1
|
Chevalier B, Bedretdinova D, Pellot-Barakat C, Maître X, Creze M. Evaluation of the Reproducibility of MR Elastography Measurements of the Lumbar Back Muscles. J Magn Reson Imaging 2024; 60:1037-1048. [PMID: 38100302 DOI: 10.1002/jmri.29178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND MR elastography (MRE) may provide quantitative imaging biomarkers of lumbar back muscles (LBMs), complementing MRI in spinal diseases by assessing muscle mechanical properties. However, reproducibility analyses for MRE of LBM are lacking. PURPOSE To assess technical failure, within-day and inter-day reproducibility, robustness with the excitation source positioning, and inter-observer agreement of MRE of muscles. STUDY TYPE Prospective. SUBJECTS Seventeen healthy subjects (mean age 28 ± 4 years; 11 females). FIELD STRENGTH/SEQUENCE 1.5 T, gradient-echo MRE, T1-weighted turbo spin echo. ASSESSMENT The pneumatic driver was centered at L3 level. Four MRE were performed during two visits, 2-4 weeks apart, each consisting of two MRE with less than 10 minutes inter-scan interval. At Visit 1, after the first MRE, the coil and driver were removed, then reinstalled. The MRE was repeated. At Visit 2, following the first MRE, only the driver was moved down 5 cm. The MRE was repeated. Two radiologists segmented the multifidus and erector spinae muscles. STATISTICAL TESTS Paired t-test, analysis of variance, intraclass correlation coefficients (ICCs). P-values <0.05 were considered statistically significant. RESULTS Mean stiffness of LBM ranged from 1.44 to 1.60 kPa. Mean technical failure rate was 2.5%. Inter-observer agreement was excellent (ICC ranging from 0.82 [0.64-0.96] to 0.99 [0.98-0.99] in the multifidus, and from 0.85 [0.69-0.92] to 0.99 [0.97-0.99] in the erector spinae muscles). Within-day reproducibility was fair in the multifidus (ICC: 0.53 [0.47-0.77]) and good in the erector spinae muscles (ICC: 0.74 [0.48-0.88]). Reproducibility after moving the driver was excellent in both multifidus (ICC: 0.85 [0.69-0.93]) and erector spinae muscles (ICC: 0.84 [0.67-0.92]). Inter-day reproducibility was excellent in the multifidus (ICC: 0.76 [0.48-0.89]) and poor in the erector spinae muscles (ICC: 0.23 [-0.61 to 0.63]). DATA CONCLUSION MRE of LBM provides measurements of stiffness with fair to excellent reproducibility and excellent inter-observer agreement. However, inter-day reproducibility in the multifidus muscles indicated that the herein used MRE protocol may not be optimal for this muscle. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Benjamin Chevalier
- Department of Radiology, Cochin Hospital, Université Paris Cité, APHP, Paris, France
| | - Dina Bedretdinova
- Center for Research in Epidemiology and StatisticS (CRESS), Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Paris, France
| | - Claire Pellot-Barakat
- Laboratoire d'Imagerie Biomédicale Multimodale, BIOMAPS, Université Paris-Saclay, Service Hospitalier Frederic Joliot, Orsay, France
| | - Xavier Maître
- Laboratoire d'Imagerie Biomédicale Multimodale, BIOMAPS, Université Paris-Saclay, Service Hospitalier Frederic Joliot, Orsay, France
| | - Maud Creze
- Laboratoire d'Imagerie Biomédicale Multimodale, BIOMAPS, Université Paris-Saclay, Service Hospitalier Frederic Joliot, Orsay, France
- Department of Radiology, Bicêtre Hospital, Université Paris-Saclay, APHP, Le Kremlin Bicêtre, France
- Arts et Métiers Institute of Technology, Université Sorbonne Paris Nord, IBHGC - Institut de Biomécanique Humaine Georges Charpak, HESAM Université, Paris, France
| |
Collapse
|
2
|
de Visser M, Carlier P, Vencovský J, Kubínová K, Preusse C. 255th ENMC workshop: Muscle imaging in idiopathic inflammatory myopathies. 15th January, 16th January and 22nd January 2021 - virtual meeting and hybrid meeting on 9th and 19th September 2022 in Hoofddorp, The Netherlands. Neuromuscul Disord 2023; 33:800-816. [PMID: 37770338 DOI: 10.1016/j.nmd.2023.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023]
Abstract
The 255th ENMC workshop on Muscle Imaging in Idiopathic Inflammatory myopathies (IIM) aimed at defining recommendations concerning the applicability of muscle imaging in IIM. The workshop comprised of clinicians, researchers and people living with myositis. We aimed to achieve consensus on the following topics: a standardized protocol for the evaluation of muscle images in various types of IIMs; the exact parameters, anatomical localizations and magnetic resonance imaging (MRI) techniques; ultrasound as assessment tool in IIM; assessment methods; the pattern of muscle involvement in IIM subtypes; the application of MRI as biomarker in follow-up studies and clinical trials, and the place of MRI in the evaluation of swallowing difficulty and cardiac manifestations. The following recommendations were formulated: In patients with suspected IIM, muscle imaging is highly recommended to be part of the initial diagnostic workup and baseline assessment. MRI is the preferred imaging modality due to its sensitivity to both oedema and fat accumulation. Ultrasound may be used for suspected IBM. Repeat imaging should be considered if patients do not respond to treatment, if there is ongoing diagnostic uncertainty or there is clinical or laboratory evidence of disease relapse. Quantitative MRI is established as a sensitive biomarker in IBM and could be included as a primary or secondary outcome measure in early phase clinical trials, or as a secondary outcome measure in late phase clinical trials. Finally, a research agenda was drawn up.
Collapse
Affiliation(s)
- Marianne de Visser
- Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Location Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | | | - Jiří Vencovský
- Institute of Rheumatology, Department of Rheumatology, Charles University, Prague, Czech Republic
| | - Kateřina Kubínová
- Institute of Rheumatology, Department of Rheumatology, Charles University, Prague, Czech Republic
| | - Corinna Preusse
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Department of Neuropathology, Berlin, Germany
| |
Collapse
|
3
|
Lee J, Myrie NO, Jeong GJ, Han WM, Jang YC, García AJ, Emelianov S. In vivo shear wave elasticity imaging for assessment of diaphragm function in muscular dystrophy. Acta Biomater 2023; 168:277-285. [PMID: 37453552 PMCID: PMC10540053 DOI: 10.1016/j.actbio.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Duchenne muscular dystrophy (DMD) causes patients to suffer from ambulatory disability and cardiorespiratory failure, the latter of which leads to premature death. Due to its role in respiration, the diaphragm is an important muscle for study. A common method for evaluating diaphragm function is ex vivo force testing, which only allows for an end point measurement. In contrast, ultrasound shear wave elastography imaging (US-SWEI) can assess diaphragm function over time; however, US-SWEI studies in dystrophic patients to date have focused on the limbs without preclinical studies. In this work, we used US-SWEI to estimate the shear wave speed (SWS) in diaphragm muscles of healthy (WT) mice, mdx mice, and mdx mice haploinsufficient for utrophin (mdx-utr) at 6 and 12 months of age. Diaphragms were then subjected to ex vivo force testing and histological analysis at 12 months of age. Between 6 and 12 months, a 23.8% increase in SWS was observed in WT mice and a 27.8% increase in mdx mice, although no significant difference was found in mdx-utr mice. Specific force generated by mdx-utr diaphragms was lower than that of WT diaphragms following twitch stimulus. A strong correlation between SWS and collagen deposition was observed, as well as between SWS and muscle fiber size. Together, these data demonstrate the ability of US-SWEI to evaluate dystrophic diaphragm functionality over time and predict the biochemical and morphological make-up of the diaphragm. Additionally, our results highlight the advantage of US-SWEI over ex vivo testing by obtaining longitudinal measurements in the same subject. STATEMENT OF SIGNIFICANCE: In DMD patients, muscles experience cycles of regeneration and degeneration that contribute to chronic inflammation and muscle weakness. This pathology only worsens with time and leads to muscle wasting, including in respiratory and cardiac muscles. Because respiratory failure is a major contributor to premature death in DMD patients, the diaphragm muscle is an important muscle to evaluate and treat over time. Currently, diaphragm function is assessed using ex vivo force testing, a technique that only allows measurement at sacrifice. In contrast, ultrasonography, particularly shear wave elasticity imaging (USSWEI), is a promising tool for longitudinal assessment; however, most US-SWEI in DMD patients aimed for limb muscles only with the absence of preclinical studies. This work broadens the applications of US-SWE imaging by demonstrating its ability to track properties and function of dystrophic diaphragm muscles longitudinally in multiple dystrophic mouse models.
Collapse
Affiliation(s)
- Jeehyun Lee
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Nia O Myrie
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Gun-Jae Jeong
- Institute of Cell and Tissue Engineering, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Woojin M Han
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Young C Jang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA; Department of Orthopedics, Emory Musculoskeletal Institute, Emory School of Medicine, Atlanta, GA 30329, USA.
| | - Andrés J García
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Stanislav Emelianov
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA.
| |
Collapse
|
4
|
Kopecká B, Ravnik D, Jelen K, Bittner V. Objective Methods of Muscle Tone Diagnosis and Their Application-A Critical Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:7189. [PMID: 37631726 PMCID: PMC10458714 DOI: 10.3390/s23167189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
"Muscle tone" is a clinically important and widely used term and palpation is a crucial skill for its diagnosis. However, the term is defined rather vaguely, and palpation is not measurable objectively. Therefore, several methods have been developed to measure muscle tone objectively, in terms of biomechanical properties of the muscle. This article aims to summarize these approaches. Through database searches, we identified those studies related to objective muscle tone measurement in vivo, in situ. Based on them, we described existing methods and devices and compared their reliability. Furthermore, we presented an extensive list of the use of these methods in different fields of research. Although it is believed by some authors that palpation cannot be replaced by a mechanical device, several methods have already proved their utility in muscle biomechanical property diagnosis. There appear to be two issues preventing wider usage of these objective methods in clinical practice. Firstly, a high variability of their reliability, and secondly, a lack of valid mathematical models that would provide the observed mechanical characteristics with a clear physical significance and allow the results to be compared with each other.
Collapse
Affiliation(s)
- Barbora Kopecká
- Faculty of Physical Education and Sport, Charles University, 162 52 Prague, Czech Republic
| | - David Ravnik
- Faculty of Health Sciences, University of Primorska, 6310 Izola, Slovenia
| | - Karel Jelen
- Faculty of Physical Education and Sport, Charles University, 162 52 Prague, Czech Republic
| | - Václav Bittner
- Faculty of Science, Humanities and Education, Technical University of Liberec, 461 17 Liberec, Czech Republic
| |
Collapse
|
5
|
Dick TJM, Hug F. Advances in imaging for assessing the design and mechanics of skeletal muscle in vivo. J Biomech 2023; 155:111640. [PMID: 37244210 DOI: 10.1016/j.jbiomech.2023.111640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/29/2023]
Abstract
Skeletal muscle is the engine that powers what is arguably the most essential and defining feature of human and animal life-locomotion. Muscles function to change length and produce force to enable movement, posture, and balance. Despite this seemingly simple role, skeletal muscle displays a variety of phenomena that still remain poorly understood. These phenomena are complex-the result of interactions between active and passive machinery, as well as mechanical, chemical and electrical processes. The emergence of imaging technologies over the past several decades has led to considerable discoveries regarding how skeletal muscles function in vivo where activation levels are submaximal, and the length and velocity of contracting muscle fibres are transient. However, our knowledge of the mechanisms of muscle behaviour during everyday human movements remains far from complete. In this review, we discuss the principal advancements in imaging technology that have led to discoveries to improve our understanding of in vivo muscle function over the past 50 years. We highlight the knowledge that has emerged from the development and application of various techniques, including ultrasound imaging, magnetic resonance imaging, and elastography to characterise muscle design and mechanical properties. We emphasize that our inability to measure the forces produced by skeletal muscles still poses a significant challenge, and that future developments to accurately and reliably measure individual muscle forces will promote newfrontiers in biomechanics, physiology, motor control, and robotics. Finally, we identify critical gaps in our knowledge and future challenges that we hope can be solved as a biomechanics community in the next 50 years.
Collapse
Affiliation(s)
- Taylor J M Dick
- The University of Queensland, School of Biomedical Sciences, Brisbane, QLD, Australia.
| | - François Hug
- The University of Queensland, School of Biomedical Sciences, Brisbane, QLD, Australia; Université Côte d'Azur, LAMHESS, Nice, France
| |
Collapse
|
6
|
Zubair AS, Salam S, Dimachkie MM, Machado PM, Roy B. Imaging biomarkers in the idiopathic inflammatory myopathies. Front Neurol 2023; 14:1146015. [PMID: 37181575 PMCID: PMC10166883 DOI: 10.3389/fneur.2023.1146015] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are a group of acquired muscle diseases with muscle inflammation, weakness, and other extra-muscular manifestations. IIMs can significantly impact the quality of life, and management of IIMs often requires a multi-disciplinary approach. Imaging biomarkers have become an integral part of the management of IIMs. Magnetic resonance imaging (MRI), muscle ultrasound, electrical impedance myography (EIM), and positron emission tomography (PET) are the most widely used imaging technologies in IIMs. They can help make the diagnosis and assess the burden of muscle damage and treatment response. MRI is the most widely used imaging biomarker of IIMs and can assess a large volume of muscle tissue but is limited by availability and cost. Muscle ultrasound and EIM are easy to administer and can even be performed in the clinical setting, but they need further validation. These technologies may complement muscle strength testing and laboratory studies and provide an objective assessment of muscle health in IIMs. Furthermore, this is a rapidly progressing field, and new advances are going to equip care providers with a better objective assessment of IIMS and eventually improve patient management. This review discusses the current state and future direction of imaging biomarkers in IIMs.
Collapse
Affiliation(s)
- Adeel S. Zubair
- Division of Neuromuscular Diseases, Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Sharfaraz Salam
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Mazen M. Dimachkie
- Department of Neurology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Pedro M. Machado
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Centre for Rheumatology, Division of Medicine, University College London, London, United Kingdom
| | - Bhaskar Roy
- Division of Neuromuscular Diseases, Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
7
|
Dong J, Zhao J, Liu X, Lee WN. Nondestructive ultrasound evaluation of microstructure-related material parameters of skeletal muscle: An in silico and in vitro study. J Mech Behav Biomed Mater 2023; 142:105807. [PMID: 37030170 DOI: 10.1016/j.jmbbm.2023.105807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Direct and nondestructive assessment of material properties of skeletal muscle in vivo shall advance our understanding of intact muscle mechanics and facilitate personalized interventions. However, this is challenged by intricate hierarchical microstructure of the skeletal muscle. We have previously regarded the skeletal muscle as a composite of myofibers and extracellular matrix (ECM), formulated shear wave propagation in the undeformed muscle using the acoustoelastic theory, and preliminarily demonstrated that ultrasound-based shear wave elastography (SWE) could estimate microstructure-related material parameters (MRMPs): myofiber stiffness μf, ECM stiffness μm, and myofiber volume ratio Vf. The proposed method warrants further validation but is hampered by the lack of ground truth values of MRMPs. In this study, we presented analytical and experimental validations of the proposed method using finite-element (FE) simulations and 3D-printed hydrogel phantoms, respectively. Three combinations of different physiologically relevant MRMPs were used in the FE simulations where shear wave propagations in the corresponding composite media were simulated. Two 3D-printed hydrogel phantoms with the MRMPs close to those of a real skeletal muscle (i.e., μf=2.02kPa, μm=52.42kPa, and Vf=0.675,0.832) for ultrasound imaging were fabricated by an alginate-based hydrogel printing protocol that we modified and optimized from the freeform reversible embedding of suspended hydrogels (FRESH) method in literature. Average percent errors of (μf,μm,Vf) estimates were found to be (2.7%,7.3%,2.4%)in silico and (3.0%,8.0%,9.9%)in vitro. This quantitative study corroborated the potential of our proposed theoretical model along with ultrasound SWE for uncovering microstructural characteristics of the skeletal muscle in an entirely nondestructive way.
Collapse
|
8
|
Li M, Guo R, Tang X, Huang S, Qiu L. Quantitative assessment of muscle properties in polymyositis and dermatomyositis using high-frequency ultrasound and shear wave elastography. Quant Imaging Med Surg 2023; 13:428-440. [PMID: 36620135 PMCID: PMC9816716 DOI: 10.21037/qims-22-423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022]
Abstract
Background Polymyositis (PM) and dermatomyositis (DM) are two common types of idiopathic inflammatory myopathy and can lead to a poor prognosis and quality of life. We designed this cross-sectional study to investigate the abilities of high-frequency ultrasound (HFUS) and shear wave elastography (SWE) to assess muscle properties in patients with PM and DM and to distinguish healthy muscles from diseased muscles with PM and DM. Methods A total of 60 patients (26 PM cases and 34 DM cases) and 65 matched healthy volunteers were continuously included in the case and control groups, respectively. For the bilateral deltoid, biceps brachii, rectus femoris, and vastus lateralis, the muscle thickness, echo intensity, and longitudinal shear wave velocity (SWV) of all participants were measured using HFUS and SWE. The intra- and interobserver reliability of SWV measurements of patients with PM and DM and the receiver operating characteristic curve for HFUS and SWE for PM and DM were analyzed. Results Patients with PM and DM had significantly decreased muscle thickness and increased muscle echo intensity compared to healthy controls (P<0.001). The patients' and healthy participants' deltoid, biceps brachii, rectus femoris, and vastus lateralis thickness was 19.75 and 23.00 mm, 20.45 and 22.80 mm, 18.40 and 20.20 mm, and 20.00 and 22.80 mm, respectively. Except for the biceps brachii, the mean SWV in the longitudinal orientation in patients with PM and DM significantly decreased (P<0.01). The mean SWV of the patients' and healthy participants' deltoid, rectus femoris, and vastus lateralis was 2.47 and 2.57 m/s, 1.73 and 1.87 m/s, and 1.57 and 1.77 m/s, respectively. Excellent intra- and interobserver reliability of SWV measurements on the deltoid and rectus femoris of PM and DM patients were found (intraclass correlation coefficient >0.95; P<0.001). The diagnostic performance of echo intensity in lower-extremity proximal muscles for PM and DM was excellent [area under the curve (AUC) >0.9]. The thickness of most muscles displayed moderate diagnostic performance (the AUC ranged from 0.700 to 0.775). The SWV of the vastus lateralis showed a stable performance (AUC =0.741). The combined diagnostic performance of echo intensity and thickness and the combined diagnostic performance of the 3 indicators were relatively high (the AUC ranged from 0.871 to 0.936 and from 0.898 to 0.938, respectively). Muscle thickness and echo intensity showed statistical differences in different disease stages of PM and DM (P'<0.01). Conclusions HFUS and SWE may serve as imaging biomarkers for the diagnosis of PM and DM by detecting abnormal muscle thinning, enhanced muscle echo intensity, and reduced muscle SWV.
Collapse
Affiliation(s)
- Min Li
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu, China
| | - Ruiqian Guo
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu, China
| | - Xinyi Tang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu, China
| | - Songya Huang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu, China
| | - Li Qiu
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Banerjee S, Nara R, Chakraborty S, Chowdhury D, Haldar S. Integrin Regulated Autoimmune Disorders: Understanding the Role of Mechanical Force in Autoimmunity. Front Cell Dev Biol 2022; 10:852878. [PMID: 35372360 PMCID: PMC8971850 DOI: 10.3389/fcell.2022.852878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
The pathophysiology of autoimmune disorders is multifactorial, where immune cell migration, adhesion, and lymphocyte activation play crucial roles in its progression. These immune processes are majorly regulated by adhesion molecules at cell–extracellular matrix (ECM) and cell–cell junctions. Integrin, a transmembrane focal adhesion protein, plays an indispensable role in these immune cell mechanisms. Notably, integrin is regulated by mechanical force and exhibit bidirectional force transmission from both the ECM and cytosol, regulating the immune processes. Recently, integrin mechanosensitivity has been reported in different immune cell processes; however, the underlying mechanics of these integrin-mediated mechanical processes in autoimmunity still remains elusive. In this review, we have discussed how integrin-mediated mechanotransduction could be a linchpin factor in the causation and progression of autoimmune disorders. We have provided an insight into how tissue stiffness exhibits a positive correlation with the autoimmune diseases’ prevalence. This provides a plausible connection between mechanical load and autoimmunity. Overall, gaining insight into the role of mechanical force in diverse immune cell processes and their dysregulation during autoimmune disorders will open a new horizon to understand this physiological anomaly.
Collapse
|
10
|
Dong J, Lee WN. Noninvasive Assessment of In Vivo Passive Skeletal Muscle Mechanics as a Composite Material Using Biomedical Ultrasound. IEEE Trans Biomed Eng 2021; 69:1162-1172. [PMID: 34559632 DOI: 10.1109/tbme.2021.3115144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE This study develops a biomedical ultrasound imaging method to infer microstructural information (i.e., tissue level) from imaging mechanical behavior of skeletal muscle (i.e., organ level). METHODS We first reviewed the constitutive model of skeletal muscle by regarding it as a transversely isotropic (TI) hyperelastic composite material, for which a theoretical formula was established among shear wave speed, deformation, and material parameters (MPs) using the acoustoelasticity theory. The formula was evaluated by finite element (FE) simulations and experimentally examined using ultrasound shear wave imaging (SWI) and strain imaging (SI) on in vivo passive biceps brachii muscles of two healthy volunteers. The imaging sequence included 1) generation of SW in multiple propagation directions while resting the muscle at an elbow angle of 90; 2) generation of SW propagating along the myofiber direction during continuous uniaxial muscle extension by passively changing the elbow angle from 90 to 120. Ultrasound-quantified SW speeds and muscle deformations were fitted by the theoretical formula to estimate MPs of in vivo passive muscle. RESULTS Estimated myofiber stiffness, stiffness ratio of myofiber to extracellular matrix (ECM), ECM volume ratio all agreed with literature findings. CONCLUSION The proposed mathematical formula together with our in-house ultrasound imaging method enabled assessing microstructural material properties of in vivo passive skeletal muscle from organ-level mechanical behavior in an entirely noninvasive way. SIGNIFICANCE Noninvasive assessment of both micro and macro properties of in vivo skeletal muscle will advance our understanding of complex muscle dynamics and facilitate treatment and rehabilitation planning.
Collapse
|
11
|
Kolb M, Ekert K, Schneider L, Fritz J, Ioanoviciu SD, Henes J, Horger M. The Utility of Shear-Wave Elastography in the Evaluation of Myositis. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2176-2185. [PMID: 34030894 DOI: 10.1016/j.ultrasmedbio.2021.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Changes in muscle elasticity are expected in patients with untreated myositis. The purpose of this study was to define the accuracy of shear-wave elastography (SWE) in diagnosing myositis. This case control study included 21 patients (mean age, 49.4 y; 12 women) with myositis who underwent SWE, magnetic resonance imaging (MRI) and biopsy of the involved muscle group. SWE was performed accordingly in a control group (n = 24; mean age, 51.2 y; 8 women). Blood tests consisted of creatine kinase (CK) and aldolase. Two operators performed SWE in longitudinal and transverse planes of muscular fibers, quantifying the mean shear-wave velocity (SWV) and the pattern of stiffness. On MRI, short-TI inversion recovery (STIR) signal hyperintensity and T1 contrast enhancement of muscle was considered diagnostic for myositis. The patient group suffered from different types of myositis (nine patients with polymyositis, eight with dermatomyositis and four with other types of myositis). Blood tests showed significantly increased CK and aldolase values in patients with myositis (p < 0.001 and p < 0.0001). MRI showed a sensitivity of 0.95. In the patient group, the mean SWVs of longitudinal and transverse measurements were 2.8 ± 1.4 m/s and 3.1 ± 1.2 m/s, respectively. In the control group, SWVs were 2.3 ± 0.5 m/s and 2.4 ± 0.5 m/s, respectively. The difference between transverse measurements was significant (p = 0.02). Increased heterogeneity as a marker for myositis in transverse SWE showed a sensitivity of 0.8, specificity of 0.79, positive predictive value (PPV) of 0.76 and negative predictive value (NPV) of 0.82. Inter-observer difference was very low (κ = 0.92). Increased heterogeneity in both planes compared with histologic results showed a sensitivity of 0.56, specificity of 0.93, PPV of 0.91 and NPV of 0.62. Spearman correlation between CK <1000 U/L and SWE was 0.54. In conclusion, transverse orientation SWE may serve as an imaging biomarker for the diagnosis of myositis through the display of a heterogeneous pattern and increased absolute SWV values of inflamed muscles.
Collapse
Affiliation(s)
- Manuel Kolb
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany.
| | - Kaspar Ekert
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Luisa Schneider
- Department of Internal Medicine II, Eberhard-Karls-University, Tübingen, Germany
| | - Jan Fritz
- Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
| | | | - Jörg Henes
- Department of Internal Medicine II, Eberhard-Karls-University, Tübingen, Germany
| | - Marius Horger
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Guidetti M, Zampini MA, Jiang Y, Gambacorta C, Smejkal JP, Crutison J, Pan Y, Klatt D, Royston TJ. Axially- and torsionally-polarized radially converging shear wave MRE in an anisotropic phantom made via Embedded Direct Ink Writing. J Mech Behav Biomed Mater 2021; 119:104483. [PMID: 33838445 PMCID: PMC8137604 DOI: 10.1016/j.jmbbm.2021.104483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 11/28/2022]
Abstract
Magnetic Resonance Elastography (MRE) is a non-invasive imaging method to quantitatively map the shear viscoelastic properties of soft tissues. In this study, Embedded Direct Ink Writing is used to fabricate a muscle mimicking anisotropic phantom that may serve as a standard for imaging studies of anisotropic materials. The technique allowed us to obtain a long shelf life silicone-based phantom expressing transverse isotropic mechanical properties. Another goal of the present investigation is to introduce a torsionally-polarized, radially-converging shear wave actuation method for MRE. The implemented design for this novel setup was first validated via its application to isotropic and homogeneous gelatin phantoms. Then, a comparison of the resulting complex wave images from axially- and torsionally-polarized MRE on the developed anisotropic phantom and on a skeletal muscle murine sample is presented, highlighting the value of using multiple actuation and motion encoding polarization directions when studying anisotropic materials.
Collapse
Affiliation(s)
- Martina Guidetti
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | | | - Yizhou Jiang
- University of Illinois at Chicago, Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Chiara Gambacorta
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Joshua P Smejkal
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Joseph Crutison
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yayue Pan
- University of Illinois at Chicago, Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Dieter Klatt
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Thomas J Royston
- University of Illinois at Chicago, Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
13
|
Aivazoglou LU, Guimarães JB, Link TM, Costa MAF, Cardoso FN, de Mattos Lombardi Badia B, Farias IB, de Rezende Pinto WBV, de Souza PVS, Oliveira ASB, de Siqueira Carvalho AA, Aihara AY, da Rocha Corrêa Fernandes A. MR imaging of inherited myopathies: a review and proposal of imaging algorithms. Eur Radiol 2021; 31:8498-8512. [PMID: 33881569 DOI: 10.1007/s00330-021-07931-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/05/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The aims of this review are to discuss the imaging modalities used to assess muscle changes in myopathies, to provide an overview of the inherited myopathies focusing on their patterns of muscle involvement in magnetic resonance imaging (MR), and to propose up-to-date imaging-based diagnostic algorithms that can help in the diagnostic workup. CONCLUSION Familiarization with the most common and specific patterns of muscular involvement in inherited myopathies is very important for radiologists and neurologists, as imaging plays a significant role in diagnosis and follow-up of these patients. KEY POINTS • Imaging is an increasingly important tool for diagnosis and follow-up in the setting of inherited myopathies. • Knowledge of the most common imaging patterns of muscle involvement in inherited myopathies is valuable for both radiologists and neurologists. • In this review, we present imaging-based algorithms that can help in the diagnostic workup of myopathies.
Collapse
Affiliation(s)
- Laís Uyeda Aivazoglou
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil.,Laboratório Delboni Auriemo - Grupo DASA, Av Juruá, 434, Barueri, SP, 06455-010, Brazil
| | - Julio Brandão Guimarães
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil. .,Musculoskeletal and Quantitative Imaging Research Group (MQIR), Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA.
| | - Thomas M Link
- Musculoskeletal and Quantitative Imaging Research Group (MQIR), Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Maria Alice Freitas Costa
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil.,Laboratório Delboni Auriemo - Grupo DASA, Av Juruá, 434, Barueri, SP, 06455-010, Brazil
| | - Fabiano Nassar Cardoso
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil
| | - Bruno de Mattos Lombardi Badia
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Embaú, 67, São Paulo, SP, 04039-060, Brazil
| | - Igor Braga Farias
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Embaú, 67, São Paulo, SP, 04039-060, Brazil
| | - Wladimir Bocca Vieira de Rezende Pinto
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Embaú, 67, São Paulo, SP, 04039-060, Brazil
| | - Paulo Victor Sgobbi de Souza
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Embaú, 67, São Paulo, SP, 04039-060, Brazil
| | - Acary Souza Bulle Oliveira
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Rua Embaú, 67, São Paulo, SP, 04039-060, Brazil
| | - Alzira Alves de Siqueira Carvalho
- Laboratório de Doenças Neuromusculares da Faculdade de Medicina do ABC - Departamento de Neurociências, Av. Lauro Gomes, 2000, Santo André, SP, 09060-870, Brazil
| | - André Yui Aihara
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil.,Laboratório Delboni Auriemo - Grupo DASA, Av Juruá, 434, Barueri, SP, 06455-010, Brazil
| | - Artur da Rocha Corrêa Fernandes
- Department of Radiology and Diagnostic Imaging, Universidade Federal de São Paulo (UNIFESP), Rua Napoleão de Barros, 800, São Paulo, SP, 04024-002, Brazil
| |
Collapse
|
14
|
MR Elastography. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Stanga S, Boido M, Kienlen-Campard P. How to Build and to Protect the Neuromuscular Junction: The Role of the Glial Cell Line-Derived Neurotrophic Factor. Int J Mol Sci 2020; 22:ijms22010136. [PMID: 33374485 PMCID: PMC7794999 DOI: 10.3390/ijms22010136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
The neuromuscular junction (NMJ) is at the crossroad between the nervous system (NS) and the muscle. Following neurotransmitter release from the motor neurons (MNs), muscle contraction occurs and movement is generated. Besides eliciting muscle contraction, the NMJ represents a site of chemical bidirectional interplay between nerve and muscle with the active participation of Schwann cells. Indeed, signals originating from the muscle play an important role in synapse formation, stabilization, maintenance and function, both in development and adulthood. We focus here on the contribution of the Glial cell line-Derived Neurotrophic Factor (GDNF) to these processes and to its potential role in the protection of the NMJ during neurodegeneration. Historically related to the maintenance and survival of dopaminergic neurons of the substantia nigra, GDNF also plays a fundamental role in the peripheral NS (PNS). At this level, it promotes muscle trophism and it participates to the functionality of synapses. Moreover, compared to the other neurotrophic factors, GDNF shows unique peculiarities, which make its contribution essential in neurodegenerative disorders. While describing the known structural and functional changes occurring at the NMJ during neurodegeneration, we highlight the role of GDNF in the NMJ–muscle cross-talk and we review its therapeutic potential in counteracting the degenerative process occurring in the PNS in progressive and severe diseases such as Alzheimer’s disease (AD), Amyotrophic Lateral Sclerosis (ALS) and Spinal Muscular Atrophy (SMA). We also describe functional 3D neuromuscular co-culture systems that have been recently developed as a model for studying both NMJ formation in vitro and its involvement in neuromuscular disorders.
Collapse
Affiliation(s)
- Serena Stanga
- Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy;
- Laboratory of Brain Development and Disease, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano, Italy
- National Institute of Neuroscience (INN), 10125 Turin, Italy
- Correspondence:
| | - Marina Boido
- Department of Neuroscience Rita Levi Montalcini, University of Turin, 10126 Turin, Italy;
- Laboratory of Brain Development and Disease, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano, Italy
- National Institute of Neuroscience (INN), 10125 Turin, Italy
| | - Pascal Kienlen-Campard
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), 1200 Bruxelles, Belgium;
| |
Collapse
|
16
|
Kubínová K, Mann H, Vrána J, Vencovský J. How Imaging Can Assist with Diagnosis and Monitoring of Disease in Myositis. Curr Rheumatol Rep 2020; 22:62. [DOI: 10.1007/s11926-020-00939-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Farrow M, Biglands J, Alfuraih AM, Wakefield RJ, Tan AL. Novel Muscle Imaging in Inflammatory Rheumatic Diseases-A Focus on Ultrasound Shear Wave Elastography and Quantitative MRI. Front Med (Lausanne) 2020; 7:434. [PMID: 32903395 PMCID: PMC7434835 DOI: 10.3389/fmed.2020.00434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/06/2020] [Indexed: 12/31/2022] Open
Abstract
In recent years, imaging has played an increasing role in the clinical management of patients with rheumatic diseases with respect to aiding diagnosis, guiding therapy and monitoring disease progression. These roles have been underpinned by research which has enhanced our understanding of disease pathogenesis and pathophysiology of rheumatology conditions, in addition to their key role in outcome measurement in clinical trials. However, compared to joints, imaging research of muscles is less established, despite the fact that muscle symptoms are very common and debilitating in many rheumatic diseases. Recently, it has been shown that even though patients with rheumatoid arthritis may achieve clinical remission, defined by asymptomatic joints, many remain affected by lingering constitutional systemic symptoms like fatigue, tiredness, weakness and myalgia, which may be attributed to changes in the muscles. Recent improvements in imaging technology, coupled with an increasing clinical interest, has started to ignite new interest in the area. This perspective discusses the rationale for using imaging, particularly ultrasound and MRI, for investigating muscle pathology involved in common inflammatory rheumatic diseases. The muscles associated with rheumatic diseases can be affected in many ways, including myositis-an inflammatory muscle condition, and myopathy secondary to medications, such as glucocorticoids. In addition to non-invasive visual assessment of muscles in these conditions, novel imaging techniques like shear wave elastography and quantitative MRI can provide further useful information regarding the physiological and biomechanical status of the muscle.
Collapse
Affiliation(s)
- Matthew Farrow
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, United Kingdom.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,School of Pharmacy and Medical Sciences, University of Bradford, Bradford, United Kingdom
| | - John Biglands
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.,Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Abdulrahman M Alfuraih
- Radiology and Medical Imaging Department, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Richard J Wakefield
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, United Kingdom.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Ai Lyn Tan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, United Kingdom.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| |
Collapse
|
18
|
Strijkers GJ, Araujo EC, Azzabou N, Bendahan D, Blamire A, Burakiewicz J, Carlier PG, Damon B, Deligianni X, Froeling M, Heerschap A, Hollingsworth KG, Hooijmans MT, Karampinos DC, Loudos G, Madelin G, Marty B, Nagel AM, Nederveen AJ, Nelissen JL, Santini F, Scheidegger O, Schick F, Sinclair C, Sinkus R, de Sousa PL, Straub V, Walter G, Kan HE. Exploration of New Contrasts, Targets, and MR Imaging and Spectroscopy Techniques for Neuromuscular Disease - A Workshop Report of Working Group 3 of the Biomedicine and Molecular Biosciences COST Action BM1304 MYO-MRI. J Neuromuscul Dis 2020; 6:1-30. [PMID: 30714967 PMCID: PMC6398566 DOI: 10.3233/jnd-180333] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuromuscular diseases are characterized by progressive muscle degeneration and muscle weakness resulting in functional disabilities. While each of these diseases is individually rare, they are common as a group, and a large majority lacks effective treatment with fully market approved drugs. Magnetic resonance imaging and spectroscopy techniques (MRI and MRS) are showing increasing promise as an outcome measure in clinical trials for these diseases. In 2013, the European Union funded the COST (co-operation in science and technology) action BM1304 called MYO-MRI (www.myo-mri.eu), with the overall aim to advance novel MRI and MRS techniques for both diagnosis and quantitative monitoring of neuromuscular diseases through sharing of expertise and data, joint development of protocols, opportunities for young researchers and creation of an online atlas of muscle MRI and MRS. In this report, the topics that were discussed in the framework of working group 3, which had the objective to: Explore new contrasts, new targets and new imaging techniques for NMD are described. The report is written by the scientists who attended the meetings and presented their data. An overview is given on the different contrasts that MRI can generate and their application, clinical needs and desired readouts, and emerging methods.
Collapse
Affiliation(s)
| | - Ericky C.A. Araujo
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Noura Azzabou
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | | | - Andrew Blamire
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Jedrek Burakiewicz
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pierre G. Carlier
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Bruce Damon
- Vanderbilt University Medical Center, Nashville, USA
| | - Xeni Deligianni
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | | | - Arend Heerschap
- Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | | | | | | | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Armin M. Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany & Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Francesco Santini
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Olivier Scheidegger
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Fritz Schick
- University of Tübingen, Section on Experimental Radiology, Tübingen, Germany
| | | | | | | | - Volker Straub
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | | | - Hermien E. Kan
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
19
|
Bruns A. Advances in Pediatric Musculoskeletal Ultrasonography. PEDIATRIC MUSCULOSKELETAL ULTRASONOGRAPHY 2020:351-360. [DOI: 10.1007/978-3-030-17824-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
20
|
Alfuraih AM, Tan AL, O’Connor P, Emery P, Wakefield RJ. Muscle stiffness in rheumatoid arthritis is not altered or associated with muscle weakness: A shear wave elastography study. Mod Rheumatol 2019; 30:617-625. [DOI: 10.1080/14397595.2019.1645374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Abdulrahman M. Alfuraih
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Kharj, Saudi Arabia
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Ai Lyn Tan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Philip O’Connor
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Richard J. Wakefield
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Chapel Allerton Hospital, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
21
|
Nelissen JL, Sinkus R, Nicolay K, Nederveen AJ, Oomens CW, Strijkers GJ. Magnetic resonance elastography of skeletal muscle deep tissue injury. NMR IN BIOMEDICINE 2019; 32:e4087. [PMID: 30897280 PMCID: PMC6593838 DOI: 10.1002/nbm.4087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 05/31/2023]
Abstract
The current state-of-the-art diagnosis method for deep tissue injury in muscle, a subcategory of pressure ulcers, is palpation. It is recognized that deep tissue injury is frequently preceded by altered biomechanical properties. A quantitative understanding of the changes in biomechanical properties preceding and during deep tissue injury development is therefore highly desired. In this paper we quantified the spatial-temporal changes in mechanical properties upon damage development and recovery in a rat model of deep tissue injury. Deep tissue injury was induced in nine rats by two hours of sustained deformation of the tibialis anterior muscle. Magnetic resonance elastography (MRE), T2 -weighted, and T2 -mapping measurements were performed before, directly after indentation, and at several timepoints during a 14-day follow-up. The results revealed a local hotspot of elevated shear modulus (from 3.30 ± 0.14 kPa before to 4.22 ± 0.90 kPa after) near the center of deformation at Day 0, whereas the T2 was elevated in a larger area. During recovery there was a clear difference in the time course of the shear modulus and T2 . Whereas T2 showed a gradual normalization towards baseline, the shear modulus dropped below baseline from Day 3 up to Day 10 (from 3.29 ± 0.07 kPa before to 2.68 ± 0.23 kPa at Day 10, P < 0.001), followed by a normalization at Day 14. In conclusion, we found an initial increase in shear modulus directly after two hours of damage-inducing deformation, which was followed by decreased shear modulus from Day 3 up to Day 10, and subsequent normalization. The lower shear modulus originates from the moderate to severe degeneration of the muscle. MRE stiffness values were affected in a smaller area as compared with T2 . Since T2 elevation is related to edema, distributing along the muscle fibers proximally and distally from the injury, we suggest that MRE is more specific than T2 for localization of the actual damaged area.
Collapse
Affiliation(s)
- Jules L. Nelissen
- Biomedical NMR, Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
- Biomedical Engineering and Physics, Academic Medical CenterAmsterdamThe Netherlands
- Department of Radiology and Nuclear Medicine, Academic Medical CenterAmsterdamThe Netherlands
| | - Ralph Sinkus
- Image Sciences & Biomedical Engineering, King's College LondonLondonUK
| | - Klaas Nicolay
- Biomedical NMR, Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Aart J. Nederveen
- Department of Radiology and Nuclear Medicine, Academic Medical CenterAmsterdamThe Netherlands
| | - Cees W.J. Oomens
- Soft Tissue Engineering and Mechanobiology, Biomedical EngineeringEindhoven University of TechnologyThe Netherlands
| | - Gustav J. Strijkers
- Biomedical Engineering and Physics, Academic Medical CenterAmsterdamThe Netherlands
| |
Collapse
|
22
|
Bilston LE, Bolsterlee B, Nordez A, Sinha S. Contemporary image-based methods for measuring passive mechanical properties of skeletal muscles in vivo. J Appl Physiol (1985) 2019; 126:1454-1464. [PMID: 30236053 DOI: 10.1152/japplphysiol.00672.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscles' primary function in the body is mechanical: to move and stabilize the skeleton. As such, their mechanical behavior is a key aspect of their physiology. Recent developments in medical imaging technology have enabled quantitative studies of passive muscle mechanics, ranging from measurements of intrinsic muscle mechanical properties, such as elasticity and viscosity, to three-dimensional muscle architecture and dynamic muscle deformation and kinematics. In this review we summarize the principles and applications of contemporary imaging methods that have been used to study the passive mechanical behavior of skeletal muscles. Elastography measurements can provide in vivo maps of passive muscle mechanical parameters, and both MRI and ultrasound methods are available (magnetic resonance elastography and ultrasound shear wave elastography, respectively). Both have been shown to differentiate between healthy muscle and muscles affected by a broad range of clinical conditions. Detailed muscle architecture can now be depicted using diffusion tensor imaging, which not only is particularly useful for computational modeling of muscle but also has potential in assessing architectural changes in muscle disorders. More dynamic information about muscle mechanics can be obtained using a range of dynamic MRI methods, which characterize the detailed internal muscle deformations during motion. There are several MRI techniques available (e.g., phase-contrast MRI, displacement-encoded MRI, and "tagged" MRI), each of which can be collected in synchrony with muscle motion and postprocessed to quantify muscle deformation. Together, these modern imaging techniques can characterize muscle motion, deformation, mechanical properties, and architecture, providing complementary insights into skeletal muscle function.
Collapse
Affiliation(s)
- Lynne E Bilston
- Neuroscience Research Australia, Randwick, New South Wales , Australia.,Prince of Wales Clinical School, University of New South Wales, Randwick, New South Wales , Australia
| | - Bart Bolsterlee
- Neuroscience Research Australia, Randwick, New South Wales , Australia.,Graduate School of Biomedical Engineering, University of New South Wales , Kensington, New South Wales , Australia
| | - Antoine Nordez
- Health and Rehabilitation Research Institute, Auckland University of Technology , Auckland , New Zealand.,Movement, Interactions, Performance Laboratory (EA 4334), Faculty of Sport Sciences, University of Nantes , Nantes , France
| | - Shantanu Sinha
- Muscle Imaging and Modeling Laboratory, Department of Radiology, University of California , San Diego, California
| |
Collapse
|
23
|
Paoletti M, Pichiecchio A, Cotti Piccinelli S, Tasca G, Berardinelli AL, Padovani A, Filosto M. Advances in Quantitative Imaging of Genetic and Acquired Myopathies: Clinical Applications and Perspectives. Front Neurol 2019; 10:78. [PMID: 30804884 PMCID: PMC6378279 DOI: 10.3389/fneur.2019.00078] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
In the last years, magnetic resonance imaging (MRI) has become fundamental for the diagnosis and monitoring of myopathies given its ability to show the severity and distribution of pathology, to identify specific patterns of damage distribution and to properly interpret a number of genetic variants. The advances in MR techniques and post-processing software solutions have greatly expanded the potential to assess pathological changes in muscle diseases, and more specifically of myopathies; a number of features can be studied and quantified, ranging from composition, architecture, mechanical properties, perfusion, and function, leading to what is known as quantitative MRI (qMRI). Such techniques can effectively provide a variety of information beyond what can be seen and assessed by conventional MR imaging; their development and application in clinical practice can play an important role in the diagnostic process and in assessing disease course and treatment response. In this review, we briefly discuss the current role of muscle MRI in diagnosing muscle diseases and describe in detail the potential and perspectives of the application of advanced qMRI techniques in this field.
Collapse
Affiliation(s)
- Matteo Paoletti
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Anna Pichiecchio
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Stefano Cotti Piccinelli
- Unit of Neurology, Center for Neuromuscular Diseases, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Giorgio Tasca
- Neurology Department, Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Alessandro Padovani
- Unit of Neurology, Center for Neuromuscular Diseases, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Massimiliano Filosto
- Unit of Neurology, Center for Neuromuscular Diseases, ASST Spedali Civili and University of Brescia, Brescia, Italy
| |
Collapse
|
24
|
Paramalingam S, Counsel P, Mastaglia FL, Keen H, Needham M. Imaging in the diagnosis of idiopathic inflammatory myopathies; indications and utility. Expert Rev Neurother 2019; 19:173-184. [PMID: 30661408 DOI: 10.1080/14737175.2019.1572507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Idiopathic inflammatory myopathies (IIM) are a heterogeneous group of muscle diseases that carry a significant morbidity and mortality risk. The utilization of imaging in the diagnostic pathway of IIM is therefore important to obtain early diagnosis and even monitor patients over time. Areas covered: Magnetic resonance imaging (MRI) has been the main imaging modality used to detect myositis but limitations include cost and accessibility, leading to delays in time to scan, and patient contraindications. This has led to the exploration of other imaging techniques to diagnose and monitor response to therapy. This article is based primarily on a literature search via PubMed using Boolean terms 'myositis' and the various imaging modalities. Expert opinion: Imaging is sensitive to pathology in IIM and may contribute to the diagnostic process. Learning how specific imaging features can distinguish different forms of IIM may allow more rapid diagnosis of myositis subtype and treatment planning, and to monitor disease activity particularly in patients who respond poorly to treatment. However, more work is needed to investigate the validity and relative utility of these imaging modalities.
Collapse
Affiliation(s)
- Shereen Paramalingam
- a Department of Rheumatology , Fiona Stanley Hospital , Murdoch , Australia.,b School of Medicine , Notre Dame University Australia , Fremantle , Australia
| | - Peter Counsel
- c Department of Radiology , Perth Radiology Clinic , Subiaco , Australia.,d Department of Radiology , Perth Children's Hospital , Nedlands , Australia
| | - Frank L Mastaglia
- e School of Medicine , University of Western Australia , Crawley , Australia.,f Department of Neurology , Perron Institute for Neurological and translational science , Nedlands , Australia
| | - Helen Keen
- a Department of Rheumatology , Fiona Stanley Hospital , Murdoch , Australia.,e School of Medicine , University of Western Australia , Crawley , Australia.,g School of Medicine , Murdoch University , Murdoch , Australia
| | - Merrilee Needham
- b School of Medicine , Notre Dame University Australia , Fremantle , Australia.,g School of Medicine , Murdoch University , Murdoch , Australia.,h Department of Neurology , Fiona Stanley Hospital , Murdoch , Australia
| |
Collapse
|
25
|
Alfuraih AM, O’Connor P, Tan AL, Hensor EMA, Ladas A, Emery P, Wakefield RJ. Muscle shear wave elastography in idiopathic inflammatory myopathies: a case-control study with MRI correlation. Skeletal Radiol 2019; 48:1209-1219. [PMID: 30810778 PMCID: PMC6584706 DOI: 10.1007/s00256-019-03175-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate muscle stiffness in patients with idiopathic inflammatory myopathies (IIM) using shear wave elastography (SWE) and to correlate the results with muscle strength and MRI features of myositis. MATERIALS AND METHODS Muscle shear wave velocity (SWV) was measured in 23 active IIM patients (13 females, mean age 50.4 ± 16.1 years) and 23 matched healthy controls (13 females, mean age 50.7 ± 16.2 years). The investigated muscles included the vastus lateralis (VL), rectus femoris (RF), vastus medialis (VM) vastus intermedius (VI), biceps femoris (BF), semitendinosus (ST), semimembranosus (SM) and the biceps brachii (BB) scanned during relaxed resting and passive stretching positions. Participants performed multiple tests to evaluate their muscle strength. IIM patients had a thigh MRI to assess degrees of oedema, fatty infiltration and atrophy. RESULTS In the resting position, IIM patients had a 12.9-22.2% significantly lower SWV (p < 0.05) for the quadriceps and hamstrings, but not BB. There was no difference during passive stretching. The SWV for VL, VI and BF showed moderate correlations with the muscle strength tests ranging from r = 0.47 to r = 0.70 (all p < 0.05). Lower SWV was associated with greater MRI scores of oedema (p = 0.001) and atrophy (p = 0.006). However, SWV did not correlate with fatty infiltration (r < 0.3; p = 0.28), creatine kinase (r = 0.28; p = 0.19) or disease duration (r = 0.26; p = 0.24). CONCLUSION Shear wave elastography may detect abnormal reduced thigh stiffness in IIM patients. SWE measurements were significantly associated with muscle weakness and MRI signs of oedema and atrophy. Future research should investigate this new technology for monitoring disease activity.
Collapse
Affiliation(s)
- Abdulrahman M. Alfuraih
- grid.449553.aRadiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Kharj, Saudi Arabia ,grid.9909.90000 0004 1936 8403Leeds Institute of Rheumatic and Musculoskeletal Medicine, 2nd Floor, Chapel Allerton Hospital, University of Leeds, Chapeltown Road, Leeds, LS7 4SA UK ,grid.415967.80000 0000 9965 1030NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Philip O’Connor
- grid.415967.80000 0000 9965 1030NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Ai Lyn Tan
- grid.9909.90000 0004 1936 8403Leeds Institute of Rheumatic and Musculoskeletal Medicine, 2nd Floor, Chapel Allerton Hospital, University of Leeds, Chapeltown Road, Leeds, LS7 4SA UK ,grid.415967.80000 0000 9965 1030NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Elizabeth M. A. Hensor
- grid.9909.90000 0004 1936 8403Leeds Institute of Rheumatic and Musculoskeletal Medicine, 2nd Floor, Chapel Allerton Hospital, University of Leeds, Chapeltown Road, Leeds, LS7 4SA UK ,grid.415967.80000 0000 9965 1030NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Andreas Ladas
- grid.415967.80000 0000 9965 1030NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Paul Emery
- grid.9909.90000 0004 1936 8403Leeds Institute of Rheumatic and Musculoskeletal Medicine, 2nd Floor, Chapel Allerton Hospital, University of Leeds, Chapeltown Road, Leeds, LS7 4SA UK ,grid.415967.80000 0000 9965 1030NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Richard J. Wakefield
- grid.9909.90000 0004 1936 8403Leeds Institute of Rheumatic and Musculoskeletal Medicine, 2nd Floor, Chapel Allerton Hospital, University of Leeds, Chapeltown Road, Leeds, LS7 4SA UK ,grid.415967.80000 0000 9965 1030NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
26
|
Tan K, Jugé L, Hatt A, Cheng S, Bilston LE. Measurement of large strain properties in calf muscles in vivo using magnetic resonance elastography and spatial modulation of magnetization. NMR IN BIOMEDICINE 2018; 31:e3925. [PMID: 29675978 DOI: 10.1002/nbm.3925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 01/11/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
It is important to measure the large deformation properties of skeletal muscle in vivo in order to understand and model movement and the force-producing capabilities of muscle. As muscle properties are non-linear, an understanding of how the deformation state affects the measured shear moduli is also useful for clinical applications of magnetic resonance elastography (MRE) to muscle disorders. MRE has so far only been used to measure the linear viscoelastic (small strain) properties of muscles. This study aims to measure the shear moduli of human calf muscles under varying degrees of strain using MRE. Nine healthy adults (four males; age range, 25-38 years) were recruited, and the storage modulus G' was measured at three ankle angle positions: P0 (neutral), P15 (15° plantarflexed) and P30 (30° plantarflexed). Spatial modulation of magnetization (SPAMM) was used to measure the strain in the calf associated with the ankle rotations between P0 to P15 and P0 to P30. SPAMM results showed that, with plantarflexion, there was a shortening of the medial gastrocnemius and soleus muscles, which resulted in an expansion of both muscles in the transverse direction. Strains for each ankle rotation were in the range 3-9% (in compression). MRE results showed that this shortening during plantarflexion resulted in a mean decrease in G' in the medial gastrocnemius (p = 0.013, linear mixed model), but not in the soleus (p = 0.47). This study showed that MRE is a viable technique for the measurement of large strain deformation properties in vivo in soft tissues by inducing physiological strain within the muscle during imaging.
Collapse
Affiliation(s)
- Kristy Tan
- Neuroscience Research Australia, Randwick, NSW, Australia
- University of New South Wales, School of Medical Sciences, Kensington, NSW, Australia
| | - Lauriane Jugé
- Neuroscience Research Australia, Randwick, NSW, Australia
- University of New South Wales, School of Medical Sciences, Kensington, NSW, Australia
| | - Alice Hatt
- Neuroscience Research Australia, Randwick, NSW, Australia
| | - Shaokoon Cheng
- Neuroscience Research Australia, Randwick, NSW, Australia
- School of Engineering, Faculty of Science and Engineering, Macquarie University, NSW, Australia
| | - Lynne E Bilston
- Neuroscience Research Australia, Randwick, NSW, Australia
- University of New South Wales, Prince of Wales Clinical School, Kensington, NSW, Australia
| |
Collapse
|
27
|
Guidetti M, Lorgna G, Hammersly M, Lewis P, Klatt D, Vena P, Shah R, Royston TJ. Anisotropic composite material phantom to improve skeletal muscle characterization using magnetic resonance elastography. J Mech Behav Biomed Mater 2018; 89:199-208. [PMID: 30292169 DOI: 10.1016/j.jmbbm.2018.09.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
The presence and progression of neuromuscular pathology, including spasticity, Duchenne's muscular dystrophy and hyperthyroidism, has been correlated with changes in the intrinsic mechanical properties of skeletal muscle tissue. Tools for noninvasively measuring and monitoring these properties, such as Magnetic Resonance Elastography (MRE), could benefit basic research into understanding neuromuscular pathologies, as well as translational research to develop therapies, by providing a means of assessing and tracking their efficacy. Dynamic elastography methods for noninvasive measurement of tissue mechanical properties have been under development for nearly three decades. Much of the technological development to date, for both Ultrasound (US)-based and Magnetic Resonance Imaging (MRI)-based strategies, has been grounded in assumptions of local homogeneity and isotropy. Striated skeletal and cardiac muscle, as well as brain white matter and soft tissue in some other organ regions, exhibit a fibrous microstructure which entails heterogeneity and anisotropic response; as one seeks to improve the accuracy and resolution in mechanical property assessment, heterogeneity and anisotropy need to be accounted for in order to optimize both the dynamic elastography experimental protocol and the interpretation of the measurements. Advances in elastography methodology at every step have been aided by the use of tissue-mimicking phantoms. The aim of the present study was to develop and characterize a heterogeneous composite phantom design with uniform controllable anisotropic properties meant to be comparable to the frequency-dependent anisotropic properties of skeletal muscle. MRE experiments and computational finite element (FE) studies were conducted on a novel 3D-printed composite phantom design. The displacement maps obtained from simulation and experiment show the same elliptical shaped wavefronts elongated in the plane where the structure presents higher shear modulus. The model exhibits a degree of anisotropy in line with literature data from skeletal muscle tissue MRE experiments. FE simulations of the MRE experiments provide insight into proper interpretation of experimental measurements, and help to quantify the importance of heterogeneity in the anisotropic material at different scales.
Collapse
Affiliation(s)
- Martina Guidetti
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, 851 South Mogan Street, 212 SEO, Chicago, IL 60607-7052, USA.
| | - Gloria Lorgna
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milan, Italy.
| | - Margaret Hammersly
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Phillip Lewis
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Dieter Klatt
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, 851 South Mogan Street, 212 SEO, Chicago, IL 60607-7052, USA.
| | - Pasquale Vena
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milan, Italy.
| | - Ramille Shah
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, 851 South Mogan Street, 212 SEO, Chicago, IL 60607-7052, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
| | - Thomas J Royston
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, 851 South Mogan Street, 212 SEO, Chicago, IL 60607-7052, USA.
| |
Collapse
|
28
|
Carlier PG, Marty B, Scheidegger O, Loureiro de Sousa P, Baudin PY, Snezhko E, Vlodavets D. Skeletal Muscle Quantitative Nuclear Magnetic Resonance Imaging and Spectroscopy as an Outcome Measure for Clinical Trials. J Neuromuscul Dis 2018; 3:1-28. [PMID: 27854210 PMCID: PMC5271435 DOI: 10.3233/jnd-160145] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent years have seen tremendous progress towards therapy of many previously incurable neuromuscular diseases. This new context has acted as a driving force for the development of novel non-invasive outcome measures. These can be organized in three main categories: functional tools, fluid biomarkers and imagery. In the latest category, nuclear magnetic resonance imaging (NMRI) offers a considerable range of possibilities for the characterization of skeletal muscle composition, function and metabolism. Nowadays, three NMR outcome measures are frequently integrated in clinical research protocols. They are: 1/ the muscle cross sectional area or volume, 2/ the percentage of intramuscular fat and 3/ the muscle water T2, which quantity muscle trophicity, chronic fatty degenerative changes and oedema (or more broadly, “disease activity”), respectively. A fourth biomarker, the contractile tissue volume is easily derived from the first two ones. The fat fraction maps most often acquired with Dixon sequences have proven their capability to detect small changes in muscle composition and have repeatedly shown superior sensitivity over standard functional evaluation. This outcome measure will more than likely be the first of the series to be validated as an endpoint by regulatory agencies. The versatility of contrast generated by NMR has opened many additional possibilities for characterization of the skeletal muscle and will result in the proposal of more NMR biomarkers. Ultra-short TE (UTE) sequences, late gadolinium enhancement and NMR elastography are being investigated as candidates to evaluate skeletal muscle interstitial fibrosis. Many options exist to measure muscle perfusion and oxygenation by NMR. Diffusion NMR as well as texture analysis algorithms could generate complementary information on muscle organization at microscopic and mesoscopic scales, respectively. 31P NMR spectroscopy is the reference technique to assess muscle energetics non-invasively during and after exercise. In dystrophic muscle, 31P NMR spectrum at rest is profoundly perturbed, and several resonances inform on cell membrane integrity. Considerable efforts are being directed towards acceleration of image acquisitions using a variety of approaches, from the extraction of fat content and water T2 maps from one single acquisition to partial matrices acquisition schemes. Spectacular decreases in examination time are expected in the near future. They will reinforce the attractiveness of NMR outcome measures and will further facilitate their integration in clinical research trials.
Collapse
Affiliation(s)
- Pierre G Carlier
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France.,National Academy of Sciences, United Institute for Informatics Problems, Minsk, Belarus
| | - Benjamin Marty
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France
| | - Olivier Scheidegger
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,Support Center for Advanced Neuroimaging (SCAN), Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | | | | | - Eduard Snezhko
- National Academy of Sciences, United Institute for Informatics Problems, Minsk, Belarus
| | - Dmitry Vlodavets
- N.I. Prirogov Russian National Medical Research University, Clinical Research Institute of Pediatrics, Moscow, Russian Federation
| |
Collapse
|
29
|
|
30
|
Abstract
PURPOSE OF REVIEW This review aims at covering the role of muscle MRI in supporting the diagnosis of myositis, in aiding to differentiate it from other muscle disorders, and in monitoring myositis patients over time by assessing response to treatment and by discriminating between muscle inflammation and chronic damage. RECENT FINDINGS MRI can assist in 'pattern recognition' of muscle involvement across numerous myopathies, including myositis. Novel applications of magnetic resonance such as cardiac MRI, MR elastography and blood oxigenation level-dependent magnetic resonance can shed light on different aspects of myositis and usefully complement conventional MRI in assessing patients with myositis. SUMMARY MRI can guide therapy by determining whether muscle weakness is related to edema (active inflammation) or muscle atrophy/fat replacement (chronic damage). There is a need to better standardize the assessment of MRI findings in myositis to provide defined outcome measures for use in clinical trials. VIDEO ABSTRACT.
Collapse
|
31
|
Yoshii Y, Tung WL, Ishii T. Strain and Morphological Changes of Median Nerve After Carpal Tunnel Release. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2017; 36:1153-1159. [PMID: 28240782 DOI: 10.7863/ultra.16.06070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVES Characterization of the changes of ultrasound parameters after carpal tunnel release may be useful for clarifying the effectiveness or the recovery process of the carpal tunnel syndrome treatment. We evaluated strain and morphological changes of the median nerve before and after carpal tunnel release in carpal tunnel syndrome patients. METHODS Twenty-two wrists of 20 idiopathic carpal tunnel syndrome patients who underwent open carpal tunnel release were evaluated by ultrasound. Cross-sectional images of the median nerve were obtained at the proximal carpal tunnel. The cross-sectional area, perimeter, aspect ratio of the minimum enclosing rectangle, and strain of the median nerve were measured and compared before and after carpal tunnel release. According to the patient's recovery, the areas under the receiver operating characteristic curves (AUCs) were compared among the parameters. RESULTS After carpal tunnel release, the area and perimeter significantly decreased, and the strain significantly increased compared with before carpal tunnel release. There were no significant changes in the aspect ratio after carpal tunnel release. The AUCs were 0.663, 0.643, 0.543, and 0.731 for the area, perimeter, aspect ratio, and strain, respectively. CONCLUSIONS Significant decreases in median nerve area and perimeter as well as significant increases in median nerve strain were observed after carpal tunnel release. The results of this study may be useful when considering how the median nerve recovers after carpal tunnel release.
Collapse
Affiliation(s)
- Yuichi Yoshii
- Department of Orthopedic Surgery, Tokyo Medical University Ibaraki Medical Center, Ami, Japan
| | - Wen-Lin Tung
- Department of Occupational Therapy, Ibaraki Prefectural University of Health Sciences, Ami, Japan
| | - Tomoo Ishii
- Department of Orthopedic Surgery, Tokyo Medical University Ibaraki Medical Center, Ami, Japan
| |
Collapse
|
32
|
Day J, Patel S, Limaye V. The role of magnetic resonance imaging techniques in evaluation and management of the idiopathic inflammatory myopathies. Semin Arthritis Rheum 2017; 46:642-649. [DOI: 10.1016/j.semarthrit.2016.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
|
33
|
Nelissen JL, de Graaf L, Traa WA, Schreurs TJL, Moerman KM, Nederveen AJ, Sinkus R, Oomens CWJ, Nicolay K, Strijkers GJ. A MRI-Compatible Combined Mechanical Loading and MR Elastography Setup to Study Deformation-Induced Skeletal Muscle Damage in Rats. PLoS One 2017; 12:e0169864. [PMID: 28076414 PMCID: PMC5226723 DOI: 10.1371/journal.pone.0169864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 12/23/2016] [Indexed: 02/01/2023] Open
Abstract
Deformation of skeletal muscle in the proximity of bony structures may lead to deep tissue injury category of pressure ulcers. Changes in mechanical properties have been proposed as a risk factor in the development of deep tissue injury and may be useful as a diagnostic tool for early detection. MRE allows for the estimation of mechanical properties of soft tissue through analysis of shear wave data. The shear waves originate from vibrations induced by an external actuator placed on the tissue surface. In this study a combined Magnetic Resonance (MR) compatible indentation and MR Elastography (MRE) setup is presented to study mechanical properties associated with deep tissue injury in rats. The proposed setup allows for MRE investigations combined with damage-inducing large strain indentation of the Tibialis Anterior muscle in the rat hind leg inside a small animal MR scanner. An alginate cast allowed proper fixation of the animal leg with anatomical perfect fit, provided boundary condition information for FEA and provided good susceptibility matching. MR Elastography data could be recorded for the Tibialis Anterior muscle prior to, during, and after indentation. A decaying shear wave with an average amplitude of approximately 2 μm propagated in the whole muscle. MRE elastograms representing local tissue shear storage modulus Gd showed significant increased mean values due to damage-inducing indentation (from 4.2 ± 0.1 kPa before to 5.1 ± 0.6 kPa after, p<0.05). The proposed setup enables controlled deformation under MRI-guidance, monitoring of the wound development by MRI, and quantification of tissue mechanical properties by MRE. We expect that improved knowledge of changes in soft tissue mechanical properties due to deep tissue injury, will provide new insights in the etiology of deep tissue injuries, skeletal muscle damage and other related muscle pathologies.
Collapse
Affiliation(s)
- Jules L. Nelissen
- Biomedical NMR, Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
- * E-mail:
| | - Larry de Graaf
- Biomedical NMR, Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Willeke A. Traa
- Soft Tissue Biomechanics and Engineering, Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Tom J. L. Schreurs
- Biomedical NMR, Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| | - Kevin M. Moerman
- Center for Extreme Bionics, Media lab, MIT, Cambridge, MA, United States of America
| | - Aart J. Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Ralph Sinkus
- Image Sciences & Biomedical Engineering, King’s College London, London, United Kingdom
| | - Cees W. J. Oomens
- Soft Tissue Biomechanics and Engineering, Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gustav J. Strijkers
- Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Simon NG, Noto YI, Zaidman CM. Skeletal muscle imaging in neuromuscular disease. J Clin Neurosci 2016; 33:1-10. [PMID: 27612670 DOI: 10.1016/j.jocn.2016.01.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023]
Abstract
Skeletal muscle imaging is increasingly used as a complement to clinical and electrophysiological examination in neuromuscular disease. Ultrasound and MRI have developed as the modalities of choice, each with strengths and limitations. Characteristic changes of muscle denervation and myopathy are seen on imaging which may delineate the nature of the disease process or help guide muscle biopsy. Identifying patterns of muscle involvement in hereditary myopathies may inform genetic testing. This review discusses skeletal muscle imaging in neuromuscular disease focusing on practical applications of current and emerging ultrasound and MRI techniques.
Collapse
Affiliation(s)
- Neil G Simon
- St Vincent's Clinical School, University of New South Wales, Level 5 deLacy Building, St Vincent's Hospital, Victoria Street, Darlinghurst, NSW 2010, Australia; Department of Neurology, St Vincent's Hospital, Darlinghurst, NSW, Australia.
| | - Yu-Ichi Noto
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; Brain and Mind Centre, Sydney Medical School, The University of Sydney, NSW, Australia
| | - Craig M Zaidman
- Department of Neurology, Washington University in St. Louis, St Louis, MO, USA
| |
Collapse
|
35
|
Chatelin S, Charpentier I, Corbin N, Meylheuc L, Vappou J. An automatic differentiation-based gradient method for inversion of the shear wave equation in magnetic resonance elastography: specific application in fibrous soft tissues. Phys Med Biol 2016; 61:5000-19. [PMID: 27300107 DOI: 10.1088/0031-9155/61/13/5000] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Quantitative and accurate measurement of in vivo mechanical properties using dynamic elastography has been the scope of many research efforts over the past two decades. Most of the shear-wave-based inverse approaches for magnetic resonance elastography (MRE) make the assumption of isotropic viscoelasticity. In this paper, we propose a quantitative gradient method for inversion of the shear wave equation in anisotropic media derived from a full waveform description using analytical viscoelastic Green formalism and automatic differentiation. The abilities and performances of the proposed identification method are first evaluated on numerical phantoms calculated in a transversely isotropic medium, and subsequently on experimental MRE data measured on an isotropic hydrogel phantom, on an anisotropic cryogel phantom and on an ex vivo fibrous muscle. The experiments are carried out by coupling circular shear wave profiles generated by acoustic radiation force and MRE acquisition of the wave front. Shear modulus values obtained by our MRE method are compared to those obtained by rheometry in the isotropic hydrogel phantom, and are found to be in good agreement despite non-overlapping frequency ranges. Both the cryogel and the ex vivo muscle are found to be anisotropic. Stiffness values in the longitudinal direction are found to be 1.8 times and 1.9 times higher than those in the transverse direction for the cryogel and the muscle, respectively. The proposed method shows great perspectives and substantial benefits for the in vivo quantitative investigation of complex mechanical properties in fibrous soft tissues.
Collapse
Affiliation(s)
- Simon Chatelin
- ICube, University of Strasbourg, CNRS, IHU Strasbourg, France
| | | | | | | | | |
Collapse
|
36
|
Barsotti S, Zampa V, Talarico R, Minichilli F, Ortori S, Iacopetti V, D'ascanio A, Tavoni AG, Bombardieri S, Mosca M, Neri R. Thigh magnetic resonance imaging for the evaluation of disease activity in patients with idiopathic inflammatory myopathies followed in a single center. Muscle Nerve 2016; 54:666-72. [PMID: 27279002 DOI: 10.1002/mus.25099] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/26/2016] [Accepted: 03/07/2016] [Indexed: 11/06/2022]
Abstract
INTRODUCTION In patients with idiopathic inflammatory myopathies (IIM), magnetic resonance imaging (MRI) has been proposed as a useful tool for diagnosis and follow-up. It may identify muscle inflammation (edema) and fatty infiltration for evaluation of disease activity and damage. Little information is available on the role of MRI in assessment of large cohorts of adult patients with IIM. METHODS Fifty-one patients underwent MRI of the thigh muscles, laboratory tests, and clinical evaluation, including Physician Global Assessment (PGA) of myositis activity and the Manual Muscle Test 8 (MMT8). RESULTS Muscle edema correlated significantly with creatine kinase values (P = 0.017) and PGA (P < 0.001). A significant correlation between edema and MMT8 values (P = 0.025) was observed when patients with muscle fatty infiltration were excluded. With respect to clinical diagnosis, the sensitivity of MRI was 92.3%, and specificity was 83.3%. CONCLUSIONS MRI appears to provide additional information that complements clinical and biochemical examinations. Muscle Nerve 54: 666-672, 2016.
Collapse
Affiliation(s)
- Simone Barsotti
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy. .,Genetic, Oncology and Clinical Medicine doctorate, University of Siena, Siena, Italy.
| | - Virna Zampa
- Department of Diagnostic and Interventional Radiology, University of Pisa, Via Roma 67, 56126, Pisa, Italy
| | - Rosaria Talarico
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Fabrizio Minichilli
- Unit of Environmental Epidemiology, Institute of Clinical Physiology, National Council of Research, Pisa, Italy
| | - Simona Ortori
- Department of Diagnostic and Interventional Radiology, University of Pisa, Via Roma 67, 56126, Pisa, Italy
| | - Valentina Iacopetti
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Anna D'ascanio
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Stefano Bombardieri
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marta Mosca
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rossella Neri
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
37
|
Low G, Kruse SA, Lomas DJ. General review of magnetic resonance elastography. World J Radiol 2016; 8:59-72. [PMID: 26834944 PMCID: PMC4731349 DOI: 10.4329/wjr.v8.i1.59] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/14/2015] [Accepted: 12/04/2015] [Indexed: 02/06/2023] Open
Abstract
Magnetic resonance elastography (MRE) is an innovative imaging technique for the non-invasive quantification of the biomechanical properties of soft tissues via the direct visualization of propagating shear waves in vivo using a modified phase-contrast magnetic resonance imaging (MRI) sequence. Fundamentally, MRE employs the same physical property that physicians utilize when performing manual palpation - that healthy and diseased tissues can be differentiated on the basis of widely differing mechanical stiffness. By performing “virtual palpation”, MRE is able to provide information that is beyond the capabilities of conventional morphologic imaging modalities. In an era of increasing adoption of multi-parametric imaging approaches for solving complex problems, MRE can be seamlessly incorporated into a standard MRI examination to provide a rapid, reliable and comprehensive imaging evaluation at a single patient appointment. Originally described by the Mayo Clinic in 1995, the technique represents the most accurate non-invasive method for the detection and staging of liver fibrosis and is currently performed in more than 100 centers worldwide. In this general review, the mechanical properties of soft tissues, principles of MRE, clinical applications of MRE in the liver and beyond, and limitations and future directions of this discipline -are discussed. Selected diagrams and images are provided for illustration.
Collapse
|
38
|
Chakouch MK, Charleux F, Bensamoun SF. Quantifying the Elastic Property of Nine Thigh Muscles Using Magnetic Resonance Elastography. PLoS One 2015; 10:e0138873. [PMID: 26397730 PMCID: PMC4580449 DOI: 10.1371/journal.pone.0138873] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 09/05/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Pathologies of the muscles can manifest different physiological and functional changes. To adapt treatment, it is necessary to characterize the elastic property (shear modulus) of single muscles. Previous studies have used magnetic resonance elastography (MRE), a technique based on MRI technology, to analyze the mechanical behavior of healthy and pathological muscles. The purpose of this study was to develop protocols using MRE to determine the shear modulus of nine thigh muscles at rest. METHODS Twenty-nine healthy volunteers (mean age = 26 ± 3.41 years) with no muscle abnormalities underwent MRE tests (1.5 T MRI). Five MRE protocols were developed to quantify the shear moduli of the nine following thigh muscles at rest: rectus femoris (RF), vastus medialis (VM), vastus intermedius (VI), vastus lateralis (VL), sartorius (Sr), gracilis (Gr), semimembranosus (SM), semitendinosus (ST), and biceps (BC). In addition, the shear modulus of the subcutaneous adipose tissue was analyzed. RESULTS The gracilis, sartorius, and semitendinosus muscles revealed a significantly higher shear modulus (μ_Gr = 6.15 ± 0.45 kPa, μ_ Sr = 5.15 ± 0.19 kPa, and μ_ ST = 5.32 ± 0.10 kPa, respectively) compared to other tissues (from μ_ RF = 3.91 ± 0.16 kPa to μ_VI = 4.23 ± 0.25 kPa). Subcutaneous adipose tissue had the lowest value (μ_adipose tissue = 3.04 ± 0.12 kPa) of all the tissues tested. CONCLUSION The different elasticities measured between the tissues may be due to variations in the muscles' physiological and architectural compositions. Thus, the present protocol could be applied to injured muscles to identify their behavior of elastic property. Previous studies on muscle pathology found that quantification of the shear modulus could be used as a clinical protocol to identify pathological muscles and to follow-up effects of treatments and therapies. These data could also be used for modelling purposes.
Collapse
Affiliation(s)
- Mashhour K. Chakouch
- Biomechanics and Bioengineering Laboratory, UMR CNRS 7338, Sorbonne University, Université de Technologie de Compiègne, Compiègne, France
| | | | - Sabine F. Bensamoun
- Biomechanics and Bioengineering Laboratory, UMR CNRS 7338, Sorbonne University, Université de Technologie de Compiègne, Compiègne, France
- * E-mail:
| |
Collapse
|
39
|
Efficacy of ultrasound elastography in detecting active myositis in children: can it replace MRI? Pediatr Radiol 2015; 45:1522-8. [PMID: 25903842 DOI: 10.1007/s00247-015-3350-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/21/2015] [Accepted: 03/26/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND Juvenile idiopathic inflammatory myopathy is a rare yet potentially debilitating condition. MRI is used both for diagnosis and to assess response to treatment. No study has evaluated the performance of US elastography in the diagnosis of this condition in children. OBJECTIVE To assess the performance of compression-strain US elastography in detecting active myositis in children with clinically confirmed juvenile idiopathic inflammatory myopathy and to compare its efficacy to MRI. MATERIALS AND METHODS Children with juvenile idiopathic inflammatory myopathy underwent non-contrast MR imaging as well as compression-strain US elastography of the quadriceps muscles. Imaging findings from both modalities were compared to each other as well as to the clinical determination of active disease based on physical examination and laboratory data. Active myositis on MR was defined as increased muscle signal on T2-weighted images. Elastography images were defined as normal or abnormal based on a previously published numerical scale of muscle elastography in normal children. Muscle echogenicity was graded as normal or abnormal based on gray-scale sonographic images. RESULTS Twenty-one studies were conducted in 18 pediatric patients (15 female, 3 male; age range 3-19 years). Active myositis was present on MRI in ten cases. There was a significant association between abnormal MRI and clinically active disease (P = 0.012). US elastography was abnormal in 4 of 10 cases with abnormal MRI and in 4 of 11 cases with normal MRI. There was no association between abnormal elastography and either MRI (P > 0.999) or clinically active disease (P > 0.999). Muscle echogenicity was normal in 11 patients; all 11 had normal elastography. Of the ten patients with increased muscle echogenicity, eight had abnormal elastography. There was a significant association between muscle echogenicity and US elastography (P < 0.001). The positive and negative predictive values for elastography in the determination of active myositis were 75% and 31%, respectively, with a sensitivity of 40% and specificity of 67%. CONCLUSION Compression-strain US elastography does not accurately detect active myositis in children with juvenile idiopathic inflammatory myopathy and cannot replace MRI as the imaging standard for detecting myositis in these children. The association between abnormal US elastography and increased muscle echogenicity suggests that elastography is capable of detecting muscle derangement in patients with myositis; however further studies are required to determine the clinical significance of these findings.
Collapse
|
40
|
Yoshii Y, Ishii T, Tanaka T, Tung WL, Sakai S. Detecting median nerve strain changes with cyclic compression apparatus: a comparison of carpal tunnel syndrome patients and healthy controls. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:669-674. [PMID: 25619788 DOI: 10.1016/j.ultrasmedbio.2014.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 08/25/2014] [Accepted: 09/12/2014] [Indexed: 06/04/2023]
Abstract
The objective of this study was to detect differences in median nerve strain between patients with carpal tunnel syndrome and healthy controls using cyclic compression apparatus. Twenty-eight patients with idiopathic carpal tunnel syndrome and 30 normal patients were examined by ultrasound elastography. Median nerve strain, strain ratio of reference coupler and median nerve area and perimeter were measured. The areas under receiver operating characteristic curves were compared among the parameters. Median nerve strains of the patients were significantly smaller than those of the controls (p < 0.001). Strain ratios, areas and perimeters were significantly larger in the patients than in the controls (p < 0.001). The areas under curves were 0.963, 0.917, 0.759 and 0.706 for strain, strain ratio, area and perimeter, respectively. The median nerve strain had the highest area under the curve. The ultrasonic strain measurements of the median nerve provided by the cyclic compression apparatus were superior to morphologic assessment in diagnosing carpal tunnel syndrome.
Collapse
Affiliation(s)
- Yuichi Yoshii
- Department of Orthopaedic Surgery, Endowed Department of Human Resources Development for Community Medicine, Tokyo Medical University Ibaraki Medical Center, Ami, Japan.
| | - Tomoo Ishii
- Department of Orthopaedic Surgery, Endowed Department of Human Resources Development for Community Medicine, Tokyo Medical University Ibaraki Medical Center, Ami, Japan
| | - Toshikazu Tanaka
- Department of Orthopaedic Surgery, Kikkoman General Hospital, Noda, Japan
| | - Wen-Lin Tung
- Formerly at the Department of Rehabilitation Medicine, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Ibaraki 300-0394, Japan
| | - Shinsuke Sakai
- Department of Orthopaedic Surgery, Endowed Department of Human Resources Development for Community Medicine, Tokyo Medical University Ibaraki Medical Center, Ami, Japan
| |
Collapse
|
41
|
Bensamoun S, Charleux F, Debernard L, Themar-Noel C, Voit T. Elastic properties of skeletal muscle and subcutaneous tissues in Duchenne muscular dystrophy by magnetic resonance elastography (MRE): A feasibility study. Ing Rech Biomed 2015. [DOI: 10.1016/j.irbm.2014.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Bilston LE, Tan K. Measurement of passive skeletal muscle mechanical properties in vivo: recent progress, clinical applications, and remaining challenges. Ann Biomed Eng 2014; 43:261-73. [PMID: 25404536 DOI: 10.1007/s10439-014-1186-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 11/06/2014] [Indexed: 12/30/2022]
Abstract
The ability to measure and quantify the properties of skeletal muscle in vivo as a method for understanding its complex physiological and pathophysiological behavior is important in numerous clinical settings, including rehabilitation. However, this remains a challenge to date due to the lack of a "gold standard" technique. Instead, there are a myriad of measuring techniques each with its own set of pros and cons. This review discusses the current state-of-the-art in elastography imaging techniques, i.e., ultrasound and magnetic resonance elastography, as applied to skeletal muscle, and briefly reviews other methods of measuring muscle mechanical behavior in vivo. While in vivo muscle viscoelastic properties can be measured, these techniques are largely limited to static or quasistatic measurements. Emerging elastography techniques are able to quantify muscle anisotropy and large deformation effects on stiffness, but, validation and optimization of these newer techniques is required. The development of reliable values for the mechanical properties of muscle across the population using these techniques are required to enable them to become more useful in rehabilitation and other clinical settings.
Collapse
|
43
|
Salman M, Sabra KG, Shinohara M. Assessment of muscle stiffness using a continuously scanning laser-Doppler vibrometer. Muscle Nerve 2014; 50:133-5. [DOI: 10.1002/mus.24161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 12/25/2013] [Accepted: 12/30/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Muhammad Salman
- School of Mechanical Engineering; Georgia Institute of Technology; 771 Ferst Drive Atlanta Georgia 30332-0356 USA
| | - Karim G. Sabra
- School of Mechanical Engineering; Georgia Institute of Technology; 771 Ferst Drive Atlanta Georgia 30332-0356 USA
| | - Minoru Shinohara
- School of Applied Physiology; Georgia Institute of Technology; Atlanta Georgia USA
| |
Collapse
|
44
|
Bensamoun SF. Magnetic Resonance Elastography of the Skeletal Muscle. MAGNETIC RESONANCE ELASTOGRAPHY 2014:81-87. [DOI: 10.1007/978-1-4939-1575-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
45
|
Bensamoun SF, Dao TT, Charleux F, Ho Ba Tho MC. ESTIMATION OF MUSCLE FORCE DERIVED FROM IN VIVO MR ELASTOGRAPHY TESTS: A PRELIMINARY STUDY. ACTA ACUST UNITED AC 2013. [DOI: 10.1142/s0218957713500152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The objective is to estimate the vastus medialis (VM) muscle force from multifrequency magnetic resonance elastography (MMRE) tests and two different rheological models (Voigt and springpot). Healthy participants (N = 13) underwent multifrequency (70, 90 and 110 Hz) magnetic resonance elastography MMRE tests. Thus, in vivo experimental elastic (μ) properties of the VM in passive and active (20% MVC) conditions were characterized. Moreover, the muscle viscosity (η) was determined with Voigt and springpot rheological models, in both muscle states. Subsequently, the VM muscle forces were calculated with a generic musculoskeletal model (OpenSIM) where the active and passive shear moduli (μ) were implemented. The viscosity measured with the two rheological models increased when the muscle is contracted. During the stance and the swing phases, the VM tensile forces decrease and the VM force was lower with the springpot model. It can be noted that during the swing phase, the muscle forces estimated from springpot model showed a higher standard deviation compared to the Voigt model. This last result may indicate a strong sensitivity of the muscle force to the change of active and passive contractile components in the swing phase of gait. This study provides for the first time an estimation of the muscle tensile forces for lower limb, during human motion, from in vivo experimental muscle mechanical properties. The assessment of individualized muscle forces during motion is valuable for finite element models, increasing the patient specific parameters. This novel muscle database will be of use for the clinician to better elucidate the muscle pathophysiology and to better monitor the effects of the muscle disease.
Collapse
Affiliation(s)
- Sabine F. Bensamoun
- Biomechanics and Bioengineery Laboratory, UMR CNRS 7338, Université de Technologie de Compiègne, Compiègne, France
| | - Tien Tuan Dao
- Biomechanics and Bioengineery Laboratory, UMR CNRS 7338, Université de Technologie de Compiègne, Compiègne, France
| | | | - Marie-Christine Ho Ba Tho
- Biomechanics and Bioengineery Laboratory, UMR CNRS 7338, Université de Technologie de Compiègne, Compiègne, France
| |
Collapse
|
46
|
Debernard L, Leclerc GE, Robert L, Charleux F, Bensamoun SF. IN VIVOCHARACTERIZATION OF THE MUSCLE VISCOELASTICITY IN PASSIVE AND ACTIVE CONDITIONS USING MULTIFREQUENCY MR ELASTOGRAPHY. ACTA ACUST UNITED AC 2013. [DOI: 10.1142/s0218957713500085] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study aims to develop a viscoelastic database for muscles (VM: vastus medialis and Sr: sartorius) and subcutaneous adipose tissue with multifrequency magnetic resonance elastography (MMRE) coupled with rheological models. MMRE was performed on 13 subjects, at 70-90-110 Hz, to experimentally assess the elastic properties (μ) of passive and active (20% MVC) muscles. Then, numerical shear modulus (μ) and viscosity (η) were calculated using three rheological models (Voigt, Zener, Springpot). The elastic properties, obtained with the Springpot model, were closer to the experimental data for the different physiological tissues (μSpringpot_VM_Passive= 3.67 ± 0.71 kPa, μSpringpot_Sr= 6.89 ± 1.27 kPa, μSpringpot_Adipose Tissue= 1.61 ± 0.37 kPa) and at different muscle states (μSpringpot_VM_20%MVC= 11.29 ± 1.04 kPa). The viscosity parameter increased with the level of contraction (η_VM_ Passive_Springpot= 4.5 ± 1.64 Pa.s versus η_VM_20% MVC_Springpot= 12.14 ± 1.47 Pa.s ) and varied with the type of muscle. (η_VM_ Passive_Springpot= 4.5 ± 1.64 Pa.s versus η_Sr_Springpot= 6.63 ± 1.27 Pa.s). Similar viscosities were calculated for all tissues and rheological models. These first physiologically realistic viscoelastic parameters could be used by the physicians to better identify and monitor the effects of muscle disorder, and as a database for musculoskeletal model.
Collapse
Affiliation(s)
- Laëtitia Debernard
- Biomechanics and Bioengineering Laboratory, UMR CNRS 7338, Université de, Technologie de Compiègne, Compiègne, France
| | - Gwladys E. Leclerc
- Biomechanics and Bioengineering Laboratory, UMR CNRS 7338, Université de, Technologie de Compiègne, Compiègne, France
| | | | | | - Sabine F. Bensamoun
- Biomechanics and Bioengineering Laboratory, UMR CNRS 7338, Université de, Technologie de Compiègne, Compiègne, France
| |
Collapse
|
47
|
Ernste FC, Reed AM. Idiopathic inflammatory myopathies: current trends in pathogenesis, clinical features, and up-to-date treatment recommendations. Mayo Clin Proc 2013; 88:83-105. [PMID: 23274022 DOI: 10.1016/j.mayocp.2012.10.017] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 01/13/2023]
Abstract
Recently, there have been important advances in the understanding of the pathophysiologic features, assessment, and management of patients with a newly diagnosed idiopathic inflammatory myopathy (IIM). Myositis-specific autoantibodies have been identified to define patient subgroups and offer prognostic implications. Similarly, proinflammatory cytokines, such as interleukin 6 and type 1 interferon-dependent genes, may serve as potential biomarkers of disease activity in adult and juvenile patients with dermatomyositis (DM). Moreover, magnetic resonance imaging has become an important modality for the assessment of muscle inflammation in adult IIM and juvenile DM. Immune-mediated necrotizing myopathies also are being recognized as a subset of IIM triggered by medications such as statins. However, confusion exists regarding effective management strategies for patients with IIM because of the lack of large-scale, randomized, controlled studies. This review focuses primarily on our current management and treatment algorithms for IIM including the care of pediatric patients with juvenile DM. For this review, we conducted a search of PubMed and MEDLINE for articles published from January 1, 1970, to December 1, 2011, using the following search terms: idiopathic inflammatory myopathies, dermatomyositis, polymyositis, juvenile dermatomyositis, sporadic inclusion body myositis, inclusion body myositis, inflammatory myositis, myositis, myopathies, pathogenesis, therapy, and treatment. Studies published in English were selected for inclusion in our review as well as additional articles identified from bibliographies.
Collapse
|
48
|
Glaser KJ, Manduca A, Ehman RL. Review of MR elastography applications and recent developments. J Magn Reson Imaging 2012; 36:757-74. [PMID: 22987755 PMCID: PMC3462370 DOI: 10.1002/jmri.23597] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The technique of MR elastography (MRE) has emerged as a useful modality for quantitatively imaging the mechanical properties of soft tissues in vivo. Recently, MRE has been introduced as a clinical tool for evaluating chronic liver disease, but many other potential applications are being explored. These applications include measuring tissue changes associated with diseases of the liver, breast, brain, heart, and skeletal muscle including both focal lesions (e.g., hepatic, breast, and brain tumors) and diffuse diseases (e.g., fibrosis and multiple sclerosis). The purpose of this review article is to summarize some of the recent developments of MRE and to highlight some emerging applications.
Collapse
Affiliation(s)
| | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
49
|
Current World Literature. Curr Opin Rheumatol 2012; 24:237-44. [DOI: 10.1097/bor.0b013e3283513e33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
50
|
Del Grande F, Carrino JA, Del Grande M, Mammen AL, Christopher Stine L. Magnetic resonance imaging of inflammatory myopathies. Top Magn Reson Imaging 2011; 22:39-43. [PMID: 22648079 DOI: 10.1097/rmr.0b013e31825b2c35] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The following article reviews the role of magnetic resonance imaging (MRI) in patients with idiopathic inflammatory myopathies (IIMs), focusing on the 3 major types of IIM: polymyositis, dermatomyositis, and inclusion-body myositis. After a brief introduction with general information about IIM, we will discuss the reasons why MRI plays an important role in the diagnosis and management of patients with polymyositis, dermatomyositis, and inclusion-body myositis. Magnetic resonance imaging can confirm the diagnosis and can help to phenotype the disease. Moreover, the support of MRI is important in addressing the muscle biopsy site and in reducing the high false-negative rate of biopsy when performed in a blind fashion. In monitoring therapy, MRI can add important information about the activity of the muscle disease and can identify cases where continued immunosuppressive therapy is no longer warranted owing to complete fatty replacement of the muscles. Lastly, we provide an overview about some advanced MRI techniques that focus more on function than on morphology of muscle.
Collapse
Affiliation(s)
- Filippo Del Grande
- Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, The Johns Hopkins University, Baltimore, MD 21287, USA.
| | | | | | | | | |
Collapse
|