar fits, despite being functionally different. We have also investigated the operation of the model in the continuous dose rate scenario, firstly by fitting pre-clinical data of tumor response to 131I-CLR1404 therapy, and secondly by showing how damage repair and proliferation rates can cause a treatment to achieve control or not. Kinetic models like the one presented in this work may be of special interest when modeling response to molecular radiotherapy.
Collapse
Affiliation(s)
- Sara Neira
- Group of Medical Physics and Biomathematics, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain. Equal contribution
| | | | | | | |
Collapse
|
28
|
Bayesian Information-Theoretic Calibration of Radiotherapy Sensitivity Parameters for Informing Effective Scanning Protocols in Cancer. J Clin Med 2020; 9:jcm9103208. [PMID: 33027933 PMCID: PMC7601810 DOI: 10.3390/jcm9103208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/03/2022] Open
Abstract
With new advancements in technology, it is now possible to collect data for a variety of different metrics describing tumor growth, including tumor volume, composition, and vascularity, among others. For any proposed model of tumor growth and treatment, we observe large variability among individual patients’ parameter values, particularly those relating to treatment response; thus, exploiting the use of these various metrics for model calibration can be helpful to infer such patient-specific parameters both accurately and early, so that treatment protocols can be adjusted mid-course for maximum efficacy. However, taking measurements can be costly and invasive, limiting clinicians to a sparse collection schedule. As such, the determination of optimal times and metrics for which to collect data in order to best inform proper treatment protocols could be of great assistance to clinicians. In this investigation, we employ a Bayesian information-theoretic calibration protocol for experimental design in order to identify the optimal times at which to collect data for informing treatment parameters. Within this procedure, data collection times are chosen sequentially to maximize the reduction in parameter uncertainty with each added measurement, ensuring that a budget of n high-fidelity experimental measurements results in maximum information gain about the low-fidelity model parameter values. In addition to investigating the optimal temporal pattern for data collection, we also develop a framework for deciding which metrics should be utilized at each data collection point. We illustrate this framework with a variety of toy examples, each utilizing a radiotherapy treatment regimen. For each scenario, we analyze the dependence of the predictive power of the low-fidelity model upon the measurement budget.
Collapse
|
29
|
Dehghan M, Narimani N. Radial basis function-generated finite difference scheme for simulating the brain cancer growth model under radiotherapy in various types of computational domains. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 195:105641. [PMID: 32726719 DOI: 10.1016/j.cmpb.2020.105641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVES We extend the original mathematical model, i.e., Swanson's reaction-diffusion equation to the surfaces with no boundary, and we find a new numerical method based on a meshless approach for solving numerically Swanson's reaction-diffusion model in the square and on the sphere. METHODS To solve numerically the Swanson's reaction-diffusion model and its extension version, a collocation meshless technique, namely radial basis function-generated finite difference (RBF-FD) scheme is employed for approximating the spatial variables in the square domain and on the sphere, respectively. Also, to approximate the time variable of the studied models, a first-order semi-implicit backward Euler scheme is used. The resulting fully discrete scheme is a linear system of algebraic equations per time step that is solved via the biconjugate gradient stabilized (BiCGSTAB) iterative algorithm with a zero-fill incomplete lower-upper (ILU) preconditioner. RESULTS The numerical simulations show the growth of untreated and treated brain tumors with radiotherapy using estimated and clinical data (given from magnetic resonance imaging (MRI) scans of patients). Moreover, the results reported here can be used for improving the treatment strategies of the invasive brain tumor. CONCLUSIONS Using the developed numerical scheme in this paper, we can simulate the behavior of the invasive form of brain tumor response to radiotherapy. Also, we can see the effects of radiation response on the brain tumor cell concentration of individual patients. The proposed meshless technique, which is applied for solving numerically the studied model, does not depend on any background mesh or triangulation for approximation in comparison with mesh-dependent methods. Moreover, we apply this technique to the sphere via any set of distributed points easily.
Collapse
Affiliation(s)
- Mehdi Dehghan
- Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences, Amirkabir University of Technology, No. 424, Hafez Ave., Tehran, 15914, Iran.
| | - Niusha Narimani
- Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences, Amirkabir University of Technology, No. 424, Hafez Ave., Tehran, 15914, Iran.
| |
Collapse
|
30
|
Hermann AL, Dieudonné A, Ronot M, Sanchez M, Pereira H, Chatellier G, Garin E, Castera L, Lebtahi R, Vilgrain V. Relationship of Tumor Radiation–absorbed Dose to Survival and Response in Hepatocellular Carcinoma Treated with Transarterial Radioembolization with 90Y in the SARAH Study. Radiology 2020; 296:673-684. [DOI: 10.1148/radiol.2020191606] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Kasamatsu K, Matsuura T, Tanaka S, Takao S, Miyamoto N, Nam JM, Shirato H, Shimizu S, Umegaki K. The impact of dose delivery time on biological effectiveness in proton irradiation with various biological parameters. Med Phys 2020; 47:4644-4655. [PMID: 32652574 DOI: 10.1002/mp.14381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/31/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The purpose of this study is to evaluate the sublethal damage (SLD) repair effect in prolonged proton irradiation using the biophysical model with various cell-specific parameters of (α/β)x and T1/2 (repair half time). At present, most of the model-based studies on protons have focused on acute radiation, neglecting the reduction in biological effectiveness due to SLD repair during the delivery of radiation. Nevertheless, the dose-rate dependency of biological effectiveness may become more important as advanced treatment techniques, such as hypofractionation and respiratory gating, come into clinical practice, as these techniques sometimes require long treatment times. Also, while previous research using the biophysical model revealed a large repair effect with a high physical dose, the dependence of the repair effect on cell-specific parameters has not been evaluated systematically. METHODS Biological dose [relative biological effectiveness (RBE) × physical dose] calculation with repair included was carried out using the linear energy transfer (LET)-dependent linear-quadratic (LQ) model combined with the theory of dual radiation action (TDRA). First, we extended the dose protraction factor in the LQ model for the arbitrary number of different LET proton irradiations delivered sequentially with arbitrary time lags, referring to the TDRA. Using the LQ model, the decrease in biological dose due to SLD repair was systematically evaluated for spread-out Bragg peak (SOBP) irradiation in a water phantom with the possible ranges of both (α/β)x and repair parameters ((α/β)x = 1-15 Gy, T1/2 = 0-90 min). Then, to consider more realistic irradiation conditions, clinical cases of prostate, liver, and lung tumors were examined with the cell-specific parameters for each tumor obtained from the literature. Biological D99% and biological dose homogeneity coefficient (HC) were calculated for the clinical target volumes (CTVs), assuming dose-rate structures with a total irradiation time of 0-60 min. RESULTS The differences in the cell-specific parameters resulted in considerable variation in the repair effect. The biological dose reduction found at the center of the SOBP with 30 min of continuous irradiation varied from 1.13% to 14.4% with a T1/2 range of 1-90 min when (α/β)x is fixed as 10 Gy. It varied from 2.3% to 6.8% with an (α/β)x range of 1-15 Gy for a fixed value of T1/2 = 30 min. The decrease in biological D99% per 10 min was 2.6, 1.2, and 3.0% for the prostate, liver, and lung tumor cases, respectively. The value of the biological D99% reduction was neither in the order of (α/β)x nor prescribed dose, but both comparably contributed to the repair effect. The variation of HC was within the range of 0.5% for all cases; therefore, the dose distribution was not distorted. CONCLUSION The reduction in biological dose caused by the SLD repair largely depends on the cell-specific parameters in addition to the physical dose. The parameters should be considered carefully in the evaluation of the repair effect in prolonged proton irradiation.
Collapse
Affiliation(s)
- Koki Kasamatsu
- Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Hokkaido, 0608638, Japan
| | - Taeko Matsuura
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 0608628, Japan.,Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, 0608638, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, 0608648, Japan
| | - Sodai Tanaka
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 0608628, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, 0608648, Japan
| | - Seishin Takao
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, 0608638, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, 0608648, Japan
| | - Naoki Miyamoto
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 0608628, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, 0608648, Japan
| | - Jin-Min Nam
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, 0608648, Japan
| | - Hiroki Shirato
- Department of Proton Beam Therapy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, 0608648, Japan
| | - Shinichi Shimizu
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, 0608638, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, 0608648, Japan.,Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, 0608648, Japan
| | - Kikuo Umegaki
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 0608628, Japan.,Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, 0608638, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, 0608648, Japan
| |
Collapse
|
32
|
Her EJ, Haworth A, Rowshanfarzad P, Ebert MA. Progress towards Patient-Specific, Spatially-Continuous Radiobiological Dose Prescription and Planning in Prostate Cancer IMRT: An Overview. Cancers (Basel) 2020; 12:E854. [PMID: 32244821 PMCID: PMC7226478 DOI: 10.3390/cancers12040854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/12/2020] [Accepted: 03/27/2020] [Indexed: 01/30/2023] Open
Abstract
Advances in imaging have enabled the identification of prostate cancer foci with an initial application to focal dose escalation, with subvolumes created with image intensity thresholds. Through quantitative imaging techniques, correlations between image parameters and tumour characteristics have been identified. Mathematical functions are typically used to relate image parameters to prescription dose to improve the clinical relevance of the resulting dose distribution. However, these relationships have remained speculative or invalidated. In contrast, the use of radiobiological models during treatment planning optimisation, termed biological optimisation, has the advantage of directly considering the biological effect of the resulting dose distribution. This has led to an increased interest in the accurate derivation of radiobiological parameters from quantitative imaging to inform the models. This article reviews the progress in treatment planning using image-informed tumour biology, from focal dose escalation to the current trend of individualised biological treatment planning using image-derived radiobiological parameters, with the focus on prostate intensity-modulated radiotherapy (IMRT).
Collapse
Affiliation(s)
- Emily Jungmin Her
- Department of Physics, University of Western Australia, Crawley, WA 6009, Australia
| | - Annette Haworth
- Institute of Medical Physics, University of Sydney, Camperdown, NSW 2050, Australia
| | - Pejman Rowshanfarzad
- Department of Physics, University of Western Australia, Crawley, WA 6009, Australia
| | - Martin A. Ebert
- Department of Physics, University of Western Australia, Crawley, WA 6009, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- 5D Clinics, Claremont, WA 6010, Australia
| |
Collapse
|
33
|
Effect of dose rate in hypofractionated radiotherapy. Phys Med 2019; 65:191-199. [PMID: 31499426 DOI: 10.1016/j.ejmp.2019.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/04/2019] [Accepted: 07/09/2019] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To evaluate how dose rate affects radiobiological properties of hypofractionated radiotherapy. METHODS This study is based on the linear-quadratic (LQ) model used to determine biologically effective dose (BED). Changes in the biologically effective dose in normal tissue (BEDnt) are studied as a function of number of fractions and dose rate under the condition of fixed BED in the treatment target (BEDtar). RESULTS In this study we demonstrate that compared to standard fractionation, hypofractionation can either decrease or increase BEDnt depending on the average dose rate. In the considered examples, maximum value of BEDnt in the spinal cord varies monotonically with number of fractions (Nf) when dose rate is sufficiently high so that the corresponding fraction time is much smaller than characteristic repair half-lives for malignant and normal cells. In contrast, in the case of a lower dose rate of 300 MU/min, BEDnt in the cord can vary non-monotonically with Nf. In the later case, there exists optimum number of fractions which corresponds to the minimum BEDnt. It is shown that in the case when radiation induced sublethal damage is repaired faster in the target than in the affected organ at risk (OAR), increasing dose rate helps lower BEDnt. CONCLUSION We have demonstrated that, as compared to standard fractionation, hypofractionation can either increase or decrease BEDnt in the OAR depending on the utilized dose rate. Consequently, radiobiological assessment of hypofractionation should take into account dose rate as well as repair rates in the target and OAR.
Collapse
|
34
|
Yonekura Y, Mattsson S, Flux G, Bolch WE, Dauer LT, Fisher DR, Lassmann M, Palm S, Hosono M, Doruff M, Divgi C, Zanzonico P. ICRP Publication 140: Radiological Protection in Therapy with Radiopharmaceuticals. Ann ICRP 2019; 48:5-95. [PMID: 31565950 DOI: 10.1177/0146645319838665] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Radiopharmaceuticals are increasingly used for the treatment of various cancers with novel radionuclides, compounds, tracer molecules, and administration techniques. The goal of radiation therapy, including therapy with radiopharmaceuticals, is to optimise the relationship between tumour control probability and potential complications in normal organs and tissues. Essential to this optimisation is the ability to quantify the radiation doses delivered to both tumours and normal tissues. This publication provides an overview of therapeutic procedures and a framework for calculating radiation doses for various treatment approaches. In radiopharmaceutical therapy, the absorbed dose to an organ or tissue is governed by radiopharmaceutical uptake, retention in and clearance from the various organs and tissues of the body, together with radionuclide physical half-life. Biokinetic parameters are determined by direct measurements made using techniques that vary in complexity. For treatment planning, absorbed dose calculations are usually performed prior to therapy using a trace-labelled diagnostic administration, or retrospective dosimetry may be performed on the basis of the activity already administered following each therapeutic administration. Uncertainty analyses provide additional information about sources of bias and random variation and their magnitudes; these analyses show the reliability and quality of absorbed dose calculations. Effective dose can provide an approximate measure of lifetime risk of detriment attributable to the stochastic effects of radiation exposure, principally cancer, but effective dose does not predict future cancer incidence for an individual and does not apply to short-term deterministic effects associated with radiopharmaceutical therapy. Accident prevention in radiation therapy should be an integral part of the design of facilities, equipment, and administration procedures. Minimisation of staff exposures includes consideration of equipment design, proper shielding and handling of sources, and personal protective equipment and tools, as well as education and training to promote awareness and engagement in radiological protection. The decision to hold or release a patient after radiopharmaceutical therapy should account for potential radiation dose to members of the public and carers that may result from residual radioactivity in the patient. In these situations, specific radiological protection guidance should be provided to patients and carers.
Collapse
|
35
|
Gałecki M, Tartas A, Szymanek A, Sims E, Lundholm L, Sollazzo A, Cheng L, Fujishima Y, Yoshida MA, Żygierewicz J, Wojcik A, Brzozowska-Wardecka B. Precision of scoring radiation-induced chromosomal aberrations and micronuclei by unexperienced scorers. Int J Radiat Biol 2019; 95:1251-1258. [PMID: 31140900 DOI: 10.1080/09553002.2019.1625462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Purpose: Dose assessment plays an important role in case of radiological accidents and can be performed by scoring structural changes of chromosome morphology induced in cells by ionizing radiation. The results of such a test are biased by scorer experience, therefore, simple to learn assays are recommended to be used when fast analysis of a large amount of data is needed. The aim of this study was to compare the performance of two radiobiological assays - chromosomal aberrations and micronuclei - by unexperienced scorers with the reference values generated by an expert. Materials and methods: Each participant of an EU-funded two-week radiobiology course was asked to score Chinese hamster ovary cells exposed to gamma radiation up to 4 Gy. The congruence of students' and expert's scores at each dose and the coherence of the dose-response curve parameters between the students were investigated. Results: Micronucleus test tended to be faster and easier to learn than scoring chromosomal aberrations. However, both assays carried out by inexperienced students showed reasonable dose-response curves. Conclusions: In the case of a large radiological accident involving many casualties, the unexperienced scorers would support the process of biodosimetric triage by cytogenetic biological dosimetry.
Collapse
Affiliation(s)
- Maciej Gałecki
- Biomedical Physics Division, Faculty of Physics, University of Warsaw , Warsaw , Poland
| | - Adrianna Tartas
- Biomedical Physics Division, Faculty of Physics, University of Warsaw , Warsaw , Poland
| | | | - Emma Sims
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield Soil and Agrifood Institute, Cranfield University , Bedford , UK
| | - Lovisa Lundholm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Centre for Radiation Protection Research, Stockholm University , Stockholm , Sweden
| | - Alice Sollazzo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Centre for Radiation Protection Research, Stockholm University , Stockholm , Sweden
| | - Lei Cheng
- Department of Molecular Biosciences, The Wenner-Gren Institute, Centre for Radiation Protection Research, Stockholm University , Stockholm , Sweden
| | - Yohei Fujishima
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University , Hirosaki , Japan
| | - Mitsuaki A Yoshida
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University , Hirosaki , Japan
| | - Jarosław Żygierewicz
- Biomedical Physics Division, Faculty of Physics, University of Warsaw , Warsaw , Poland
| | - Andrzej Wojcik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Centre for Radiation Protection Research, Stockholm University , Stockholm , Sweden.,Institute of Biology, Jan Kochanowski University , Kielce , Poland
| | | |
Collapse
|
36
|
Schneider U, Vasi F, Schmidli K, Besserer J. TRACK EVENT THEORY: A CELL SURVIVAL and RBE MODEL CONSISTENT WITH NANODOSIMETRY. RADIATION PROTECTION DOSIMETRY 2019; 183:17-21. [PMID: 30535286 DOI: 10.1093/rpd/ncy236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 06/09/2023]
Abstract
A simple model for cell survival which is valid also at high dose has been developed. The model parameters can be traced back to measurable quantities from nanodosimetry. It is assumed that a cell is killed by an event which is defined by two or more double strand breaks in differently sized lethal interaction volumes (LIVs). Two different mechanisms can produce events, one-track events by one-particle track and two-track events by two. One- and two-track events are statistically independent. From the stochastic nature of cell killing which is described by the Poisson distribution, the cell survival probability was derived. The ratio of the number of one- and two-track events can be directly expressed in terms of nanodosimetry by the probability F2 that at least two ionizations are produced in a basic interaction volume (5-10 base pairs). From the model, relative biological effectiveness (RBE) can be derived which depends only on F2 and the size of the LIV. The expression for RBE fits experimental data with satisfying quality.
Collapse
Affiliation(s)
- Uwe Schneider
- Department of Physics, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
- Radiotherapy Hirslanden, Witellikerstrasse 40, Zurich, Switzerland
| | - Fabiano Vasi
- Department of Physics, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
- Radiotherapy Hirslanden, Witellikerstrasse 40, Zurich, Switzerland
| | - Kevin Schmidli
- Department of Physics, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
- Radiotherapy Hirslanden, Witellikerstrasse 40, Zurich, Switzerland
| | - Jürgen Besserer
- Department of Physics, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
- Radiotherapy Hirslanden, Witellikerstrasse 40, Zurich, Switzerland
| |
Collapse
|
37
|
Date H. [14. Microdosimetric-kinetic Model Analysis of the Cells Exposed to Ionizing Radiations]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2019; 75:362-371. [PMID: 31006755 DOI: 10.6009/jjrt.2019_jsrt_75.4.362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Spring BQ, Lang RT, Kercher EM, Rizvi I, Wenham RM, Conejo-Garcia JR, Hasan T, Gatenby RA, Enderling H. Illuminating the Numbers: Integrating Mathematical Models to Optimize Photomedicine Dosimetry and Combination Therapies. FRONTIERS IN PHYSICS 2019; 7:46. [PMID: 31123672 PMCID: PMC6529192 DOI: 10.3389/fphy.2019.00046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cancer photomedicine offers unique mechanisms for inducing local tumor damage with the potential to stimulate local and systemic anti-tumor immunity. Optically-active nanomedicine offers these features as well as spatiotemporal control of tumor-focused drug release to realize synergistic combination therapies. Achieving quantitative dosimetry is a major challenge, and dosimetry is fundamental to photomedicine for personalizing and tailoring therapeutic regimens to specific patients and anatomical locations. The challenge of dosimetry is perhaps greater for photomedicine than many standard therapies given the complexity of light delivery and light-tissue interactions as well as the resulting photochemistry responsible for tumor damage and drug-release, in addition to the usual intricacies of therapeutic agent delivery. An emerging multidisciplinary approach in oncology utilizes mathematical and computational models to iteratively and quantitively analyze complex dosimetry, and biological response parameters. These models are parameterized by preclinical and clinical observations and then tested against previously unseen data. Such calibrated and validated models can be deployed to simulate treatment doses, protocols, and combinations that have not yet been experimentally or clinically evaluated and can provide testable optimal treatment outcomes in a practical workflow. Here, we foresee the utility of these computational approaches to guide adaptive therapy, and how mathematical models might be further developed and integrated as a novel methodology to guide precision photomedicine.
Collapse
Affiliation(s)
- Bryan Q. Spring
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, United States
- Department of Physics, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Ryan T. Lang
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, United States
- Department of Physics, Northeastern University, Boston, MA, United States
| | - Eric M. Kercher
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, United States
- Department of Physics, Northeastern University, Boston, MA, United States
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Robert M. Wenham
- Department of Gynecologic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - José R. Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Robert A. Gatenby
- Department of Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
39
|
McMahon SJ. The linear quadratic model: usage, interpretation and challenges. ACTA ACUST UNITED AC 2018; 64:01TR01. [DOI: 10.1088/1361-6560/aaf26a] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Adams Q, Hopfensperger KM, Kim Y, Wu X, Xu W, Shukla H, McGee J, Caster JM, Flynn RT. Effectiveness of Rotating Shield Brachytherapy for Prostate Cancer Dose Escalation and Urethral Sparing. Int J Radiat Oncol Biol Phys 2018; 102:1543-1550. [PMID: 30092333 PMCID: PMC6363898 DOI: 10.1016/j.ijrobp.2018.07.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/08/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE To compare single-fraction 153Gd-based rotating shield brachytherapy (RSBT) for prostate cancer with conventional 192Ir-based high-dose-rate brachytherapy (HDR-BT) in a planning study that radiobiologically accounts for dose rate and relative biological effectiveness. RSBT was used for planning target volume (PTV) dose escalation without increasing urethral dose for monotherapy, or for urethral sparing without decreasing PTV dose as a boost to external beam radiation therapy. METHODS AND MATERIALS Twenty-six patients were studied. PTV doses were expressed as equivalent dose delivered in 2 Gy fractions (EQD2), accounting for relative biological effectiveness (1.00 for 192Ir and 1.15 for 153Gd), dose protraction (114-minute repair half-time), and tumor dose response (α/β of 3.41 Gy). HDR-BT dose was prescribed such that 90% of the PTV received 110% of the prescription dose of 19 Gy for dose escalation and 15 Gy for urethral sparing, corresponding to EQD290% values (minimum EQD2 to the hottest 90% of the PTV) of 93.9 GyEQD2 and 60.7 GyEQD2, respectively. Twenty 90.95 GBq 153Gd RSBT sources and one 370 GBq 192Ir HDR-BT source were modeled. RESULTS For dose escalation with fresh sources, RSBT increased PTV EQD290% by 42.5% ± 8.4% (average ± standard deviation) without increasing urethral D10%, with treatment times of 216.8 ± 28.9 minutes versus 15.1 ± 2.1 minutes. After 1 half-life (240.4 days for 153Gd and 73.8 days for 192Ir), EQD290% increased 20.5% ± 9.1%. For urethral sparing with fresh sources, RSBT decreased urethral D10% by 26.0% ± 3.4% without decreasing PTV EQD290%, with treatment times of 133.6 ± 16.5 minutes versus 12.0 ± 1.7 minutes. After 1 half-life, urethral D10% decreased 20.2% ± 4.8%. CONCLUSIONS RSBT can increase PTV EQD90% or decrease urethral D10% relative to HDR-BT at the cost of increased treatment time. Source aging reduces RSBT benefit, but RSBT remains theoretically superior to HDR-BT by >20% after 1 half-life has elapsed.
Collapse
Affiliation(s)
- Quentin Adams
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa.
| | | | - Yusung Kim
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa
| | - Xiaodong Wu
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa; Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa
| | - Weiyu Xu
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa
| | | | - James McGee
- OSF Saint Francis Medical Center, Peoria, Illinois
| | - Joseph M Caster
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa
| | - Ryan T Flynn
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa
| |
Collapse
|
41
|
Ochola DO, Sharif R, Bedford JS, Keefe TJ, Kato TA, Fallgren CM, Demant P, Costes SV, Weil MM. Persistence of Gamma-H2AX Foci in Bronchial Cells Correlates with Susceptibility to Radiation Associated Lung Cancer in Mice. Radiat Res 2018; 191:67-75. [PMID: 30398394 DOI: 10.1667/rr14979.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The risk of developing radiation-induced lung cancer differs between different strains of mice, but the underlying cause of the strain differences is unknown. Strains of mice also differ in how quickly they repair radiation-induced DNA double-strand breaks (DSBs). We assayed mouse strains from the CcS/Dem recombinant congenic strain set for their efficacy in repairing DNA DSBs during protracted irradiation. We measured unrepaired γ-H2AX radiation-induced foci (RIF), which persisted after chronic 24-h gamma irradiation, as a surrogate marker for repair efficiency in bronchial epithelial cells for 17 of the CcS/Dem strains and the BALB/c founder strain. We observed a very strong correlation (R2 = 79.18%, P < 0.001) between the level of unrepaired RIF and radiogenic lung cancer incidence measured in the same strains. Interestingly, spontaneous levels of foci in nonirradiated mice also showed good correlation with lung cancer incidence when incidence data from male and female mice were combined. These results suggest that genetic differences in DNA repair capacity largely account for differing susceptibilities to radiation-induced lung cancer among CcS/Dem mouse strains, and that high levels of spontaneous DNA damage are also a relatively good marker of cancer predisposition. In a smaller pilot study, we found that the repair capacity measured in peripheral blood leucocytes also correlated well with radiogenic lung cancer susceptibility, raising the possibility that the assay could be used to detect radiogenic lung cancer susceptibility in humans.
Collapse
Affiliation(s)
- Donasian O Ochola
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Rabab Sharif
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Joel S Bedford
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Thomas J Keefe
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Takamitsu A Kato
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Christina M Fallgren
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Peter Demant
- b Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| | - Sylvain V Costes
- c Biosciences Division, NASA Ames Research Center, Mountain View, California
| | - Michael M Weil
- a Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
42
|
Letters To the Editor. Radiat Res 2018; 190:650-653. [PMID: 30339058 DOI: 10.1667/rrlte6.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Peng V, Suchowerska N, Esteves ADS, Rogers L, Claridge Mackonis E, Toohey J, McKenzie DR. Models for the bystander effect in gradient radiation fields: Range and signalling type. J Theor Biol 2018; 455:16-25. [DOI: 10.1016/j.jtbi.2018.06.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 06/14/2018] [Accepted: 06/30/2018] [Indexed: 11/17/2022]
|
44
|
Gholami YH, Willowson KP, Forwood NJ, Harvie R, Hardcastle N, Bromley R, Ryu H, Yuen S, Howell VM, Kuncic Z, Bailey DL. Comparison of radiobiological parameters for 90Y radionuclide therapy (RNT) and external beam radiotherapy (EBRT) in vitro. EJNMMI Phys 2018; 5:18. [PMID: 30175390 PMCID: PMC6119681 DOI: 10.1186/s40658-018-0217-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/07/2018] [Indexed: 12/02/2022] Open
Abstract
Background Dose rate variation is a critical factor affecting radionuclide therapy (RNT) efficacy. Relatively few studies to date have investigated the dose rate effect in RNT. Therefore, the aim of this study was to benchmark 90Y RNT (at different dose rates) against external beam radiotherapy (EBRT) in vitro and compare cell kill responses between the two irradiation processes. Results Three human colorectal carcinoma (CRC) cell lines (HT29, HCT116, SW48) were exposed to 90Y doses in the ranges 1–10.4 and 6.2–62.3 Gy with initial dose rates of 0.013–0.13 Gy/hr (low dose rate, LDR) and 0.077–0.77 Gy/hr (high dose rate, HDR), respectively. Results were compared to a 6-MV photon beam doses in the range from 1–9 Gy with constant dose rate of 277 Gy/hr. The cell survival parameters from the linear quadratic (LQ) model were determined. Additionally, Monte Carlo simulations were performed to calculate the average dose, dose rate and the number of hits in the cell nucleus. For the HT29 cell line, which was the most radioresistant, the α/β ratio was found to be ≈ 31 for HDR–90Y and ≈ 3.5 for EBRT. LDR–90Y resulting in insignificant cell death compared to HDR–90Y and EBRT. Simulation results also showed for LDR–90Y, for doses ≲ 3 Gy, the average number of hits per cell nucleus is ≲ 2 indicating insufficiently delivered lethal dose. For 90Y doses \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\gtrsim $\end{document}≳ 3 Gy the number of hits per nucleus decreases rapidly and falls below ≈ 2 after ≈ 5 days of incubation time. Therefore, our results demonstrate that LDR–90Y is radiobiologically less effective than EBRT. However, HDR–90Y at ≈ 56 Gy was found to be radiobiologically as effective as acute ≈ 8 Gy EBRT. Conclusion These results demonstrate that the efficacy of RNT is dependent on the initial dose rate at which radiation is delivered. Therefore, for a relatively long half-life radionuclide such as 90Y, a higher initial activity is required to achieve an outcome as effective as EBRT.
Collapse
Affiliation(s)
- Yaser H Gholami
- University of Sydney, School of Physics, Sydney, Australia.,University of Sydney, Discipline of Medical Radiation Science, Sydney, Australia
| | | | - Nicholas J Forwood
- Royal North Shore Hospital (RNSH), Department of Nuclear Medicine, Sydney, Australia
| | - Rozelle Harvie
- Bill Walsh Translational Cancer Research Laboratory, The Kolling Institute, Northern Sydney Local Health District, Sydney, Australia
| | - Nicholas Hardcastle
- Royal North Shore Hospital (RNSH), Department of Radiation Oncology, Sydney, Australia
| | - Regina Bromley
- Royal North Shore Hospital (RNSH), Department of Radiation Oncology, Sydney, Australia
| | - HyunJu Ryu
- Royal North Shore Hospital (RNSH), Department of Nuclear Medicine, Sydney, Australia
| | - Samuel Yuen
- Bill Walsh Translational Cancer Research Laboratory, The Kolling Institute, Northern Sydney Local Health District, Sydney, Australia
| | - Viive M Howell
- Bill Walsh Translational Cancer Research Laboratory, The Kolling Institute, Northern Sydney Local Health District, Sydney, Australia.,The University of Sydney Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Zdenka Kuncic
- University of Sydney, School of Physics, Sydney, Australia
| | - Dale L Bailey
- University of Sydney, School of Physics, Sydney, Australia. .,University of Sydney, Discipline of Medical Radiation Science, Sydney, Australia. .,Royal North Shore Hospital (RNSH), Department of Nuclear Medicine, Sydney, Australia.
| |
Collapse
|
45
|
Cornforth MN, Anur P, Wang N, Robinson E, Ray FA, Bedford JS, Loucas BD, Williams ES, Peto M, Spellman P, Kollipara R, Kittler R, Gray JW, Bailey SM. Molecular Cytogenetics Guides Massively Parallel Sequencing of a Radiation-Induced Chromosome Translocation in Human Cells. Radiat Res 2018; 190:88-97. [PMID: 29749794 PMCID: PMC6055522 DOI: 10.1667/rr15053.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chromosome rearrangements are large-scale structural variants that are recognized drivers of oncogenic events in cancers of all types. Cytogenetics allows for their rapid, genome-wide detection, but does not provide gene-level resolution. Massively parallel sequencing (MPS) promises DNA sequence-level characterization of the specific breakpoints involved, but is strongly influenced by bioinformatics filters that affect detection efficiency. We sought to characterize the breakpoint junctions of chromosomal translocations and inversions in the clonal derivatives of human cells exposed to ionizing radiation. Here, we describe the first successful use of DNA paired-end analysis to locate and sequence across the breakpoint junctions of a radiation-induced reciprocal translocation. The analyses employed, with varying degrees of success, several well-known bioinformatics algorithms, a task made difficult by the involvement of repetitive DNA sequences. As for underlying mechanisms, the results of Sanger sequencing suggested that the translocation in question was likely formed via microhomology-mediated non-homologous end joining (mmNHEJ). To our knowledge, this represents the first use of MPS to characterize the breakpoint junctions of a radiation-induced chromosomal translocation in human cells. Curiously, these same approaches were unsuccessful when applied to the analysis of inversions previously identified by directional genomic hybridization (dGH). We conclude that molecular cytogenetics continues to provide critical guidance for structural variant discovery, validation and in "tuning" analysis filters to enable robust breakpoint identification at the base pair level.
Collapse
Affiliation(s)
- Michael N. Cornforth
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, Texas 77555
- KromaTiD Inc., Fort Collins, Colorado 80523
| | - Pavana Anur
- Departments of Molecular and Medical Genetics, Biomedical Engineering, Oregon Health and Science University, Portland, Oregon 97201
| | - Nicholas Wang
- Departments of Molecular and Medical Genetics, Biomedical Engineering, Oregon Health and Science University, Portland, Oregon 97201
| | | | - F. Andrew Ray
- KromaTiD Inc., Fort Collins, Colorado 80523
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Joel S. Bedford
- KromaTiD Inc., Fort Collins, Colorado 80523
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Bradford D. Loucas
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Eli S. Williams
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Myron Peto
- Departments of Molecular and Medical Genetics, Biomedical Engineering, Oregon Health and Science University, Portland, Oregon 97201
| | - Paul Spellman
- Departments of Molecular and Medical Genetics, Biomedical Engineering, Oregon Health and Science University, Portland, Oregon 97201
| | - Rahul Kollipara
- McDermott Center, University of Texas Southwestern Medical Center, Dallas, Texas 75235
| | - Ralf Kittler
- McDermott Center, University of Texas Southwestern Medical Center, Dallas, Texas 75235
| | - Joe W. Gray
- Departments of Molecular and Medical Genetics, Biomedical Engineering, Oregon Health and Science University, Portland, Oregon 97201
| | - Susan M. Bailey
- KromaTiD Inc., Fort Collins, Colorado 80523
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
46
|
Kuperman VY. Effect of radiation protraction in hypofractionated radiotherapy. Med Phys 2018; 45:3442-3448. [DOI: 10.1002/mp.12936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/02/2018] [Accepted: 04/04/2018] [Indexed: 12/25/2022] Open
|
47
|
Cornforth MN, Durante M. Radiation quality and intra-chromosomal aberrations: Size matters. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:28-35. [PMID: 30389158 DOI: 10.1016/j.mrgentox.2018.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/24/2018] [Accepted: 05/03/2018] [Indexed: 12/31/2022]
Abstract
The shift from plant to mammalian cell models in radiation cytogenetics hastened the development of methods suitable for the analysis of chromosome-type aberrations. These included methods to detect interchanges that take place between different chromosomes (dicentrics and translocations), and intrachanges occurring within a given chromosome (rings, interstitial deletions and inversions). In this review we consider the relationship between chromosome-type interchanges and intrachanges in response to changes in ionization density (linear energy transfer; LET). In that context, we discuss advantages and disadvantages of more modern methods used to measure intrachanges, and the implications that their increased resolution of measurement may have on the inter-to-intrachange fraction (i.e., the F-ratio). We conclude that the premise of the F-ratio is supported by its biophysical assumptions, but its intended use as an LET-dependent measure of prior radiation exposure is hampered mainly by our inability to accurately assess, on a cell-by-cell basis, inversions and interstitial deletions whose small sizes are below the detection limits of conventional cytogenetic techniques.
Collapse
Affiliation(s)
- Michael N Cornforth
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, TX, USA
| | - Marco Durante
- Trento Institute for Fundamental Physics and Applications (TIFPA), National Institute of Nuclear Physics (INFN), Via Sommarive, Trento, Italy.
| |
Collapse
|
48
|
Abstract
A number of newly emerging clinical techniques involve non-conventional patterns of radiation delivery which require an appreciation of the role played by radiation repair phenomena. This review outlines the main models of radiation repair, focussing on those which are of greatest clinical usefulness and which may be incorporated into biologically effective dose assessments. The need to account for the apparent "slowing-down" of repair rates observed in some normal tissues is also examined, along with a comparison of the relative merits of the formulations which can be used to account for such phenomena. Jack Fowler brought valuable insight to the understanding of radiation repair processes and this article includes reference to his important contributions in this area.
Collapse
Affiliation(s)
- Roger G Dale
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK
| |
Collapse
|
49
|
Lazzeroni M, Uhrdin J, Carvalho S, van Elmpt W, Lambin P, Dasu A, Wersäll P, Toma-Dasu I. Evaluation of third treatment week as temporal window for assessing responsiveness on repeated FDG-PET-CT scans in Non-Small Cell Lung Cancer patients. Phys Med 2018. [DOI: 10.1016/j.ejmp.2018.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
50
|
Shuryak I, Loucas BD, Cornforth MN. Straightening Beta: Overdispersion of Lethal Chromosome Aberrations following Radiotherapeutic Doses Leads to Terminal Linearity in the Alpha-Beta Model. Front Oncol 2017; 7:318. [PMID: 29312888 PMCID: PMC5742594 DOI: 10.3389/fonc.2017.00318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/07/2017] [Indexed: 11/23/2022] Open
Abstract
Recent technological advances allow precise radiation delivery to tumor targets. As opposed to more conventional radiotherapy—where multiple small fractions are given—in some cases, the preferred course of treatment may involve only a few (or even one) large dose(s) per fraction. Under these conditions, the choice of appropriate radiobiological model complicates the tasks of predicting radiotherapy outcomes and designing new treatment regimens. The most commonly used model for this purpose is the venerable linear-quadratic (LQ) formalism as it applies to cell survival. However, predictions based on the LQ model are frequently at odds with data following very high acute doses. In particular, although the LQ predicts a continuously bending dose–response relationship for the logarithm of cell survival, empirical evidence over the high-dose region suggests that the survival response is instead log-linear with dose. Here, we show that the distribution of lethal chromosomal lesions among individual human cells (lymphocytes and fibroblasts) exposed to gamma rays and X rays is somewhat overdispersed, compared with the Poisson distribution. Further, we show that such overdispersion affects the predicted dose response for cell survival (the fraction of cells with zero lethal lesions). This causes the dose response to approximate log-linear behavior at high doses, even when the mean number of lethal lesions per cell is well fitted by the continuously curving LQ model. Accounting for overdispersion of lethal lesions provides a novel, mechanistically based explanation for the observed shapes of cell survival dose responses that, in principle, may offer a tractable and clinically useful approach for modeling the effects of high doses per fraction.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University, New York, United States
| | - Bradford D Loucas
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, TX, United States
| | - Michael N Cornforth
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|