1
|
Ramesh TV, Narongrit FW, Rispoli JV. Adaptable, wearable, and stretchable coils: A review. Magn Reson Med 2025; 93:2186-2208. [PMID: 39902582 DOI: 10.1002/mrm.30428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 02/05/2025]
Abstract
Over the last four decades, there have been various evolutions in the design and development of coils, from volume coils to the recent introduction of wireless receive arrays. A recent aim has been to develop coils that can closely conform to the anatomy of interest to increase the acquired signal. This goal has given rise to designs ranging from adaptable transmit coils to on-body stretchable receive arrays made using fabric or elastomer substrates. This review covers the design, fabrication details, experimental setup, and MRI results of adaptable, wearable, and stretchable MRI coils. The active and passive automatic tuning and matching strategies are examined with respect to mitigating signal-to-noise ratio reduction when the coil form is altered. A brief discussion of wireless MRI coils, which provide a solution to overcome the cabling issues associated with MRI coil development, is also included. The adaptable, wearable, and stretchable coils and various coil tuning techniques represent innovative radiofrequency coil solutions that pave the way for next-generation MRI hardware development.
Collapse
Affiliation(s)
- Thejas Vishnu Ramesh
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Folk W Narongrit
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Joseph V Rispoli
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Güler S, Povaz̆an M, Zhurbenko V, Zivkovic I. An 8Tx/32Rx head-neck coil at 7T by combining 2Tx/32Rx Nova coil with 6Tx shielded coaxial cable elements. Magn Reson Med 2025; 93:864-872. [PMID: 39415491 PMCID: PMC11604854 DOI: 10.1002/mrm.30297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/27/2024] [Accepted: 08/28/2024] [Indexed: 10/18/2024]
Abstract
PURPOSE Standard head coils used at 7T MRI suffer from high signal loss at lower brain regions and neck. This study aimed to increase the field of view (FOV) of a birdcage coil to image the lower brain regions and neck with a straightforward approach of using add-on transmit shielded coaxial cable coil (SCC) elements. METHODS A new head-neck coil was modeled as a combination of the 2Tx/32Rx Nova head coil and 6Tx SCC elements. The add-on transmit SCC elements have been produced. The full wave electromagnetic simulations were performed to analyze the coil geometry and estimate the local specific absorption ratio (SAR). TheB 1 + $$ {\mathrm{B}}_1^{+} $$ field maps and structural images were acquired in a phantom and in vivo on a 7T scanner. RESULTS The computed SAR histogram revealed a peakSAR 10 g $$ {\mathrm{SAR}}_{10g} $$ of 4.08 W/kg. The simulated and measuredB 1 + $$ {\mathrm{B}}_1^{+} $$ maps are in good agreement. The manufactured coil's S-parameters are below- $$ - $$ 10 dB. TheB 1 + $$ {\mathrm{B}}_1^{+} $$ field measurements on a subject presented the increase in the FOV. The T1-weighted structural images of three subjects acquired with the head-neck coil showed increased coverage compared to the head coil only. CONCLUSION Combining the 2Tx/32Rx Nova head coil and 6Tx SCC elements allowed imaging of the whole brain with an increased FOV down to the C4 spine. The coil stayed fully functional when different subjects were scanned. We conclude that the SCC transmit-only coils are a robust adjunct to conventional coil designs and can meaningfully enhance and expand their field of view.
Collapse
Affiliation(s)
- Sadri Güler
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital Amager and HvidovreCopenhagenDenmark
- Section for Magnetic Resonance, DTU Health TechTechnical University of DenmarkKgs. LyngbyDenmark
| | - Michal Povaz̆an
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital Amager and HvidovreCopenhagenDenmark
| | - Vitaliy Zhurbenko
- Department of Space Research and TechnologyTechnical University of DenmarkKgs. LyngbyDenmark
| | - Irena Zivkovic
- Electrical Engineering DepartmentTechnical University of EindhovenEindhovenThe Netherlands
| |
Collapse
|
3
|
Cui J, Hollingsworth NA, Wright SM. A Review of Current Control and Decoupling Methods for MRI Transmit Arrays. IEEE Rev Biomed Eng 2025; 18:388-400. [PMID: 38194402 DOI: 10.1109/rbme.2024.3351713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The shortened radio frequency wavelength in high field MRI makes it challenging to create a uniform excitation pattern over a large field of view, or to achieve satisfactory transmission efficiency at a local area. Transmit arrays are one tool that can be used to create a desired excitation pattern. To be effective, it is important to be able to control the current amplitude and phase at the array elements. The control of the current may get complicated by the coil coupling in many applications. Various methods have been proposed to achieve current control, either in the presence of coupling, or by effectively decouple the array elements. These methods are applied in different subsystems in the RF transmission chain: coil; coil-amplifier interface; amplifier, etc. In this review paper, we provide an overview of the various approaches and aspects of transmit current control and decoupling.
Collapse
|
4
|
Gapais PF, Luong M, Giacomini E, Guillot J, Djaballah E, Gunamony S, Chu S, Hosseinnezhadian S, Amadon A. A 32-channel high-impedance honeycomb-shaped receive array for temporal lobes exploration at 11.7T. Magn Reson Med 2025; 93:433-447. [PMID: 39219305 DOI: 10.1002/mrm.30274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE The newly operational 11.7T Iseult scanner provides an improved global SNR in the human brain. This gain in SNR can be pushed even further locally by designing region-focused dense receive arrays. The temporal lobes are particularly interesting to neuroscientists as they are associated with language and concept recognition. Our main goal was to maximize the SNR in the temporal lobes and provide high-acceleration capabilities for fMRI studies. METHODS We designed and developed a 32-channel receive array made of non-overlapped hexagonal loops. The loops were arranged in a honeycomb pattern and targeted the temporal lobes. They were placed on a flexible neoprene cap closely fitting the head. A new stripline design with a high impedance was proposed and applied for the first time at 11.7T. Specific homebuilt miniaturized low-impedance preamplifiers were directly mounted on the loops, providing preamplifier decoupling in a compact and modular design. Using an anatomical phantom, we experimentally compared the SNR and parallel imaging performance of the region-focused cap to a 32-channel whole-brain receive array at 11.7T. RESULTS The experimental results showed a 1.7-time higher SNR on average in the temporal lobes compared to the whole brain receive array. The g-factor is also improved when undersampling in the antero-posterior and head-foot directions. CONCLUSION A significant SNR boost in the temporal lobes was demonstrated at 11.7T compared to the whole-brain receive array. The parallel imaging capabilities were also improved in the temporal lobes in some acceleration directions.
Collapse
Affiliation(s)
- Paul-François Gapais
- Paris-Saclay University, CEA, CNRS, NeuroSpin, BAOBAB, Gif-sur-Yvette, France
- Multiwave Technologies SAS, Marseille, France
| | - Michel Luong
- Paris-Saclay University, CEA, Irfu, DACM, Gif-sur-Yvette, France
| | - Eric Giacomini
- Paris-Saclay University, CEA, CNRS, NeuroSpin, BAOBAB, Gif-sur-Yvette, France
| | - Jules Guillot
- Paris-Saclay University, CEA, CNRS, NeuroSpin, BAOBAB, Gif-sur-Yvette, France
| | - Elias Djaballah
- Paris-Saclay University, CEA, CNRS, NeuroSpin, BAOBAB, Gif-sur-Yvette, France
| | - Shajan Gunamony
- Imaging Centre of Excellence, University of Glasgow, Glasgow, UK
| | - Son Chu
- Imaging Centre of Excellence, University of Glasgow, Glasgow, UK
| | | | - Alexis Amadon
- Paris-Saclay University, CEA, CNRS, NeuroSpin, BAOBAB, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Lu M, Yang Y, Chai S, Yan X. Reproducible and highly miniaturized bazooka RF Balun using a printed capacitor. Magn Reson Med 2025; 93:422-432. [PMID: 39188192 PMCID: PMC11897960 DOI: 10.1002/mrm.30268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024]
Abstract
PURPOSE There is currently a strong trend in developing RF coils that are high-density, lightweight, and highly flexible. In addition to the resonator structure of the RF coil itself, the balun or cable trap circuit serves as another essential element in the functionality and sensitivity of RF coils. This study explores the development and application of reproducible highly miniaturized baluns in RF coil design. METHODS We introduce a novel approach to producing Bazooka baluns with printed coaxial capacitors, enabling the achievement of significant capacitance per unit length. Rigorous electromagnetic simulations and thorough hardware fabrication validate the efficacy of the proposed design across various magnetic field strengths, including 1.5 T, 3 T, and 7 T MRI systems. RESULTS Bench testing reveals that the proposed balun can achieve an acceptable common-mode rejection ratio even when it is highly miniaturized. The use of printed capacitors allows for a notable reduction in balun length and ensures high reproducibility. Findings demonstrate that the proposed balun exhibits no RF field distortion even when placed close to the sample, making it suitable for flexible coils, wearable coils, and high-density coils, particularly in high-field MRI. CONCLUSION The reproducibility inherent in the manufacturing process of printed coaxial capacitors allows for simple fabrication and ensures consistency in production. These advancements pave the way for the development of flexible coils, wearable coils, and high-density coils.
Collapse
Affiliation(s)
- Ming Lu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Yijin Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, 37232, USA
| | - Shuyang Chai
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, 37232, USA
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
6
|
Zi R, Abbas B, Wang B, Walczyk J, Brown R, Petchprapa C, Fishbaugh J, Gerig G, Block KT, Lattanzi R. High-resolution volumetric dynamic magnetic resonance imaging of the wrist using an 8-channel flexible receive coil. Skeletal Radiol 2024:10.1007/s00256-024-04829-7. [PMID: 39560769 DOI: 10.1007/s00256-024-04829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024]
Abstract
OBJECTIVE Real-time imaging is useful for the evaluation of wrist instability. However, currently available real-time magnetic resonance imaging (MRI) methods are limited due to their 2D nature or provide insufficient temporal resolution and image quality for quantitative kinematic analysis. This work introduces a novel approach for volumetric dynamic MRI of the wrist joint during active motion and demonstrates the feasibility of tracking carpal bone motion. MATERIALS AND METHODS A flexible 8-element 3 T wrist receive coil and 3D-printed support platform for guiding motion were designed for dynamic wrist imaging. 2D real-time images were acquired using a fat-saturated FLASH sequence with radial sampling and reconstructed with the GRASP algorithm. Corresponding volumetric dynamic wrist images were obtained by assembling 2D real-time images into 3D snapshots using autodetected MRI-visible markers for slice alignment. The proposed method was demonstrated for radial-ulnar deviation on five healthy volunteers. RESULTS The flexible wrist coil provided high SNR while allowing a wide range of wrist movements. 2D real-time wrist images were acquired with a temporal resolution of 48 ms/frame with negligible streaking artifacts. Carpal bones and metacarpal bones were properly aligned in the assembled dynamic volumes for all five subjects. The excellent bone-to-tissue contrast enabled accurate segmentation of the individual carpal bones on the assembled dynamic volumes. CONCLUSION This work introduces a novel wrist coil and demonstrates that real-time volumetric dynamic examination of the moving wrist is feasible. The achieved image quality and high temporal resolution could enable automatic segmentation of carpal bones and quantitative kinematic assessment for evaluating wrist instability.
Collapse
Affiliation(s)
- Ruoxun Zi
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA.
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Batool Abbas
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Bili Wang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Jerzy Walczyk
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ryan Brown
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Catherine Petchprapa
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - James Fishbaugh
- Department of Computer Science and Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA
| | - Guido Gerig
- Department of Computer Science and Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA
| | - Kai Tobias Block
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Riccardo Lattanzi
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
7
|
Roat S, Nohava L, Laistler E. Mechanically Adjustable 4-Channel RF Transceiver Coil Array for Rat Brain Imaging in a Whole-Body 7 T MR Scanner. SENSORS (BASEL, SWITZERLAND) 2024; 24:5377. [PMID: 39205070 PMCID: PMC11360804 DOI: 10.3390/s24165377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Investigations of human brain disorders are frequently conducted in rodent models using magnetic resonance imaging. Due to the small specimen size and the increase in signal-to-noise ratio with the static magnetic field strength, dedicated small-bore animal scanners can be used to acquire high-resolution data. Ultra-high-field (≥7 T) whole-body human scanners are increasingly available, and they can also be used for animal investigations. Dedicated sensors, in this case, radiofrequency coils, are required to achieve sufficient sensitivity for the high spatial resolution needed for imaging small anatomical structures. In this work, a four-channel transceiver coil array for rat brain imaging at 7 T is presented, which can be adjusted for use on a wide range of differently sized rats, from infants to large adults. Three suitable array designs (with two to four elements covering the whole rat brain) were compared using full-wave 3D electromagnetic simulation. An optimized static B1+ shim was derived to maximize B1+ in the rat brain for both small and big rats. The design, together with a 3D-printed adjustable coil housing, was tested and validated in ex vivo rat bench and MRI measurements.
Collapse
Affiliation(s)
| | | | - Elmar Laistler
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria (L.N.)
| |
Collapse
|
8
|
Zhu X, Wu K, Anderson SW, Zhang X. Wearable Coaxially-Shielded Metamaterial for Magnetic Resonance Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313692. [PMID: 38569592 DOI: 10.1002/adma.202313692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/04/2024] [Indexed: 04/05/2024]
Abstract
Recent advancements in metamaterials have yielded the possibility of a wireless solution to improve signal-to-noise ratio (SNR) in magnetic resonance imaging (MRI). Unlike traditional closely packed local coil arrays with rigid designs and numerous components, these lightweight, cost-effective metamaterials eliminate the need for radio frequency cabling, baluns, adapters, and interfaces. However, their clinical adoption is limited by their low sensitivity, bulky physical footprint, and limited, specific use cases. Herein, a wearable metamaterial developed using commercially available coaxial cable, designed for a 3.0 T MRI system is introduced. This metamaterial inherits the coaxially-shielded structure of its constituent cable, confining the electric field within and mitigating coupling to its surroundings. This ensures safer clinical adoption, lower signal loss, and resistance to frequency shifts. Weighing only 50 g, the metamaterial maximizes its sensitivity by conforming to the anatomical region of interest. MRI images acquired using this metamaterial with various pulse sequences achieve an SNR comparable or even surpass that of a state-of-the-art 16-channel knee coil. This work introduces a novel paradigm for constructing metamaterials in the MRI environment, paving the way for the development of next-generation wireless MRI technology.
Collapse
Affiliation(s)
- Xia Zhu
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
- Photonics Center, Boston University, Boston, MA, 02215, USA
| | - Ke Wu
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
- Photonics Center, Boston University, Boston, MA, 02215, USA
| | - Stephan W Anderson
- Photonics Center, Boston University, Boston, MA, 02215, USA
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Xin Zhang
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
- Photonics Center, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
9
|
Motovilova E, Ching T, Vincent J, Tan ET, Taracila V, Robb F, Hashimoto M, Sneag DB, Winkler SA. Design and Dynamic In Vivo Validation of a Multi-Channel Stretchable Liquid Metal Coil Array. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3325. [PMID: 38998405 PMCID: PMC11243347 DOI: 10.3390/ma17133325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Recent developments in the field of radiofrequency (RF) coils for magnetic resonance imaging (MRI) offer flexible and patient-friendly solutions. Previously, we demonstrated a proof-of-concept single-element stretchable coil design based on liquid metal and a self-tuning smart geometry. In this work, we numerically analyze and experimentally study a multi-channel stretchable coil array and demonstrate its application in dynamic knee imaging. We also compare our flexible coil array to a commonly used commercial rigid coil array. Our numerical analysis shows that the proposed coil array maintains its resonance frequency (<1% variation) and sensitivity (<6%) at various stretching configurations from 0% to 30%. We experimentally demonstrate that the signal-to-noise ratio (SNR) of the acquired MRI images is improved by up to four times with the stretchable coil array due to its conformal and therefore tight-fitting nature. This stretchable array allows for dynamic knee imaging at different flexion angles, infeasible with traditional, rigid coil arrays. These findings are significant as they address the limitations of current rigid coil technology, offering a solution that enhances patient comfort and image quality, particularly in applications requiring dynamic imaging.
Collapse
Affiliation(s)
- Elizaveta Motovilova
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY 10021, USA
| | - Terry Ching
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
- Digital Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, Singapore 487372, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | | | - Ek Tsoon Tan
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY 10021, USA
| | | | | | - Michinao Hashimoto
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
- Digital Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Darryl B. Sneag
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY 10021, USA
| | | |
Collapse
|
10
|
Bhosale AA, Zhao Y, Zhang X. Electric field and SAR reduction in high-impedance RF arrays by using high permittivity materials for 7T MR imaging. PLoS One 2024; 19:e0305464. [PMID: 38959266 PMCID: PMC11221758 DOI: 10.1371/journal.pone.0305464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024] Open
Abstract
In the field of ultra-high field MR imaging, the challenges associated with higher frequencies and shorter wavelengths necessitate rigorous attention to multichannel array design. While the need for such arrays remains, and efforts to increase channel counts continue, a persistent impediment-inter-element coupling-constantly hinders development. This coupling degrades current and field distribution, introduces noise correlation between channels, and alters the frequency of array elements, affecting image quality and overall performance. The goal of optimizing ultra-high field MRI goes beyond resolving inter-element coupling and includes significant safety considerations related to the design changes required to achieve high-impedance coils. Although these coils provide excellent isolation, the higher impedance needs special design changes. However, such changes pose a significant safety risk in the form of strong electric fields across low-capacitance lumped components. This process may raise Specific Absorption Rate (SAR) values in the imaging subject, increasing power deposition and, as a result, the risk of tissue heating-related injury. To balance the requirement of inter-element decoupling with the critical need for safety, we suggest a new solution. Our method uses high-dielectric materials to efficiently reduce electric fields and SAR values in the imaging sample. This intervention tries to maintain B1 efficiency and inter-element decoupling within the existing array design, which includes high-impedance coils. Our method aims to promote the full potential of ultra-high field MRI by alleviating this critical safety concern with minimal changes to the existing array setup.
Collapse
Affiliation(s)
- Aditya A. Bhosale
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Yunkun Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States of America
- Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, United States of America
| |
Collapse
|
11
|
Budé LMI, Steensma BR, Zivkovic I, Raaijmakers AJE. The coax monopole antenna: A flexible end-fed antenna for ultrahigh field transmit/receive arrays. Magn Reson Med 2024; 92:361-373. [PMID: 38376359 DOI: 10.1002/mrm.30036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE The coax monopole antenna is presented for body imaging at 7 T. The antenna is fed at one end, eliminating the possibility of cable-coil coupling and simplifying cable routing. Additionally, its flexibility improves loading to the subject. METHODS Like the coax dipole antenna, an interruption in the shield of the coaxial cable allows the current to extend to the outside of the shield, generating a B1 + field. Matching is achieved using a single inductor at the distal side, and a cable trap enforces the desired antenna length. Finite difference time domain simulations are employed to optimize the design parameters. Phantom measurements are conducted to determine the antenna's B1 + efficiency and to find the S-parameters in straight and bent positions. Eight-channel simulations and measurements are performed for prostate imaging. RESULTS The optimal configuration is a length of 360 mm with a gap position of 40 mm. Simulation data show higher B1 + levels for the coax monopole (20% in the prostate), albeit with a 5% lower specific absorbance rate efficiency, compared to the fractionated dipole antenna. The S11 of the coax monopole exhibits remarkable robustness to loading changes. In vivo prostate imaging demonstrates B1 + levels of 10-14 μT with an input power of 8 × 800 W, which is comparable to the fractionated dipole antenna. High-quality images and acceptable coupling levels were achieved. CONCLUSION The coax monopole is a novel, flexible antenna for body imaging at 7 T. Its simple design incorporates a single inductor at the distal side to achieve matching, and one-sided feeding greatly simplifies cable routing.
Collapse
Affiliation(s)
- Lyanne M I Budé
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bart R Steensma
- Division of Imaging and Oncology, UMC Utrecht, Utrecht, The Netherlands
| | - Irena Zivkovic
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Alexander J E Raaijmakers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Division of Imaging and Oncology, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
12
|
Narongrit FW, Ramesh TV, Rispoli JV. Stretching the Limits of MRI-Stretchable and Modular Coil Array Using Conductive Thread Technology. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2024; 12:89613-89620. [PMID: 39026966 PMCID: PMC11257367 DOI: 10.1109/access.2024.3416869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Objective We propose a modular stretchable coil design using conductive threads and commercially available embroidery machines. The coil design increases customizability of coil arrays for individual patients and each body part. Methods Eight rectangular coils were constructed with custom-fabricated stretchable tinsel copper threads incorporated onto textile. Tune, match, and detune circuits were incorporated on the coil. A hook-and-loop mechanism was used to attach and decouple the modular coils. Phantom and in vivo scans at various anatomical flexion angles were acquired to highlight performance, and a temperature test was performed to verify safety. Results In vivo MRI experiments demonstrate high sensitivity and coverage of each anatomy. As the coils are stretched, the sensitive volume increases at a rate of 10.93 mL/cm2. The SNR reduction of a single coil was greater during compression than when stretched, but this did not affect image quality for the array. The modularity of the array allows for adaptability for any anatomy with simple on-demand adjustment to the number and position of coil elements. Conclusion The images demonstrated high sensitivity and coverage of the stretchable array for various anatomies and flexion angles. Stretching the coils increases the sensitive volume, allowing for a larger region to be effectively imaged. The resonance shift and SNR decrease during stretch and compression support further investigation of methods to reduce frequency shift in stretchable coils. Significance The proposed array design allows for highly stretchable, flexible, modular, and conformal patient-centered coils that allow for increased imaging quality, greater comfort, and rapid production.
Collapse
Affiliation(s)
- Folk W Narongrit
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Thejas Vishnu Ramesh
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Joseph V Rispoli
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
13
|
Wu K, Zhu X, Anderson SW, Zhang X. Wireless, customizable coaxially shielded coils for magnetic resonance imaging. SCIENCE ADVANCES 2024; 10:eadn5195. [PMID: 38865448 PMCID: PMC11168459 DOI: 10.1126/sciadv.adn5195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Anatomy-specific radio frequency receive coil arrays routinely adopted in magnetic resonance imaging (MRI) for signal acquisition are commonly burdened by their bulky, fixed, and rigid configurations, which may impose patient discomfort, bothersome positioning, and suboptimal sensitivity in certain situations. Herein, leveraging coaxial cables' inherent flexibility and electric field confining property, we present wireless, ultralightweight, coaxially shielded, passive detuning MRI coils achieving a signal-to-noise ratio comparable to or surpassing that of commercially available cutting-edge receive coil arrays with the potential for improved patient comfort, ease of implementation, and substantially reduced costs. The proposed coils demonstrate versatility by functioning both independently in form-fitting configurations, closely adapting to relatively small anatomical sites, and collectively by inductively coupling together as metamaterials, allowing for extension of the field of view of their coverage to encompass larger anatomical regions without compromising coil sensitivity. The wireless, coaxially shielded MRI coils reported herein pave the way toward next-generation MRI coils.
Collapse
Affiliation(s)
- Ke Wu
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Xia Zhu
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Stephan W. Anderson
- Photonics Center, Boston University, Boston, MA 02215, USA
- Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Xin Zhang
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
14
|
Vazquez R, Motovilova E, Winkler SA. Stretchable Sensor Materials Applicable to Radiofrequency Coil Design in Magnetic Resonance Imaging: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:3390. [PMID: 38894182 PMCID: PMC11174967 DOI: 10.3390/s24113390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Wearable sensors are rapidly gaining influence in the diagnostics, monitoring, and treatment of disease, thereby improving patient outcomes. In this review, we aim to explore how these advances can be applied to magnetic resonance imaging (MRI). We begin by (i) introducing limitations in current flexible/stretchable RF coils and then move to the broader field of flexible sensor technology to identify translatable technologies. To this goal, we discuss (ii) emerging materials currently used for sensor substrates, (iii) stretchable conductive materials, (iv) pairing and matching of conductors with substrates, and (v) implementation of lumped elements such as capacitors. Applicable (vi) fabrication methods are presented, and the review concludes with a brief commentary on (vii) the implementation of the discussed sensor technologies in MRI coil applications. The main takeaway of our research is that a large body of work has led to exciting new sensor innovations allowing for stretchable wearables, but further exploration of materials and manufacturing techniques remains necessary, especially when applied to MRI diagnostics.
Collapse
Affiliation(s)
- Rigoberto Vazquez
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 10065, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Simone Angela Winkler
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 10065, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
15
|
Payne K, Zhao Y, Bhosale AA, Zhang X. Dual-Tuned Coaxial-Transmission-Line RF Coils for Hyperpolarized 13C and Deuterium 2H Metabolic MRS Imaging at Ultrahigh Fields. IEEE Trans Biomed Eng 2024; 71:1521-1530. [PMID: 38090865 PMCID: PMC11095995 DOI: 10.1109/tbme.2023.3341760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
OBJECTIVE Information on the metabolism of tissues in healthy and diseased states plays a significant role in the detection and understanding of tumors, neurodegenerative diseases, diabetes, and other metabolic disorders. Hyperpolarized carbon-13 magnetic resonance imaging (13C-HPMRI) and deuterium metabolic imaging (2H-DMI) are two emerging X-nuclei used as practical imaging tools to investigate tissue metabolism. However due to their low gyromagnetic ratios (ɣ13C = 10.7 MHz/T; ɣ2H = 6.5 MHz/T) and natural abundance, such method required a sophisticated dual-tuned radiofrequency (RF) coil. METHODS Here, we report a dual-tuned coaxial transmission line (CTL) RF coil agile for metabolite information operating at 7T with independent tuning capability. The design analysis has demonstrated how both resonant frequencies can be individually controlled by simply varying the constituent of the design parameters. RESULTS Numerical results have demonstrated a broadband tuning range capability, covering most of the X-nucleus signal, especially the 13C and 2H spectra at 7T. Furthermore, in order to validate the feasibility of the proposed design, both dual-tuned 1H/13C and 1H/2H CTLs RF coils are fabricated using a semi-flexible RG-405 .086" coaxial cable and bench test results (scattering parameters and magnetic field efficiency/distribution) are successfully obtained. CONCLUSION The proposed dual-tuned RF coils reveal highly effective magnetic field obtained from both proton and heteronuclear signal which is crucial for accurate and detailed imaging. SIGNIFICANCE The successful development of this new dual-tuned RF coil technique would provide a tangible and efficient tool for ultrahigh field metabolic MR imaging.
Collapse
|
16
|
Payne K, Zhao Y, Bhosale AA, Zhang X. Eight-channel dual-tuned coaxial-transmission-line coils array for human head imaging at 10.5 Tesla. PROCEEDINGS OF THE INTERNATIONAL SOCIETY FOR MAGNETIC RESONANCE IN MEDICINE ... SCIENTIFIC MEETING AND EXHIBITION. INTERNATIONAL SOCIETY FOR MAGNETIC RESONANCE IN MEDICINE. SCIENTIFIC MEETING AND EXHIBITION 2024; 32:0465. [PMID: 38798757 PMCID: PMC11127717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Affiliation(s)
- Komlan Payne
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Yunkun Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Aditya Ashok Bhosale
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
17
|
Vliem J, Xiao Y, Wenz D, Xin L, Teeuwise W, Ruytenberg T, Webb A, Zivkovic I. Twisted pair transmission line coil - a flexible, self-decoupled and robust element for 7 T MRI. Magn Reson Imaging 2024; 108:146-160. [PMID: 38364973 DOI: 10.1016/j.mri.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
OBJECTIVE This study evaluates the performance of a twisted pair transmission line coil as a transceive element for 7 T MRI in terms of physical flexibility, robustness to shape deformations, and interelement decoupling. METHODS Each coil element was created by shaping a twisted pair of wires into a circle. One wire was interrupted at the top, while the other was interrupted at the bottom, and connected to the matching circuit. Electromagnetic simulations were conducted to determine the optimal number of twists per length (in terms of B₁+ field efficiency, SAR efficiency, sensitivity to elongation, and interelement decoupling properties) and for investigating the fundamental operational principle of the coil through fields streamline visualisation. A comparison between the twisted pair coil and a conventional loop coil in terms of B₁+ fields, maxSAR₁₀g, and stability of S₁₁ when the coil was deformed was performed. Experimentally measured interelement coupling between individual elements of multichannel arrays was also investigated. RESULTS Increasing the number of twists per length resulted in a more physically robust coil. Poynting vector streamline visualisation showed that the twisted pair coil concentrated most of the energy in the near field. The twisted pair coil exhibited comparable B₁+ fields and improved maxSAR₁₀g to the conventional coil but demonstrated exceptional stability with respect to coil deformation and a strong self-decoupling nature when placed in an array configuration. DISCUSSION The findings highlight the robustness of the twisted pair coil, showcasing its stability under shape variations. This coil holds great potential as a flexible RF coil for various imaging applications using multiple-element arrays, benefiting from its inherent decoupling.
Collapse
Affiliation(s)
- Jules Vliem
- Department of Electrical Engineering, Eindhoven University of Technology, the Netherlands
| | - Ying Xiao
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland; École Polytechnique Fédérale de Lausanne (EPFL), Animal Imaging and Technology, Lausanne, Switzerland
| | - Daniel Wenz
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland; École Polytechnique Fédérale de Lausanne (EPFL), Animal Imaging and Technology, Lausanne, Switzerland
| | - Lijing Xin
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland; École Polytechnique Fédérale de Lausanne (EPFL), Animal Imaging and Technology, Lausanne, Switzerland
| | - Wouter Teeuwise
- C.J. Gorter MRI Centre, Department of Radiology, Leiden University Medical Center Leiden, the Netherlands
| | - Thomas Ruytenberg
- C.J. Gorter MRI Centre, Department of Radiology, Leiden University Medical Center Leiden, the Netherlands
| | - Andrew Webb
- C.J. Gorter MRI Centre, Department of Radiology, Leiden University Medical Center Leiden, the Netherlands
| | - Irena Zivkovic
- Department of Electrical Engineering, Eindhoven University of Technology, the Netherlands.
| |
Collapse
|
18
|
Lakshmanan K, Wang B, Walczyk J, Collins CM, Brown R. Three-row MRI receive array with remote circuitry to preserve radiation transparency. Phys Med Biol 2024; 69:10.1088/1361-6560/ad388c. [PMID: 38537307 PMCID: PMC11071057 DOI: 10.1088/1361-6560/ad388c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/27/2024] [Indexed: 04/18/2024]
Abstract
Objective.Up to this point, 1.5 T linac-compatible coil array layouts have been restricted to one or two rows of coils because of the desire to place radiation-opaque circuitry adjacent to the coils and outside the window through which the linac beam travels. Such layouts can limit parallel imaging performance. The purpose of this work was to design and build a three-row array in which remotely located circuits permitted a central row of coils while preserving the radiolucent window.Approach.The remote circuits consisted of a phase shifter to cancel the phase introduced by the coaxial link between the circuit and coil, followed by standard components for tuning, matching, detuning, and preamplifier decoupling. Tests were performed to compare prototype single-channel coils with remote or local circuits, which were followed by tests comparing two and three-row arrays .Main results.The single-channel coil with the remote circuit maintained 85% SNR at depths of 30 mm or more as compared to a coil with local circuit. The three-row array provided similar SNR as the two-row array, along with geometry factor advantages for parallel imaging acceleration in the head-foot direction.Significance.The remote circuit strategy could potentially support future MR-linac arrays by allowing greater flexibility in array layout compared to those confined by local circuits, which can be leveraged for parallel imaging acceleration.
Collapse
Affiliation(s)
- Karthik Lakshmanan
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Bili Wang
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Jerzy Walczyk
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Christopher M. Collins
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Ryan Brown
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
19
|
Obermann M, Nohava L, Frass-Kriegl R, Soanca O, Ginefri JC, Felblinger J, Clauser P, Baltzer PA, Laistler E. Panoramic Magnetic Resonance Imaging of the Breast With a Wearable Coil Vest. Invest Radiol 2023; 58:799-810. [PMID: 37227137 PMCID: PMC10581436 DOI: 10.1097/rli.0000000000000991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Breast cancer, the most common malignant cancer in women worldwide, is typically diagnosed by x-ray mammography, which is an unpleasant procedure, has low sensitivity in women with dense breasts, and involves ionizing radiation. Breast magnetic resonance imaging (MRI) is the most sensitive imaging modality and works without ionizing radiation, but is currently constrained to the prone imaging position due to suboptimal hardware, therefore hampering the clinical workflow. OBJECTIVES The aim of this work is to improve image quality in breast MRI, to simplify the clinical workflow, shorten measurement time, and achieve consistency in breast shape with other procedures such as ultrasound, surgery, and radiation therapy. MATERIALS AND METHODS To this end, we propose "panoramic breast MRI"-an approach combining a wearable radiofrequency coil for 3 T breast MRI (the "BraCoil"), acquisition in the supine position, and a panoramic visualization of the images. We demonstrate the potential of panoramic breast MRI in a pilot study on 12 healthy volunteers and 1 patient, and compare it to the state of the art. RESULTS With the BraCoil, we demonstrate up to 3-fold signal-to-noise ratio compared with clinical standard coils and acceleration factors up to 6 × 4. Panoramic visualization of supine breast images reduces the number of slices to be viewed by a factor of 2-4. CONCLUSIONS Panoramic breast MRI allows for high-quality diagnostic imaging and facilitated correlation to other diagnostic and interventional procedures. The developed wearable radiofrequency coil in combination with dedicated image processing has the potential to improve patient comfort while enabling more time-efficient breast MRI compared with clinical coils.
Collapse
|
20
|
Payne K, Zhao Y, Bhosale AA, Zhang X. Dual-tuned Coaxial-transmission-line RF coils for Hyperpolarized 13C and Deuterium 2H Metabolic MRS Imaging at Ultrahigh Fields. ARXIV 2023:arXiv:2307.11221v3. [PMID: 37502626 PMCID: PMC10370217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Objective Information on the metabolism of tissues in healthy and diseased states plays a significant role in the detection and understanding of tumors, neurodegenerative diseases, diabetes, and other metabolic disorders. Hyperpolarized carbon-13 magnetic resonance imaging (13C-HPMRI) and deuterium metabolic imaging (2H-DMI) are two emerging X-nuclei used as practical imaging tools to investigate tissue metabolism. However due to their low gyromagnetic ratios (ɣ13C = 10.7 MHz/T; ɣ 2H = 6.5 MHz/T) and natural abundance, such method required a sophisticated dual-tuned radiofrequency (RF) coil. Methods Here, we report a dual-tuned coaxial transmission line (CTL) RF coil agile for metabolite information operating at 7T with independent tuning capability. The design analysis has demonstrated how both resonant frequencies can be individually controlled by simply varying the constituent of the design parameters. Results Numerical results have demonstrated a broadband tuning range capability, covering most of the X-nucleus signal, especially the 13C and 2H spectra at 7T. Furthermore, in order to validate the feasibility of the proposed design, both dual-tuned 1H/13C and 1H/2H CTLs RF coils are fabricated using a semi-flexible RG-405 .086" coaxial cable and bench test results (scattering parameters and magnetic field efficiency/distribution) are successfully obtained. Conclusion The proposed dual-tuned RF coils reveal highly effective magnetic field obtained from both proton and heteronuclear signal which is crucial for accurate and detailed imaging. Significance The successful development of this new dual-tuned RF coil technique would provide a tangible and efficient tool for ultrahigh field metabolic MR imaging.
Collapse
Affiliation(s)
- Komlan Payne
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| | - Yunkun Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| | - Aditya Ashok Bhosale
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| | - Xiaoliang Zhang
- Departments of Biomedical Engineering and Electrical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| |
Collapse
|
21
|
Motovilova E, Ching T, Vincent J, Shin J, Tan ET, Taracila V, Robb F, Hashimoto M, Sneag DB, Winkler SA. Dual-Channel Stretchable, Self-Tuning, Liquid Metal Coils and Their Fabrication Techniques. SENSORS (BASEL, SWITZERLAND) 2023; 23:7588. [PMID: 37688046 PMCID: PMC10490642 DOI: 10.3390/s23177588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Flexible and stretchable radiofrequency coils for magnetic resonance imaging represent an emerging and rapidly growing field. The main advantage of such coil designs is their conformal nature, enabling a closer anatomical fit, patient comfort, and freedom of movement. Previously, we demonstrated a proof-of-concept single element stretchable coil design with a self-tuning smart geometry. In this work, we evaluate the feasibility of scaling this coil concept to a multi-element coil array and the associated engineering and manufacturing challenges. To this goal, we study a dual-channel coil array using full-wave simulations, bench testing, in vitro, and in vivo imaging in a 3 T scanner. We use three fabrication techniques to manufacture dual-channel receive coil arrays: (1) single-layer casting, (2) double-layer casting, and (3) direct-ink-writing. All fabricated arrays perform equally well on the bench and produce similar sensitivity maps. The direct-ink-writing method is found to be the most advantageous fabrication technique for fabrication speed, accuracy, repeatability, and total coil array thickness (0.6 mm). Bench tests show excellent frequency stability of 128 ± 0.6 MHz (0% to 30% stretch). Compared to a commercial knee coil array, the stretchable coil array is more conformal to anatomy and provides 50% improved signal-to-noise ratio in the region of interest.
Collapse
Affiliation(s)
- Elizaveta Motovilova
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY 10021, USA
| | - Terry Ching
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
- Digital Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, Singapore 487372, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | | | - James Shin
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ek Tsoon Tan
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY 10021, USA
| | | | | | - Michinao Hashimoto
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
- Digital Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Darryl B. Sneag
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY 10021, USA
| | | |
Collapse
|
22
|
Wang B, Walczyk J, Ahmed M, Elkowitz S, Daniels S, Brown R, Burke CJ. Extended and weightbearing wrist 3-T MRI using a novel harness and flexible 24-channel glove coil to evaluate carpal kinematics: a pilot study in 10 volunteers. Acta Radiol 2023; 64:2570-2577. [PMID: 37470466 DOI: 10.1177/02841851231188222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
BACKGROUND Wrist pain in the extended or extended weightbearing positions may be incompletely evaluated using standard magnetic resonance imaging (MRI) with standard rigid clamshell coils in the neutral position. PURPOSE To evaluate a flexible 24-channel glove coil and harness when imaging the wrist in neutral, dorsally extended, and weightbearing positions. MATERIAL AND METHODS Ten wrists in 10 asymptomatic volunteers (mean age = 29 years) were scanned. Participants underwent 3-T MRI using the harness and flexible glove coil, acquiring sagittal turbo spin echo (TSE) and half-Fourier acquisition single-shot turbo spin echo (HASTE) pulse sequences. Static TSE images were obtained in neutral, extended, and weightbearing positions using proton density parameters and independently evaluated by two radiologists for: dorsal radiocarpal ligament thickness; radiocapitate, radiolunate, and capitatolunate angles; palmar translation of the lunate on the radius; angulation of the extensor tendons; and distance from the distal extensor retinaculum to Lister's tubercle. Cine HASTE images were dynamically acquired between neutral-maximum extension to measure the radiocapitate angle. RESULTS Good reader agreement was observed (r > 0.73) for all measurements except palmar translation in the neutral position (r = 0.27). Significant increases in dorsal radiocarpal ligament thickness; radiocapitate, radiolunate and capitolunate angulation; and extensor tendon angulation were observed between the neutral and extended positions (P < 0.001). A further significant increase in these metrics between extended and weightbearing positions was also seen (P < 0.01). CONCLUSION Significant increases in dorsal radiocarpal ligament thickness, articular and tendon angulations occur during wrist extension, that further increase with dorsal weightbearing.
Collapse
Affiliation(s)
- Bili Wang
- Department of Radiology, New York University Langone Medical Center, New York, NY, USA
- Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Jerzy Walczyk
- Department of Radiology, New York University Langone Medical Center, New York, NY, USA
- Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Mohammad Ahmed
- Department of Radiology, New York University Langone Medical Center, New York, NY, USA
| | - Stuart Elkowitz
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Steven Daniels
- Department of Radiology, New York University Langone Medical Center, New York, NY, USA
| | - Ryan Brown
- Department of Radiology, New York University Langone Medical Center, New York, NY, USA
- Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Christopher J Burke
- Department of Radiology, New York University Langone Medical Center, New York, NY, USA
| |
Collapse
|
23
|
Zhang X, Waks M, DelaBarre L, Payne K, Ugurbil K, Adriany G. Design and Test of a Flexible Two-row CTL Array and Its Detunable Resonant Elements for 10.5T MR Imaging. PROCEEDINGS OF THE INTERNATIONAL SOCIETY FOR MAGNETIC RESONANCE IN MEDICINE ... SCIENTIFIC MEETING AND EXHIBITION. INTERNATIONAL SOCIETY FOR MAGNETIC RESONANCE IN MEDICINE. SCIENTIFIC MEETING AND EXHIBITION 2023; 31:4593. [PMID: 38500845 PMCID: PMC10948114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Affiliation(s)
- Xiaoliang Zhang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Matt Waks
- Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Lance DelaBarre
- Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Komlan Payne
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Kamil Ugurbil
- Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Gregor Adriany
- Radiology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
24
|
Payne K, Bhosale AA, Zhao Y, Zhang X. Design of dual-band Coaxial-transmission-line coils with independent tuning capabilities. PROCEEDINGS OF THE INTERNATIONAL SOCIETY FOR MAGNETIC RESONANCE IN MEDICINE ... SCIENTIFIC MEETING AND EXHIBITION. INTERNATIONAL SOCIETY FOR MAGNETIC RESONANCE IN MEDICINE. SCIENTIFIC MEETING AND EXHIBITION 2023; 31:4080. [PMID: 37600528 PMCID: PMC10440074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Affiliation(s)
- Komlan Payne
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, United States
| | - Aditya A Bhosale
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, United States
| | - Yunkun Zhao
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, United States
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
25
|
Zhang X, DelaBarre L, Payne K, Waks M, Adriany G, Ugurbil K. A Wrap-on Decoupled Coaxial Transmission Line (CTL) Transceive Array for Head MR Imaging at 10.5T. PROCEEDINGS OF THE INTERNATIONAL SOCIETY FOR MAGNETIC RESONANCE IN MEDICINE ... SCIENTIFIC MEETING AND EXHIBITION. INTERNATIONAL SOCIETY FOR MAGNETIC RESONANCE IN MEDICINE. SCIENTIFIC MEETING AND EXHIBITION 2023; 31:3904. [PMID: 37609489 PMCID: PMC10444091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Affiliation(s)
- Xiaoliang Zhang
- Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Lance DelaBarre
- Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Komlan Payne
- Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Matt Waks
- Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Gregor Adriany
- Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Kamil Ugurbil
- Radiology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
26
|
Nohava L, Obermann M, Frass-Kriegl R, Soanca O, Laistler E. A modular system of flexible receive-only coil arrays for 3 T Magnetic Resonance Imaging. Z Med Phys 2023:S0939-3889(23)00070-3. [PMID: 37258388 DOI: 10.1016/j.zemedi.2023.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023]
Abstract
Flexible form-fitting radiofrequency coils provide high signal-to-noise ratio (SNR) for magnetic resonance imaging (MRI), and in array configuration large anatomical areas of interest can be covered. We propose a modular system - "ModFlex"- of flexible lightweight 4-channel coaxial coil arrays for 3 T MRI. We investigated the performance difference between commercial reference coils and 8- and 16-channel ModFlex receive-only array systems. In vivo, six anatomical targets in four regions of interest - the neck, the ankle, the spine and the hip - were imaged with the novel coil array system. The versatility of ModFlex and the robustness of the coil characteristics for different use cases is demonstrated. We measured an SNR gain for 4 out of 6 and similar SNR for 2 out of 6 anatomical target regions as compared to commercial reference coils. Parallel imaging capabilities are comparable to standard coils in hip and neck imaging, but ModFlex outperforms standard coils in ankle and spine imaging. High SNR combined with high acceleration possibilities enables faster imaging workflows and/or high-resolution MR acquisitions. The coil's versatility is beneficial for use cases with varying subject sizes and could improve patient comfort.
Collapse
Affiliation(s)
- Lena Nohava
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
| | - Michael Obermann
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
| | - Roberta Frass-Kriegl
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
| | - Onisim Soanca
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
| | - Elmar Laistler
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
27
|
Harrevelt SD, Roos THM, Klomp DWJ, Steensma BR, Raaijmakers AJE. Simulation-based evaluation of SAR and flip angle homogeneity for five transmit head arrays at 14 T. MAGMA (NEW YORK, N.Y.) 2023; 36:245-255. [PMID: 37000320 PMCID: PMC10140109 DOI: 10.1007/s10334-023-01067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 04/01/2023]
Abstract
INTRODUCTION Various research sites are pursuing 14 T MRI systems. However, both local SAR and RF transmit field inhomogeneity will increase. The aim of this simulation study is to investigate the trade-offs between peak local SAR and flip angle uniformity for five transmit coil array designs at 14 T in comparison to 7 T. METHODS Investigated coil array designs are: 8 dipole antennas (8D), 16 dipole antennas (16D), 8 loop coils (8D), 16 loop coils (16L), 8 dipoles/8 loop coils (8D8L) and for reference 8 dipoles at 7 T. Both RF shimming and kT-points were investigated by plotting L-curves of peak SAR levels vs flip angle homogeneity. RESULTS For RF shimming, the 16L array performs best. For kT-points, superior flip angle homogeneity is achieved at the expense of more power deposition, and the dipole arrays outperform the loop coil arrays. DISCUSSION AND CONCLUSION For most arrays and regular imaging, the constraint on head SAR is reached before constraints on peak local SAR are violated. Furthermore, the different drive vectors in kT-points alleviate strong peaks in local SAR. Flip angle inhomogeneity can be alleviated by kT-points at the expense of larger power deposition. For kT-points, the dipole arrays seem to outperform loop coil arrays.
Collapse
Affiliation(s)
- Seb D Harrevelt
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Thomas H M Roos
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart R Steensma
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexander J E Raaijmakers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
28
|
Gokyar S, Voss HU, Taracila V, Robb FJL, Bernico M, Kelley D, Ballon DJ, Winkler SA. A pathway towards a two-dimensional, bore-mounted, volume body coil concept for ultra high-field magnetic resonance imaging. NMR IN BIOMEDICINE 2022; 35:e4802. [PMID: 35834176 DOI: 10.1002/nbm.4802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Lack of a body-sized, bore-mounted, radiofrequency (RF) body coil for ultrahigh field (UHF) magnetic resonance imaging (MRI) is one of the major drawbacks of UHF, hampering the clinical potential of the technology. Transmit field (B1 ) nonuniformity and low specific absorption rate (SAR) efficiencies in UHF MRI are two challenges to be overcome. To address these problems, and ultimately provide a pathway for the full clinical potential of the modality, we have designed and simulated two-dimensional cylindrical high-pass ladder (2D c-HPL) architectures for clinical bore-size dimensions, and demonstrated a simplified proof of concept with a head-sized prototype at 7 T. A new dispersion relation has been derived and electromagnetic simulations were used to verify coil modes. The coefficient of variation (CV) for brain, cerebellum, heart, and prostate tissues after B1 + shimming in silico is reported and compared with previous works. Three prototypes were designed in simulation: a head-sized, body-sized, and long body-sized coil. The head-sized coil showed a CV of 12.3%, a B1 + efficiency of 1.33 μT/√W, and a SAR efficiency of 2.14 μT/√(W/kg) for brain simulations. The body-sized 2D c-HPL coil was compared with same-sized transverse electromagnetic (TEM) and birdcage coils in silico with a four-port circularly polarized mode excitation. Improved B1 + uniformity (26.9%) and SAR efficiency (16% and 50% better than birdcage and TEM coils, respectively) in spherical phantoms was observed. We achieved a CV of 12.3%, 4.9%, 16.7%, and 2.8% for the brain, cerebellum, heart, and prostate, respectively. Preliminary imaging results for the head-sized coil show good agreement between simulation and experiment. Extending the 1D birdcage coil concept to 2D c-HPLs provides improved B1 + uniformity and SAR efficiency.
Collapse
Affiliation(s)
- Sayim Gokyar
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Los Angeles, California, USA
| | - Henning U Voss
- College of Human Ecology, Cornell University, Ithaca, New York, USA
| | | | | | | | | | - Douglas J Ballon
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
29
|
Lu M, Sengupta S, Gore JC, Grissom WA, Yan X. High-Density MRI RF Arrays Using Mixed Dipole Antennas and Microstrip Transmission Line Resonators. IEEE Trans Biomed Eng 2022; 69:3243-3252. [PMID: 35404807 PMCID: PMC9587496 DOI: 10.1109/tbme.2022.3166279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE High-density multi-coil arrays are desirable in MRI because they provide high signal-to-noise ratios (SNR), enable highly accelerated parallel imaging, and provide more uniform transmit fields at high fields. For high-density arrays such as a head array with 16 elements in a row, popular dipole antennas and microstrip transmission line (also referred to as "MTL") resonators both have severe coupling issues. METHODS In this work, we show that dipoles and MTLs have naturally low coupling and propose a novel array configuration in which they are interleaved. We first show the electromagnetic (EM) coupling between a single dipole and a single MTL across different separations in bench tests. Then we validate and analyze this through EM simulations. Finally, we construct a 16-channel mixed dipole and MTL array and evaluate its performance on the bench and through MRI experiments. RESULTS Without any decoupling treatments, the worst coupling between a dipole and an MTL was only -15.8 dB when their center-to-center distance was 4.7 cm (versus -5.4 dB for two dipole antennas and -6.0 dB for two MTL resonators). Even in a dense 16-channel mixed array, the inter-element isolation among all elements was better than -14 dB. CONCLUSION This study reveals, analyzes, and validates a novel finding that the popular dipole antennas and MTL resonators used in ultrahigh field MRI have naturally low coupling. SIGNIFICANCE These findings will simplify the construction of high-density arrays, enable new applications, and benefit imaging performance in ultrahigh field MRI.
Collapse
|
30
|
Wang B, Siddiq SS, Walczyk J, Bruno M, Khodarahmi I, Brinkmann IM, Rehner R, Lakshmanan K, Fritz J, Brown R. A flexible MRI coil based on a cable conductor and applied to knee imaging. Sci Rep 2022; 12:15010. [PMID: 36056131 PMCID: PMC9440226 DOI: 10.1038/s41598-022-19282-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022] Open
Abstract
Flexible radiofrequency coils for magnetic resonance imaging (MRI) have garnered attention in research and industrial communities because they provide improved accessibility and performance and can accommodate a range of anatomic postures. Most recent flexible coil developments involve customized conductors or substrate materials and/or target applications at 3 T or above. In contrast, we set out to design a flexible coil based on an off-the-shelf conductor that is suitable for operation at 0.55 T (23.55 MHz). Signal-to-noise ratio (SNR) degradation can occur in such an environment because the resistance of the coil conductor can be significant with respect to the sample. We found that resonating a commercially available RG-223 coaxial cable shield with a lumped capacitor while the inner conductor remained electrically floating gave rise to a highly effective "cable coil." A 10-cm diameter cable coil was flexible enough to wrap around the knee, an application that can benefit from flexible coils, and had similar conductor loss and SNR as a standard-of-reference rigid copper coil. A two-channel cable coil array also provided good SNR robustness against geometric variability, outperforming a two-channel coaxial coil array by 26 and 16% when the elements were overlapped by 20-40% or gapped by 30-50%, respectively. A 6-channel cable coil array was constructed for 0.55 T knee imaging. Incidental cartilage and bone pathologies were clearly delineated in T1- and T2-weighted turbo spin echo images acquired in 3-4 min with the proposed coil, suggesting that clinical quality knee imaging is feasible in an acceptable examination timeframe. Correcting for T1, the SNR measured with the cable coil was approximately threefold lower than that measured with a 1.5 T state-of-the-art 18-channel coil, which is expected given the threefold difference in main magnetic field strength. This result suggests that the 0.55 T cable coil conductor loss does not deleteriously impact SNR, which might be anticipated at low field.
Collapse
Affiliation(s)
- Bili Wang
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, 660 First Ave, New York, NY, USA
| | - Syed S Siddiq
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, 660 First Ave, New York, NY, USA
- Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerzy Walczyk
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, 660 First Ave, New York, NY, USA
| | - Mary Bruno
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, 660 First Ave, New York, NY, USA
| | - Iman Khodarahmi
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, 660 First Ave, New York, NY, USA
- Division of Musculoskeletal Radiology, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | | | | | - Karthik Lakshmanan
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, 660 First Ave, New York, NY, USA
| | - Jan Fritz
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, 660 First Ave, New York, NY, USA
- Division of Musculoskeletal Radiology, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ryan Brown
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, 660 First Ave, New York, NY, USA.
| |
Collapse
|
31
|
Zhang B, Wang B, Ho J, Hodono S, Burke C, Lattanzi R, Vester M, Rehner R, Sodickson D, Brown R, Cloos M. Twenty-four-channel high-impedance glove array for hand and wrist MRI at 3T. Magn Reson Med 2022; 87:2566-2575. [PMID: 34971464 PMCID: PMC8847333 DOI: 10.1002/mrm.29147] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE To present a novel 3T 24-channel glove array that enables hand and wrist imaging in varying postures. METHODS The glove array consists of an inner glove holding the electronics and an outer glove protecting the components. The inner glove consists of four main structures: palm, fingers, wrist, and a flap that rolls over on top. Each structure was constructed out of three layers: a layer of electrostatic discharge flame-resistant fabric, a layer of scuba neoprene, and a layer of mesh fabric. Lightweight and flexible high impedance coil (HIC) elements were inserted into dedicated tubes sewn into the fabric. Coil elements were deliberately shortened to minimize the matching interface. Siemens Tim 4G technology was used to connect all 24 HIC elements to the scanner with only one plug. RESULTS The 24-channel glove array allows large motion of both wrist and hand while maintaining the SNR needed for high-resolution imaging. CONCLUSION In this work, a purpose-built 3T glove array that embeds 24 HIC elements is demonstrated for both hand and wrist imaging. The 24-channel glove array allows a great range of motion of both the wrist and hand while maintaining a high SNR and providing good theoretical acceleration performance, thus enabling hand and wrist imaging at different postures to extract kinematic information.
Collapse
Affiliation(s)
- Bei Zhang
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bili Wang
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Justin Ho
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Shota Hodono
- Centre for Advanced Imaging, Queensland University, Brisbane, Australia
| | | | - Riccardo Lattanzi
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY, USA
| | | | | | - Daniel Sodickson
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ryan Brown
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Martijn Cloos
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Centre for Advanced Imaging, Queensland University, Brisbane, Australia
| |
Collapse
|
32
|
Destruel A, Jin J, Weber E, Li M, Engstrom C, Liu F, Crozier S. Integrated Multi-Modal Antenna With Coupled Radiating Structures (I-MARS) for 7T pTx Body MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:39-51. [PMID: 34370662 DOI: 10.1109/tmi.2021.3103654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One of the main challenges in ultra-high field whole body MRI relates to the uniformity and efficiency of the radiofrequency field. Although recent advances in the design of RF coils have demonstrated that dipole antennas have a current distribution ideally suited to 7T MRI, they are limited by low isolation and poor robustness to loading changes. Multi-layered and self-decoupled loop coils have demonstrated improved RF performance in these areas at lower field MRI but have not been adapted to dipole designs. In this work, we introduce a novel type of RF antenna consisting of integrated multi-modal antenna with coupled radiating structures (I-MARS), which use layered conductors and dielectric substrates to allow dipole and transmission line modes to co-exist on the same compact dipole-shaped structure. The proposed antenna was optimally designed for 7T MRI and compared with existing dipole antennas using numerical simulations, which showed that I-MARS had similar B1 over specific absorption rate efficiency and superior isolation and stability. Subsequently, a prototype pTx coil array was built and tested in vivo on healthy volunteers at 7T. The articulated, modular construction of the I-MARS coil array allowed it to be readily conformed across multiple body regions (hip, knee, shoulder, lumbar spine and prostate), without requiring modification of the tuning and matching of the antennas. Using RF shimming, uniform and efficient excitation was successfully achieved in the acquisition of high-resolution MR images.
Collapse
|
33
|
van Leeuwen CC, Steensma BR, Klomp DWJ, van den Berg CAT, Raaijmakers AJE. The Coax Dipole: A fully flexible coaxial cable dipole antenna with flattened current distribution for body imaging at 7 Tesla. Magn Reson Med 2021; 87:528-540. [PMID: 34411327 PMCID: PMC9292881 DOI: 10.1002/mrm.28983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/14/2021] [Accepted: 08/04/2021] [Indexed: 01/26/2023]
Abstract
Purpose The coax dipole antenna, a flexible antenna for body imaging at 7T is presented. Similar to the high impedance coil, this coaxial cable antenna is fed on the central conductor and through gaps in the shield, the current passes to the outside of the antenna to generate B1 field. This could achieve more favorable current distributions and better adaptation to the body curvature. Methods Finite difference time domain (FDTD) simulations are performed to optimize the positions of the gaps in the shield for a flat current profile. Lumped inductors are added to each end to reduce losses. The performance of a single antenna is compared to a fractionated dipole using B1 maps and MR thermometry. Finally, an array of eight coax dipoles is evaluated in simulations and used for in‐vivo scanning. Results An optimal configuration is found with gaps located at 10 cm from the center and inductor values of 28 nH. In comparison to the fractionated dipole antenna, in single antenna phantom measurements the coax dipole achieves similar B1 amplitude with 18% lower peak temperature. In simulations, the eight‐channel array of coax dipoles improved B1 homogeneity by 18%, along with small improvements in transmit efficiency and specific absorption rate (SAR). MRI measurements on three volunteers show more consistent performance for the coax dipoles. Conclusion The coax dipole is a novel antenna design with a flattened current distribution resulting in beneficial properties. Also, the flexible design of the coax dipoles allows better adaptation to the body curvature and can potentially be used for a wide range of imaging targets.
Collapse
Affiliation(s)
- Carel C van Leeuwen
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart R Steensma
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Alexander J E Raaijmakers
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Biomedical Engineering Department, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
34
|
Motovilova E, Tan ET, Taracila V, Vincent JM, Grafendorfer T, Shin J, Potter HG, Robb FJL, Sneag DB, Winkler SA. Stretchable self-tuning MRI receive coils based on liquid metal technology (LiquiTune). Sci Rep 2021; 11:16228. [PMID: 34376703 PMCID: PMC8355233 DOI: 10.1038/s41598-021-95335-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/23/2021] [Indexed: 01/14/2023] Open
Abstract
Magnetic resonance imaging systems rely on signal detection via radiofrequency coil arrays which, ideally, need to provide both bendability and form-fitting stretchability to conform to the imaging volume. However, most commercial coils are rigid and of fixed size with a substantial mean offset distance of the coil from the anatomy, which compromises the spatial resolution and diagnostic image quality as well as patient comfort. Here, we propose a soft and stretchable receive coil concept based on liquid metal and ultra-stretchable polymer that conforms closely to a desired anatomy. Moreover, its smart geometry provides a self-tuning mechanism to maintain a stable resonance frequency over a wide range of elongation levels. Theoretical analysis and numerical simulations were experimentally confirmed and demonstrated that the proposed coil withstood the unwanted frequency detuning typically observed with other stretchable coils (0.4% for the proposed coil as compared to 4% for a comparable control coil). Moreover, the signal-to-noise ratio of the proposed coil increased by more than 60% as compared to a typical, rigid, commercial coil.
Collapse
Affiliation(s)
- Elizaveta Motovilova
- grid.5386.8000000041936877XDepartment of Radiology, Weill Cornell Medicine, New York, NY 10065 USA ,grid.239915.50000 0001 2285 8823Department of Radiology, Hospital for Special Surgery, New York, NY 10021 USA
| | - Ek Tsoon Tan
- grid.239915.50000 0001 2285 8823Department of Radiology, Hospital for Special Surgery, New York, NY 10021 USA
| | - Victor Taracila
- grid.418143.b0000 0001 0943 0267GE Healthcare, Aurora, OH USA
| | - Jana M. Vincent
- grid.418143.b0000 0001 0943 0267GE Healthcare, Aurora, OH USA
| | | | - James Shin
- grid.5386.8000000041936877XDepartment of Radiology, Weill Cornell Medicine, New York, NY 10065 USA
| | - Hollis G. Potter
- grid.239915.50000 0001 2285 8823Department of Radiology, Hospital for Special Surgery, New York, NY 10021 USA
| | | | - Darryl B. Sneag
- grid.239915.50000 0001 2285 8823Department of Radiology, Hospital for Special Surgery, New York, NY 10021 USA
| | - Simone A. Winkler
- grid.5386.8000000041936877XDepartment of Radiology, Weill Cornell Medicine, New York, NY 10065 USA
| |
Collapse
|
35
|
Nohava L, Czerny R, Roat S, Obermann M, Kuehne A, Frass-Kriegl R, Felblinger J, Ginefri JC, Laistler E. Flexible Multi-Turn Multi-Gap Coaxial RF Coils: Design Concept and Implementation for Magnetic Resonance Imaging at 3 and 7 Tesla. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1267-1278. [PMID: 33439836 DOI: 10.1109/tmi.2021.3051390] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Magnetic resonance has become a backbone of medical imaging but suffers from inherently low sensitivity. This can be alleviated by improved radio frequency (RF) coils. Multi-turn multi-gap coaxial coils (MTMG-CCs) introduced in this work are flexible, form-fitting RF coils extending the concept of the single-turn single-gap CC by introducing multiple cable turns and/or gaps. It is demonstrated that this enables free choice of the coil diameter, and thus, optimizing it for the application to a certain anatomical site, while operating at the self-resonance frequency. An equivalent circuit for MTMG-CCs is modeled to predict their resonance frequency. Possible configurations regarding size, number of turns and gaps, and cable types for different B 0 field strengths are calculated. Standard copper wire loop coils (SCs) and flexible CCs made from commercial coaxial cable were fabricated as receive-only coils for 3 T and transmit/receive coils at 7 T with diameters between 4 and 15 cm. Electromagnetic simulations are used to investigate the currents on MTMG-CCs, and demonstrate comparable specific absorption rate of 7 T CCs and SCs. Signal-to-noise ratio (SNR), transmit efficiency, and active detuning performance of CCs were compared in bench tests and MR experiments. For the form-fitted receive-only CCs at 3 T no significant SNR degradation was found as compared to flat SCs on a balloon phantom. Form-fitted transmit/receive CCs at 7 T showed higher transmit efficiency and SNR. MTMG-CCs can be sized to optimize sensitivity, are flexible and lightweight, and could therefore enable the fabrication of wearable coils with improved patient comfort.
Collapse
|
36
|
Port A, Luechinger R, Brunner DO, Pruessmann KP. Elastomer coils for wearable MR detection. Magn Reson Med 2021; 85:2882-2891. [PMID: 33433044 DOI: 10.1002/mrm.28662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/20/2020] [Accepted: 12/07/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE To explore the use of conductive elastomer for MR signal detection and the utility of this approach for wearable detector arrays. METHODS An elastomer filled with silver microparticles was used to form stretchable radiofrequency coils for MR detection. Their electrical performance in terms of the Qunloaded and Q ratio was assessed in the relaxed state and under repeated strain up to 40%. In a phantom imaging study, the signal-to-noise ratio yield of conductive elastomer coils was compared with that of a reference copper coil. Four elastomer coils were integrated with a stretchable textile substrate to form a wearable array for knee imaging. The array was employed for multiple-angle and kinematic knee imaging in vivo. RESULTS The elastomer coils proved highly stretchable and mechanically robust. Upon repeated stretching by 20%, a medium-sized coil element settled at Qunloaded of 42 in the relaxed state and 32 at full strain, reflecting sample-noise dominance. The signal-to-noise ratio of elastomer coils was found to be 8% to 16% lower than that achieved with a conventional copper coil. Multiple-angle and kinematic knee imaging with the wearable array yielded high-quality results indicating robustness of detection performance against stretching and warping of the array. CONCLUSION Conductive elastomer is a viable material for MR detection. Coils made from this material reconcile high stretchability and adequate electrical performance with ease of manufacturing. Conductive elastomer also offers inherent restoring forces and is readily washable and sanitizable, making it an excellent basis of wearable detector front ends.
Collapse
Affiliation(s)
- Andreas Port
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Roger Luechinger
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - David O Brunner
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Klaas P Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Ibrahim ESH, Arpinar VE, Muftuler LT, Stojanovska J, Nencka AS, Koch KM. Cardiac functional magnetic resonance imaging at 7T: Image quality optimization and ultra-high field capabilities. World J Radiol 2020; 12:231-246. [PMID: 33240463 PMCID: PMC7653183 DOI: 10.4329/wjr.v12.i10.231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/27/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND 7T cardiac magnetic resonance imaging (MRI) introduces several advantages, as well as some limitations, compared to lower-field imaging. The capabilities of ultra-high field (UHF) MRI have not been fully exploited in cardiac functional imaging.
AIM To optimize 7T cardiac MRI functional imaging without the need for conducting B1 shimming or subject-specific tuning, which improves scan efficiency. In this study, we provide results from phantom and in vivo scans using a multi-channel transceiver modular coil.
METHODS We investigated the effects of adding a dielectric pad at different locations next to the imaged region of interest on improving image quality in subjects with different body habitus. We also investigated the effects of adjusting the imaging flip angle in cine and tagging sequences on improving image quality, B1 field homogeneity, signal-to-noise ratio (SNR), blood-myocardium contrast-to-noise ratio (CNR), and tagging persistence throughout the cardiac cycle.
RESULTS The results showed the capability of achieving improved image quality with high spatial resolution (0.75 mm × 0.75 mm × 2 mm), high temporal resolution (20 ms), and increased tagging persistence (for up to 1200 ms cardiac cycle duration) at 7T cardiac MRI after adjusting scan set-up and imaging parameters. Adjusting the imaging flip angle was essential for achieving optimal SNR and myocardium-to-blood CNR. Placing a dielectric pad at the anterior left position of the chest resulted in improved B1 homogeneity compared to other positions, especially in subjects with small chest size.
CONCLUSION Improved regional and global cardiac functional imaging can be achieved at 7T MRI through simple scan set-up adjustment and imaging parameter optimization, which would allow for more streamlined and efficient UHF cardiac MRI.
Collapse
Affiliation(s)
- El-Sayed H Ibrahim
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - V Emre Arpinar
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - L Tugan Muftuler
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Jadranka Stojanovska
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Andrew S Nencka
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Kevin M Koch
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| |
Collapse
|
38
|
Ibrahim ESH, Arpinar VE, Muftuler LT, Stojanovska J, Nencka AS, Koch KM. Cardiac functional magnetic resonance imaging at 7T: Image quality optimization and ultra-high field capabilities. World J Radiol 2020. [DOI: 10.4329/wjr.v12.i10.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
39
|
Choi CH, Hong SM, Felder J, Shah NJ. The state-of-the-art and emerging design approaches of double-tuned RF coils for X-nuclei, brain MR imaging and spectroscopy: A review. Magn Reson Imaging 2020; 72:103-116. [DOI: 10.1016/j.mri.2020.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022]
|
40
|
Detector clothes for MRI: A wearable array receiver based on liquid metal in elastic tubes. Sci Rep 2020; 10:8844. [PMID: 32483259 PMCID: PMC7264329 DOI: 10.1038/s41598-020-65634-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/06/2020] [Indexed: 11/08/2022] Open
Abstract
In modern magnetic resonance imaging, signal detection is performed by dense arrays of radiofrequency resonators. Tight-fitting arrays boost the sensitivity and speed of imaging. However, current devices are rigid and cage-like at the expense of patient comfort. They also constrain posture, limiting the examination of joints. For better ergonomics and versatility, detectors should be flexible, adapt to individual anatomy, and follow posture. Towards this goal, the present work proposes a novel design based on resonators formed by liquid metal in polymer tubes. Textile integration creates lightweight, elastic devices that are worn like pieces of clothing. A liquid-metal array tailored to the human knee is shown to deliver competitive image quality while self-adapting to individual anatomy and adding the ability to image flexion of the joint. Relative to other options for stretchable conductors, liquid metal in elastic tubes stands out by reconciling excellent electrical and mechanical properties with ease of manufacturing.
Collapse
|
41
|
Ruytenberg T, Webb A, Zivkovic I. Shielded-coaxial-cable coils as receive and transceive array elements for 7T human MRI. Magn Reson Med 2020; 83:1135-1146. [PMID: 31483530 PMCID: PMC6899981 DOI: 10.1002/mrm.27964] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE To investigate the use of shielded-coaxial-cable (SCC) coils as elements for multi-channel receive-only and transceive arrays for 7T human MRI and to compare their performance with equivalently sized conventional loop coils. METHODS The SCC coil element consists of a coaxial loop with interrupted central conductor at the feed-point side and an interrupted shield at the opposite point. Inter-element decoupling, transmit efficiency, and sample heating were compared with results from conventional capacitively segmented loop coils. Three multichannel arrays (a 4-channel receive-only array and 8- and 5-channel transceive arrays) were constructed. Their inter-element decoupling was characterized via measured noise correlation matrices and additionally under different flexing conditions of the coils. Thermal measurements were performed and in vivo images were acquired. RESULTS The measured and simulated B 1 + maps of both SCC and conventional loops were very similar. For all the arrays constructed, the inter-element decoupling was much greater for the SCC elements than the conventional ones. Even under high degrees of flexion, the coupling coefficients were lower than -10 dB, with a much smaller frequency shift than for the conventional coils. CONCLUSION Arrays constructed from SCC elements are mechanically flexible and much less sensitive to changes of the coil shape from circular to elongated than arrays constructed from conventional loop coils, which makes them suitable for construction of size adjustable arrays.
Collapse
Affiliation(s)
- Thomas Ruytenberg
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Irena Zivkovic
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
42
|
Ruytenberg T, Webb A, Zivkovic I. A flexible five-channel shielded-coaxial-cable (SCC) transceive neck coil for high-resolution carotid imaging at 7T. Magn Reson Med 2020; 84:1672-1677. [PMID: 32052472 PMCID: PMC7317455 DOI: 10.1002/mrm.28215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/10/2020] [Accepted: 01/25/2020] [Indexed: 11/13/2022]
Abstract
Purpose Imaging the carotid arteries at 7T ideally requires a flexible multichannel array that allows B1‐shimming and conforms to different neck sizes. The major challenge is to minimize coupling between closely spaced coils and to make the coupling relatively insensitive to loading conditions. Methods We have designed a five‐channel flexible transceive array composed of shielded‐coaxial‐cable coils placed on the anterior part of the neck and conforming to the anatomy. In vivo imaging of the carotid arteries in three subjects has been performed. Results The measured noise correlation matrices show the decoupling level between the individual elements to be −12.5 dB and better. Anatomical localizer imaging of the carotids shows both carotids in every subject well visualized after B1‐shimming. In vivo black‐blood, carotid images were acquired with very high in‐plane spatial resolution (0.25 × 0.25 mm2) with clear depiction of the vessel walls. Conclusions The flexibility of the proposed coil has been demonstrated by imaging subjects with different neck circumferences. To the best of our knowledge, the in‐plane resolution of 0.25 × 0.25 mm2 is the highest reported at 7T.
Collapse
Affiliation(s)
- Thomas Ruytenberg
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Andrew Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Carle Foundation Hospital, Urbana, IL, USA
| | - Irena Zivkovic
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|