1
|
Addeh A, Williams RJ, Golestani A, Pike GB, MacDonald ME. Physiological Confounds in BOLD-fMRI and Their Correction. NMR IN BIOMEDICINE 2025; 38:e70076. [PMID: 40491186 DOI: 10.1002/nbm.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/23/2025] [Accepted: 05/25/2025] [Indexed: 06/11/2025]
Abstract
Functional magnetic resonance imaging (fMRI) has opened new frontiers in neuroscience by instrumentally driving our understanding of brain function and development. Despite its substantial successes, fMRI studies persistently encounter obstacles stemming from inherent, unavoidable physiological confounds. The adverse effects of these confounds are especially noticeable with higher magnetic fields, which have been gaining momentum in fMRI experiments. This review focuses on the four major physiological confounds impacting fMRI studies: low-frequency fluctuations in both breathing depth and rate, low-frequency fluctuations in the heart rate, thoracic movements, and cardiac pulsatility. Over the past three decades, numerous correction techniques have emerged to address these challenges. Correction methods have effectively enhanced the detection of task-activated voxels and minimized the occurrence of false positives and false negatives in functional connectivity studies. While confound correction methods have merit, they also have certain limitations. For instance, model-based approaches require externally recorded physiological data that is often unavailable in fMRI studies. Methods reliant on independent component analysis, on the other hand, need prior knowledge about the number of components. Machine learning techniques, although showing potential, are still in the early stages of development and require additional validation. This article reviews the mechanics of physiological confound correction methods, scrutinizes their performance and limitations, and discusses their impact on fMRI studies.
Collapse
Affiliation(s)
- Abdoljalil Addeh
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
- Department of Electrical & Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rebecca J Williams
- Faculty of Health, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Ali Golestani
- Department of Medical Physics, Alberta Heath Services, Edmonton, Alberta, Canada
| | - G Bruce Pike
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - M Ethan MacDonald
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
- Department of Electrical & Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Li M, Chen C, Xiong Z, Liu Y, Rong P, Shan S, Liu F, Sun H, Gao Y. Quantitative susceptibility mapping via deep neural networks with iterative reverse concatenations and recurrent modules. Med Phys 2025; 52:4341-4354. [PMID: 40089979 DOI: 10.1002/mp.17747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/18/2025] Open
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) is a post-processing magnetic resonance imaging (MRI) technique that extracts the distribution of tissue susceptibilities and holds significant promise in the study of neurological diseases. However, the ill-conditioned nature of dipole inversion often results in noise and artifacts during QSM reconstruction from the tissue field. Deep learning methods have shown great potential in addressing these issues; however, most existing approaches rely on basic U-net structures, leading to limited performances and reconstruction artifacts sometimes. PURPOSE This study aims to develop a novel deep learning-based method, IR2QSM, for improving QSM reconstruction accuracy while mitigating noise and artifacts by leveraging a unique network architecture that enhances latent feature utilization. METHODS IR2QSM, an advanced U-net architecture featuring four iterations of reverse concatenations and middle recurrent modules, was proposed to optimize feature fusion and improve QSM accuracy, and comparative experiments based on both simulated and in vivo datasets were carried out to compare IR2QSM with two traditional iterative methods (iLSQR, MEDI) and four recently proposed deep learning methods (U-net, xQSM, LPCNN, and MoDL-QSM). RESULTS In this work, IR2QSM outperformed all other methods in reducing artifacts and noise in QSM images. It achieved on average the lowest XSIM (84.81%) in simulations, showing improvements of 12.80%, 12.68%, 18.66%, 10.49%, 25.57%, and 19.78% over iLSQR, MEDI, U-net, xQSM, LPCNN, and MoDL-QSM, respectively, and yielded results with the least artifacts on the in vivo data and present the most visually appealing results. In the meantime, it successfully alleviated the over-smoothing and susceptibility underestimation in LPCNN results. CONCLUSION Overall, the proposed IR2QSM showed superior QSM results compared to iterative and deep learning-based methods, offering a more accurate QSM solution for clinical applications.
Collapse
Affiliation(s)
- Min Li
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Chen Chen
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Zhuang Xiong
- School of Electrical Engineering and Computer Science, University of Queensland, Brisbane, Australia
| | - Yin Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Shan
- State Key Laboratory of Radiation, Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Feng Liu
- School of Electrical Engineering and Computer Science, University of Queensland, Brisbane, Australia
| | - Hongfu Sun
- School of Engineering, University of Newcastle, Newcastle, Australia
| | - Yang Gao
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
3
|
Omer N, Wilczynski E, Zlotzover S, Helft C, Blumenfeld-Katzir T, Ben-Eliezer N. Validation of a data-driven multicomponent T2 analysis for quantifying myelin content in the cuprizone mouse model of multiple sclerosis. PLoS One 2025; 20:e0323614. [PMID: 40397883 DOI: 10.1371/journal.pone.0323614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 04/10/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND Myelin quantification is essential for understanding a wide range of neurodegenerative pathologies. Voxel-wise multicomponent T2 (mcT2) analysis is the common approach for this purpose, yet no gold standard technique exist that can overcome the ambiguity of fitting several T2 components to a single-voxel signal. This challenge is further exacerbated in preclinical scan settings due to the addition of spurious diffusion encoding, resulting from the use of imaging gradients that are at least an order of magnitude larger than on typical clinical scanners. PURPOSE Assess the utility of a new data-driven approach for mcT2 analysis, which utilizes information from the entire tissue to analyze the signal from each voxel in healthy and demyelinated tissues. Specifically, this algorithm uses statistical analysis of the entire anatomy to identify tissue-specific multi-T2 signal combinations, and then uses these as basis-functions for voxel-wise mcT2 fitting. METHODS Data-driven mcT2 analysis was performed on N = 7 cuprizone mice and N = 7 healthy mice. Myelin water fraction (MWF) values at six brain regions were evaluated. Correlation with reference immunohistochemical (IHC) staining for myelin basic protein was done in the corpus callosum. To demonstrate the added value of the data-driven approach the analysis was performed twice - with and without the data-driven preprocessing step. RESULTS Strong agreement was obtained between data-driven MWF values and histology. Applying the data-driven analysis prior to the voxel-wise fitting improved the mapping accuracy vs. non data-driven analysis, producing statistically significant separation between the two mice groups, good groupwise linear correlation with histology (cuprizone: R² = 0.64, p < 0.05, control: R2 = 0.61, p < 0.05), and addressed the inherent ambiguity, characterizing conventional mcT2 fitting. CONCLUSION The proposed data-driven algorithm provides a reliable tool for mapping myelin content on preclinical scanners, allowing precise classification between healthy and demyelinated tissues in cuprizone mouse model of multiple sclerosis.
Collapse
Affiliation(s)
- Noam Omer
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ella Wilczynski
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Zlotzover
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Coral Helft
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | - Noam Ben-Eliezer
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, United States of America
| |
Collapse
|
4
|
Salman F, Ramesh A, Jochmann T, Prayer M, Adegbemigun A, Reeves JA, Wilding GE, Cho J, Jakimovski D, Bergsland N, Dwyer MG, Zivadinov R, Schweser F. Sensitivity of Quantitative Susceptibility Mapping for Clinical Research in Deep Gray Matter. Hum Brain Mapp 2025; 46:e70187. [PMID: 40260740 PMCID: PMC12012649 DOI: 10.1002/hbm.70187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 01/30/2025] [Accepted: 02/21/2025] [Indexed: 04/24/2025] Open
Abstract
Quantitative susceptibility mapping (QSM) is an advanced MRI technique for assessing iron, calcium, and myelin tissue levels based on magnetic susceptibility. QSM consists of multiple processing steps, with various choices for each step. While QSM is increasingly applied in neurodegenerative disease research, its reproducibility and sensitivity in detecting susceptibility changes across groups or over time, which underpin the interpretation of clinical outcomes, have not been thoroughly quantified. This study aimed to evaluate how choices in background field removal (BFR), dipole inversion algorithms, and anatomical referencing impact the detection of changes in deep gray matter susceptibility. We used aging-related changes in brain iron, established in earlier foundational studies, as a surrogate model to test the sensitivity and reproducibility of 378 different QSM pipelines toward the detection of longitudinal susceptibility changes in a clinical setting. We used 10-year follow-up data and scan-rescan data of healthy adults scanned at 3T. Our results demonstrated high variability in the sensitivity of QSM pipelines toward detecting susceptibility changes. While most pipelines detected the same over-time changes, the choice of the BFR algorithm and the referencing strategy influenced reproducibility error and sensitivity substantially. Notably, pipelines using RESHARP with AMP-PE, HEIDI, or LSQR inversion showed the highest overall sensitivity. The findings suggest a strong impact of algorithmic choices in QSM processing on the ability to detect physiological changes in the brain. Careful consideration should be given to the pipeline configuration for reliable clinical outcomes.
Collapse
Affiliation(s)
- Fahad Salman
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
- Department of Biomedical EngineeringUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
| | - Abhisri Ramesh
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
| | - Thomas Jochmann
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
- Department of Computer Science and AutomationTechnische Universität IlmenauIlmenauGermany
| | - Mirjam Prayer
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
| | - Ademola Adegbemigun
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
| | - Jack A. Reeves
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
| | - Gregory E. Wilding
- Department of BiostatisticsSchool of Public Health and Health Professions, State University of New York at BuffaloBuffaloNew YorkUSA
| | - Junghun Cho
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
- Department of Biomedical EngineeringUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
| | - Michael G. Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
- Center for Biomedical ImagingClinical and Translational Science Institute, University at Buffalo, The State University of New YorkBuffaloNew YorkUSA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
- Center for Biomedical ImagingClinical and Translational Science Institute, University at Buffalo, The State University of New YorkBuffaloNew YorkUSA
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology at the Jacobs School of Medicine and Biomedical SciencesUniversity at Buffalo, The State University of New YorkBuffaloNew YorkUSA
- Center for Biomedical ImagingClinical and Translational Science Institute, University at Buffalo, The State University of New YorkBuffaloNew YorkUSA
| |
Collapse
|
5
|
Li Z, Liu Q, Xu T, Zhang M, Li L, Chen Z, Tang Y, Jiang L, Lu Y, Yan F, Zhang Y, Xu J, Wei H. Paramagnetic susceptibility measured by magnetic resonance imaging as an in vivo biomarker for iron pathology in epilepsy. SCIENCE ADVANCES 2025; 11:eads8149. [PMID: 40117350 PMCID: PMC11927622 DOI: 10.1126/sciadv.ads8149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/14/2025] [Indexed: 03/23/2025]
Abstract
Epilepsy, a neurological disorder marked by recurrent, unprovoked seizures, is often linked to dysregulated iron metabolism, resulting in iron overload and subsequent cellular dysfunction or death within epileptogenic regions. We proposed a specific, noninvasive technique using paramagnetic susceptibility imaging via magnetic resonance imaging to quantify in vivo brain iron levels, aiming to enhance our understanding of epilepsy pathology and improve diagnostic accuracy. Our imaging and histopathological studies demonstrated that paramagnetic susceptibility is a sensitive biomarker for iron quantification in epilepsy. This method effectively detects iron abnormality from various causes and highlights that iron alters within epileptogenic zones, indicating the presence of potentially salvageable tissue. Furthermore, iron accumulation was observed to disrupt cortical laminar structures in epileptogenic zones and was associated with the proliferation of central nervous system cells, particularly astrocytes. Paramagnetic susceptibility imaging provides previously unknown insights into epilepsy, offering potential applications in diagnostics, monitoring, and personalized treatment strategies.
Collapse
Affiliation(s)
- Zhenghao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiangqiang Liu
- Department of Neurosurgery, Clinical Neuroscience Center Comprehensive Epilepsy Unit, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tongtong Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Li Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhangpeng Chen
- Songjiang Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaohui Tang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Li Jiang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Lu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiwen Xu
- Department of Neurosurgery, Clinical Neuroscience Center Comprehensive Epilepsy Unit, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Kim J, Kim M, Ji S, Min K, Jeong H, Shin HG, Oh C, Fox RJ, Sakaie KE, Lowe MJ, Oh SH, Straub S, Kim SG, Lee J. In-vivo high-resolution χ-separation at 7T. Neuroimage 2025; 308:121060. [PMID: 39884410 DOI: 10.1016/j.neuroimage.2025.121060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/06/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025] Open
Abstract
A recently introduced quantitative susceptibility mapping (QSM) technique, χ-separation, offers the capability to separate paramagnetic (χpara) and diamagnetic (χdia) susceptibility distribution within the brain. In-vivo high-resolution mapping of iron and myelin distribution, estimated by χ-separation, could provide a deeper understanding of brain substructures, assisting the investigation of their functions and alterations. This can be achieved using 7T MRI, which benefits from a high signal-to-noise ratio and susceptibility effects. However, applying χ-separation at 7T presents difficulties due to the requirement of an R2 map, coupled with issues such as high specific absorption rate (SAR), large B1 transmit field inhomogeneities, and prolonged scan time. To address these challenges, we developed a novel deep neural network, R2PRIMEnet7T, designed to convert a 7T R2* map into a 3T R2' map. Building on this development, we present a new pipeline for χ-separation at 7T, enabling us to generate high-resolution χ-separation maps from multi-echo gradient-echo data. The proposed method is compared with alternative pipelines, such as an end-to-end network and linearly-scaled R2', and is validated against χ-separation maps at 3T, demonstrating its accuracy. The 7T χ-separation maps generated by the proposed method exhibit similar contrasts to those from 3T, while 7T high-resolution maps offer enhanced clarity and detail. Quantitative analysis confirms that the proposed method surpasses the alternative pipelines. The proposed method results well delineate the detailed brain structures associated with iron and myelin. This new pipeline holds promise for analyzing iron and myelin concentration changes in various neurodegenerative diseases through precise structural examination.
Collapse
Affiliation(s)
- Jiye Kim
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Minjun Kim
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Sooyeon Ji
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea; Division of Computer Engineering, Hankuk University of Foreign Studies, Yongin, South Korea
| | - Kyeongseon Min
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Hwihun Jeong
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Hyeong-Geol Shin
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea; Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Chungseok Oh
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Robert J Fox
- Mellen Center for Treatment and Research in MS, Cleveland Clinic, Cleveland, OH, USA
| | - Ken E Sakaie
- Imaging Sciences, Diagnostics Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mark J Lowe
- Imaging Sciences, Diagnostics Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Se-Hong Oh
- Imaging Sciences, Diagnostics Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, South Korea
| | - Sina Straub
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea.
| |
Collapse
|
7
|
de Vries E, Hagbohm C, Ouellette R, Granberg T. Clinical 7 Tesla magnetic resonance imaging: Impact and patient value in neurological disorders. J Intern Med 2025; 297:244-261. [PMID: 39775908 PMCID: PMC11846079 DOI: 10.1111/joim.20059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Magnetic resonance imaging (MRI) is a cornerstone of non-invasive diagnostics and treatment monitoring, particularly for diseases of the central nervous system. Although 1.5- and 3 Tesla (T) field strengths remain the clinical standard, the advent of 7 T MRI represents a transformative step forward, offering superior spatial resolution, contrast, and sensitivity for visualizing neuroanatomy, metabolism, and function. Recent innovations, including parallel transmission and deep learning-based reconstruction, have resolved many prior technical challenges of 7 T MRI, enabling its routine clinical use. This review examines the diagnostic impact, patient value, and practical considerations of 7 T MRI, emphasizing its role in facilitating earlier diagnoses and improving care in conditions, such as amyotrophic lateral sclerosis (ALS), epilepsy, multiple sclerosis (MS), dementia, parkinsonism, tumors, and vascular diseases. Based on insights from over 1200 clinical scans with a second-generation 7 T system, the review highlights disease-specific biomarkers such as the motor band sign in ALS and the new diagnostic markers in MS, the central vein sign, and paramagnetic rim lesions. The unparalleled ability of 7 T MRI to study neurological diseases ex vivo at ultra-high resolution is also explored, offering new opportunities to understand pathophysiology and identify novel treatment targets. Additionally, the review provides a clinical perspective on patient handling and safety considerations, addressing challenges and practicalities associated with clinical 7 T MRI. By bridging research and clinical practice, 7 T MRI has the potential to redefine neuroimaging and advance the understanding and management of complex neurological disorders.
Collapse
Affiliation(s)
- Elisabeth de Vries
- Department of NeuroradiologyKarolinska University HospitalStockholmSweden
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Caroline Hagbohm
- Department of NeuroradiologyKarolinska University HospitalStockholmSweden
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Russell Ouellette
- Department of NeuroradiologyKarolinska University HospitalStockholmSweden
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Tobias Granberg
- Department of NeuroradiologyKarolinska University HospitalStockholmSweden
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| |
Collapse
|
8
|
Kiersnowski OC, Mattioli P, Argenti L, Avanzino L, Calizzano F, Diociasi A, Falcitano L, Liu C, Losa M, Massa F, Morbelli S, Orso B, Pelosin E, Raffa S, Pardini M, Arnaldi D, Roccatagliata L, Costagli M. Magnetic susceptibility components reveal different aspects of neurodegeneration in alpha-synucleinopathies. Sci Rep 2025; 15:4186. [PMID: 39905067 PMCID: PMC11794440 DOI: 10.1038/s41598-024-83593-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025] Open
Abstract
Nigrostriatal dopaminergic degeneration in alpha-synucleinopathies is indirectly reflected by low dopamine transporter (DaT) uptake through [123I]FP-CIT-SPECT. Bulk magnetic susceptibility (χ) in the substantia nigra, from MRI-based quantitative susceptibility mapping (QSM), is a potential biomarker of nigrostriatal degeneration, however, QSM cannot disentangle paramagnetic (e.g. iron) and diamagnetic (e.g. myelin) sources. Using the susceptibility source-separation technique DECOMPOSE, paramagnetic component susceptibility (PCS) and diamagnetic component susceptibility (DCS) were studied in prodromal and overt alpha-synucleinopathies, and their relationships with DaT-SPECT specific binding ratio (SBR) and clinical scores. 78 participants were included (23 controls, 30 prodromal and 25 overt alpha-synucleinopathies). Prodromal patients were subdivided into groups with positive or negative DaT-SPECT (SBR Z-scores below or above -1, respectively). Correlations of putamen and caudate SBR Z-scores with PCS and DCS in the substantia nigra, putamen, and caudate were investigated. Increased PCS was observed in the substantia nigra of prodromal alpha-synucleinopathy patients with positive DaT-SPECT compared to controls and prodromal patients with negative DaT-SPECT. SBR Z-scores in the putamen correlated with increased PCS in the substantia nigra and reduced |DCS| in the putamen, which may reflect dopaminergic degeneration ascribable to iron accumulation and nigrostriatal neuron axonal loss, respectively.
Collapse
Affiliation(s)
| | - Pietro Mattioli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Lucia Argenti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Laura Avanzino
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Francesco Calizzano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | | | | | - Chunlei Liu
- University of California Berkeley, Berkeley, United States of America
| | - Mattia Losa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Federico Massa
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Silvia Morbelli
- Department of Nuclear Medicine, University of Turin, Turin, Italy
| | - Beatrice Orso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Elisa Pelosin
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Stefano Raffa
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matteo Pardini
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Dario Arnaldi
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Luca Roccatagliata
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.
- Department of Health Sciences, University of Genova, Genova, Italy.
| | - Mauro Costagli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| |
Collapse
|
9
|
Kim M, Ji S, Kim J, Min K, Jeong H, Youn J, Kim T, Jang J, Bilgic B, Shin H, Lee J. χ-sepnet: Deep Neural Network for Magnetic Susceptibility Source Separation. Hum Brain Mapp 2025; 46:e70136. [PMID: 39835664 PMCID: PMC11748151 DOI: 10.1002/hbm.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/11/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025] Open
Abstract
Magnetic susceptibility source separation (χ-separation), an advanced quantitative susceptibility mapping (QSM) method, enables the separate estimation of paramagnetic and diamagnetic susceptibility source distributions in the brain. Similar to QSM, it requires solving the ill-conditioned problem of dipole inversion, suffering from so-called streaking artifacts. Additionally, the method utilizes reversible transverse relaxation (R 2 ' = R 2 * - R 2 $$ {R}_2^{\prime }={R}_2^{\ast }-{R}_2 $$ ) to complement frequency shift information for estimating susceptibility source concentrations, requiring time-consuming data acquisition forR 2 $$ {R}_2 $$ (e.g., multi-echo spin-echo) in addition to multi-echo GRE data forR 2 * $$ {R}_2^{\ast } $$ . To address these challenges, we develop a new deep learning network, χ-sepnet, and propose two deep learning-based susceptibility source separation pipelines, χ-sepnet-R 2 ' $$ {R}_2^{\prime } $$ for inputs with multi-echo GRE and multi-echo spin-echo (or turbo spin-echo) and χ-sepnet-R 2 * $$ {R}_2^{\ast } $$ for input with multi-echo GRE only. The neural network is trained using multiple head orientation data that provide streaking artifact-free labels, generating high-quality χ-separation maps. The evaluation of the pipelines encompasses both qualitative and quantitative assessments in healthy subjects, and visual inspection of lesion characteristics in multiple sclerosis patients. The susceptibility source-separated maps of the proposed pipelines delineate detailed brain structures with substantially reduced artifacts compared to those from the conventional regularization-based reconstruction methods. In quantitative analysis, χ-sepnet-R 2 ' $$ {R}_2^{\prime } $$ achieves the best outcomes followed by χ-sepnet-R 2 * $$ {R}_2^{\ast } $$ , outperforming the conventional methods. When the lesions of multiple sclerosis patients are classified into subtypes, most lesions are identified as the same subtype in the maps from χ-sepnet-R 2 ' $$ {R}_2^{\prime } $$ and χ-sepnet-R 2 * $$ {R}_2^{\ast } $$ (paramagnetic susceptibility: 99.6% and diamagnetic susceptibility: 98.4%; both out of 250 lesions). The χ-sepnet-R 2 * $$ {R}_2^{\ast } $$ pipeline, which only requires multi-echo GRE data, has demonstrated its potential to offer broad clinical and scientific applications, although further evaluations for various diseases and pathological conditions are necessary.
Collapse
Affiliation(s)
- Minjun Kim
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Sooyeon Ji
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
- Division of Computer EngineeringHankuk University of Foreign StudiesYonginRepublic of Korea
| | - Jiye Kim
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Kyeongseon Min
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Hwihun Jeong
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Jonghyo Youn
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Taechang Kim
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Jinhee Jang
- Department of RadiologySeoul St Mary's Hospital, College of Medicine, The Catholic University of KoreaSeoulRepublic of Korea
- Institute for Precision HealthUniversity of CaliforniaIrvineCaliforniaUSA
| | - Berkin Bilgic
- Massachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Hyeong‐Geol Shin
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
- F.M. Kirby Research Center for Functional Brain ImagingKennedy Krieger InstituteBaltimoreMarylandUSA
- Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer EngineeringSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
10
|
Milovic C, Tejos C, Silva J, Shmueli K, Irarrazaval P. XSIM: A structural similarity index measure optimized for MRI QSM. Magn Reson Med 2025; 93:411-421. [PMID: 39176438 DOI: 10.1002/mrm.30271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/03/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024]
Abstract
PURPOSE The structural similarity index measure (SSIM) has become a popular quality metric to evaluate QSM in a way that is closer to human perception than RMS error (RMSE). However, SSIM may overpenalize errors in diamagnetic tissues and underpenalize them in paramagnetic tissues, resulting in biasing. In addition, extreme artifacts may compress the dynamic range, resulting in unrealistically high SSIM scores (hacking). To overcome biasing and hacking, we propose XSIM: SSIM implemented in the native QSM range, and with internal parameters optimized for QSM. METHODS We used forward simulations from a COSMOS ground-truth brain susceptibility map included in the 2016 QSM Reconstruction Challenge to investigate the effect of QSM reconstruction errors on the SSIM, XSIM, and RMSE metrics. We also used these metrics to optimize QSM reconstructions of the in vivo challenge data set. We repeated this experiment with the QSM abdominal phantom. To validate the use of XSIM instead of SSIM for QSM quality assessment across a range of different reconstruction techniques/algorithms, we analyzed the reconstructions submitted to the 2019 QSM Reconstruction Challenge 2.0. RESULTS Our experiments confirmed the biasing and hacking effects on the SSIM metric applied to QSM. The XSIM metric was robust to those effects, penalizing the presence of streaking artifacts and reconstruction errors. Using XSIM to optimize QSM reconstruction regularization weights returned less overregularization than SSIM and RMSE. CONCLUSION XSIM is recommended over traditional SSIM to evaluate QSM reconstructions against a known ground truth, as it avoids biasing and hacking effects and provides a larger dynamic range of scores.
Collapse
Affiliation(s)
- Carlos Milovic
- School of Electrical Engineering, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Cristian Tejos
- Department of Electrical Engineering, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Biomedical Imaging Center, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Millennium Institute for Intelligent Healthcare Engineering (iHEALTH), Santiago, Chile
| | - Javier Silva
- Department of Electrical Engineering, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Biomedical Imaging Center, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Karin Shmueli
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Pablo Irarrazaval
- Department of Electrical Engineering, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Biomedical Imaging Center, Pontificia Universidad Catolica de Chile, Santiago, Chile
- Millennium Institute for Intelligent Healthcare Engineering (iHEALTH), Santiago, Chile
- Institute for Biological and Medical Engineering, Pontificia Universidad Catolica de Chile, Santiago, Chile
| |
Collapse
|
11
|
Orenstein S, Fang Z, Shin HG, van Zijl P, Li X, Sulam J. ProxiMO: Proximal Multi-operator Networks for Quantitative Susceptibility Mapping. MACHINE LEARNING IN CLINICAL NEUROIMAGING : 7TH INTERNATIONAL WORKSHOP, MLCN 2024, HELD IN CONJUNCTION WITH MICCAI 2024, MARRAKESH, MOROCCO, OCTOBER 10, 2024, PROCEEDINGS. MLCN (WORKSHOP) (7TH : 2024 : MARRAKESH, MOROCCO) 2024; 15266:13-23. [PMID: 39776602 PMCID: PMC11705005 DOI: 10.1007/978-3-031-78761-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Quantitative Susceptibility Mapping (QSM) is a technique that derives tissue magnetic susceptibility distributions from phase measurements obtained through Magnetic Resonance (MR) imaging. This involves solving an ill-posed dipole inversion problem, however, and thus time-consuming and cumbersome data acquisition from several distinct head orientations becomes necessary to obtain an accurate solution. Most recent (supervised) deep learning methods for single-phase QSM require training data obtained via multiple orientations. In this work, we present an alternative unsupervised learning approach that can efficiently train on single-orientation measurement data alone, named ProxiMO (Proximal Multi-Operator), combining Learned Proximal Convolutional Neural Networks (LP-CNN) with multi-operator imaging (MOI). This integration enables LP-CNN training for QSM on single-phase data without ground truth reconstructions. We further introduce a semi-supervised variant, which further boosts the reconstruction performance, compared to the traditional supervised fashions. Extensive experiments on multicenter datasets illustrate the advantage of unsupervised training and the superiority of the proposed approach for QSM reconstruction. Code is available at https://github.com/shmuelor/ProxiMO.
Collapse
Affiliation(s)
- Shmuel Orenstein
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Zhenghan Fang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD 21218, USA
| | - Hyeong-Geol Shin
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Peter van Zijl
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Xu Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jeremias Sulam
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD 21218, USA
| |
Collapse
|
12
|
Trattnig S, Hangel G, Robinson SD, Juras V, Szomolanyi P, Dal-Bianco A. Ultrahigh-field MRI: where it really makes a difference. RADIOLOGIE (HEIDELBERG, GERMANY) 2024; 64:1-8. [PMID: 37584681 PMCID: PMC11602857 DOI: 10.1007/s00117-023-01184-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND Currently, two major magnetic resonance (MR) vendors provide commercial 7‑T scanners that are approved by the Food and Drug Administration (FDA) for clinical application. There is growing interest in ultrahigh-field MRI because of the improved clinical results in terms of morphological detail, as well as functional and metabolic imaging capabilities. MATERIALS AND METHODS The 7‑T systems benefit from a higher signal-to-noise ratio, which scales supralinearly with field strength, a supralinear increase in the blood oxygenation level dependent (BOLD) contrast for functional MRI and susceptibility weighted imaging (SWI), and the chemical shift increases linearly with field strength with consequently higher spectral resolution. RESULTS In multiple sclerosis (MS), 7‑T imaging enables visualization of cortical lesions, the central vein sign, and paramagnetic rim lesions, which may be beneficial for the differential diagnosis between MS and other neuroinflammatory diseases in challenging and inconclusive clinical presentations and are seen as promising biomarkers for prognosis and treatment monitoring. The recent development of high-resolution proton MR spectroscopic imaging in clinically reasonable scan times has provided new insights into tumor metabolism and tumor grading as well as into early metabolic changes that may precede inflammatory processes in MS. This technique also improves the detection of epileptogenic foci in the brain. Multi-nuclear clinical applications, such as sodium imaging, have shown great potential for the evaluation of repair tissue quality after cartilage transplantation and in the monitoring of newly developed cartilage regenerative drugs for osteoarthritis. CONCLUSION For special clinical applications, such as SWI in MS, MR spectroscopic imaging in tumors, MS and epilepsy, and sodium imaging in cartilage repair, 7T may become a new standard.
Collapse
Affiliation(s)
- Siegfried Trattnig
- High-Field MR Center - 7T MR, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Lazarettgasse 14, 1090, Vienna, Austria.
| | - Gilbert Hangel
- High-Field MR Center - 7T MR, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Lazarettgasse 14, 1090, Vienna, Austria
| | - Simon D Robinson
- High-Field MR Center - 7T MR, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Lazarettgasse 14, 1090, Vienna, Austria
| | - Vladimir Juras
- High-Field MR Center - 7T MR, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Lazarettgasse 14, 1090, Vienna, Austria
| | - Pavol Szomolanyi
- High-Field MR Center - 7T MR, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Lazarettgasse 14, 1090, Vienna, Austria
- Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Dubravska cesta 9, 84104, Bratislava, Slovakia
| | - Assunta Dal-Bianco
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Medical University of Vienna, Comprehensive Center for Clinical Neurosciences & Mental Health, Vienna, Austria
| |
Collapse
|
13
|
Tang X, He Z, Yang Q, Yang T, Yu Y, Chen J. Combining Quantitative Susceptibility Mapping With the Gray Matter Volume to Predict Neurological Deficits in Patients With Small Artery Occlusion. Brain Behav 2024; 14:e70080. [PMID: 39363797 PMCID: PMC11450255 DOI: 10.1002/brb3.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Currently, there is still a lack of valuable neuroimaging markers to assess the clinical severity of stroke patients with small artery occlusion (SAO). Quantitative susceptibility mapping (QSM) is a quantitative processing method for neuroradiological diagnostics. Gray matter (GM) volume changes in stroke patients are also proved to be associated with neurological deficits. This study aims to explore the predictive value of QSM and GM volume in neurological deficits of patients with SAO. METHODS As neurological deficits, the National Institutes of Health Stroke Scale (NIHSS) was used. Sixty-six SAO participants within 24 h of first onset were enrolled and divided into mild and moderate groups based on NIHSS. QSM values of infarct area and GM volume were calculated from magnetic resonance imaging (MRI) data. Two-sample t-tests were used to compare differences in QSM value and GM volume between the two groups, and the diagnostic efficacy of the combination of QSM value and GM volume was evaluated. RESULTS The results revealed both the QSM value and GM volume within the infarct area of the moderate group were lower compared to the mild group. Moderate group exhibited lower GM volume in some specific gyrus compared with mild group in the case of voxel-wise GM volume on whole-brain voxel level. The support vector machine (SVM) classifier's analysis showed a high power for the combination of QSM value, GM volume within the infarct area, and voxel-wise GM volume. CONCLUSION Our research first reported the combination of QSM value, GM volume within the infarct area, and voxel-wise GM volume could be used to predict neurological impairment of patients with SAO, which provides new insights for further understanding the SAO stroke.
Collapse
Affiliation(s)
- Xuelian Tang
- Department of NeurologyThe Affiliated Jiangning Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Zhenzhen He
- Department of RadiologyThe Affiliated Jiangning Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Qian Yang
- Department of NeurologyThe Affiliated Jiangning Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Tao Yang
- Department of NeurologyThe Affiliated Jiangning Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Yusheng Yu
- Department of RadiologyThe Affiliated Jiangning Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Jinan Chen
- Department of NeurologyThe Affiliated Jiangning Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| |
Collapse
|
14
|
Dong Q, Ullah MN, Innes D, Watkins RD, Chang CM, Zou SJ, Groll A, Sacco I, Chinn G, Levin CS. PETcoil: first results from a second-generation RF-penetrable TOF-PET brain insert for simultaneous PET/MRI. Phys Med Biol 2024; 69:185007. [PMID: 39168156 DOI: 10.1088/1361-6560/ad7221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
Simultaneous positron emission tomography (PET)/magnetic resonance imaging provides concurrent information about anatomic, functional, and molecular changes in disease. We are developing a second generation MR-compatible RF-penetrable TOF-PET insert. The insert has a smaller scintillation crystal size and ring diameter compared to clinical whole-body PET scanners, resulting in higher spatial resolution and sensitivity. This paper reports the initial system performance of this full-ring PET insert. The global photopeak energy resolution and global coincidence time resolution, 11.74 ± 0.03 % FWHM and 238.1 ± 0.5 ps FWHM, respectively, are preserved as we scaled up the system to a full ring comprising 12, 288 LYSO-SiPM channels (crystal size: 3.2 × 3.2 × 20 mm3). Throughout a ten-hour experiment, the system performance remained stable, exhibiting a less than 1% change in all measured parameters. In a resolution phantom study, the system successfully resolved all 2.8 mm diameter rods, achieving an average VPR of 0.28 ± 0.08 without TOF and 0.24 ± 0.07 with TOF applied. Moreover, the implementation of TOF in the Hoffman phantom study also enhanced image quality. Initial MR compatibility studies of the full PET ring were performed with it unpowered as a milestone to focus on looking for material and geometry-related artifacts. During all MR studies, the MR body coil functioned as both the transmit and receive coil, and no observable artifacts were detected. As expected, using the body coil also as the RF receiver, MR image signal-to-noise ratio exhibited degradation (∼30%), so we are developing a high quality receive-only coil that resides inside the PET ring.
Collapse
Affiliation(s)
- Qian Dong
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Muhammad Nasir Ullah
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Derek Innes
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Ronald D Watkins
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Chen-Ming Chang
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Sarah J Zou
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Andrew Groll
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Ilaria Sacco
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Garry Chinn
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Craig S Levin
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
15
|
Williams T, John N, Calvi A, Bianchi A, De Angelis F, Doshi A, Wright S, Shatila M, Yiannakas MC, Chowdhury F, Stutters J, Ricciardi A, Prados F, MacManus D, Grussu F, Karsa A, Samson B, Battiston M, Gandini Wheeler-Kingshott CAM, Shmueli K, Ciccarelli O, Barkhof F, Chataway J. Investigating the relationship between thalamic iron concentration and disease severity in secondary progressive multiple sclerosis using quantitative susceptibility mapping: Cross-sectional analysis from the MS-STAT2 randomised controlled trial. NEUROIMAGE. REPORTS 2024; 4:100216. [PMID: 39328985 PMCID: PMC11422291 DOI: 10.1016/j.ynirp.2024.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/02/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024]
Abstract
Background Deep grey matter pathology is a key driver of disability worsening in people with multiple sclerosis. Quantitative susceptibility mapping (QSM) is an advanced magnetic resonance imaging (MRI) technique which quantifies local magnetic susceptibility from variations in phase produced by changes in the local magnetic field. In the deep grey matter, susceptibility has previously been validated against tissue iron concentration. However, it currently remains unknown whether susceptibility is abnormal in older progressive MS cohorts, and whether it correlates with disability. Objectives To investigate differences in mean regional susceptibility in deep grey matter between people with secondary progressive multiple sclerosis (SPMS) and healthy controls; to examine in patients the relationships between deep grey matter susceptibility and clinical and imaging measures of disease severity. Methods Baseline data from a subgroup of the MS-STAT2 trial (simvastatin vs. placebo in SPMS, NCT03387670) were included. The subgroup underwent clinical assessments and an advanced MRI protocol at 3T. A cohort of age-matched healthy controls underwent the same MRI protocol. Susceptibility maps were reconstructed using a robust QSM pipeline from multi-echo 3D gradient-echo sequence. Regions of interest (ROIs) in the thalamus, globus pallidus and putamen were segmented from 3D T1-weighted images, and lesions segmented from 3D fluid-attenuated inversion recovery images. Linear regression was used to compare susceptibility from ROIs between patients and controls, adjusting for age and sex. Where significant differences were found, we further examined the associations between ROI susceptibility and clinical and imaging measures of MS severity. Results 149 SPMS (77% female; mean age: 53 yrs; median Expanded Disability Status Scale (EDSS): 6.0 [interquartile range 4.5-6.0]) and 33 controls (52% female, mean age: 57) were included.Thalamic susceptibility was significantly lower in SPMS compared to controls: mean (SD) 28.6 (12.8) parts per billion (ppb) in SPMS vs. 39.2 (12.7) ppb in controls; regression coefficient: -12.0 [95% confidence interval: -17.0 to -7.1], p < 0.001. In contrast, globus pallidus and putamen susceptibility were similar between both groups.In SPMS, a 10 ppb lower thalamic susceptibility was associated with a +0.13 [+0.01 to +0.24] point higher EDSS (p < 0.05), a -2.4 [-3.8 to -1.0] point lower symbol digit modality test (SDMT, p = 0.001), and a -2.4 [-3.7 to -1.1] point lower Sloan low contrast acuity, 2.5% (p < 0.01).Lower thalamic susceptibility was also strongly associated with a higher T2 lesion volume (T2LV, p < 0.001) and lower normalised whole brain, deep grey matter and thalamic volumes (all p < 0.001). Conclusions The reduced thalamic susceptibility found in SPMS compared to controls suggests that thalamic iron concentrations are lower at this advanced stage of the disease. The observed relationships between lower thalamic susceptibility and more severe physical, cognitive and visual disability suggests that reductions in thalamic iron may correlate with important mechanisms of clinical disease progression. Such mechanisms appear to intimately link reductions in thalamic iron with higher T2LV and the development of thalamic atrophy, encouraging further research into QSM-derived thalamic susceptibility as a biomarker of disease severity in SPMS.
Collapse
Affiliation(s)
- Thomas Williams
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Nevin John
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- Monash University, Department of Medicine, School of Clinical Sciences, Clayton, Australia
| | - Alberto Calvi
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Alessia Bianchi
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Floriana De Angelis
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Anisha Doshi
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Sarah Wright
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Madiha Shatila
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Marios C Yiannakas
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Fatima Chowdhury
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Jon Stutters
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Antonio Ricciardi
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Ferran Prados
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- University College London, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
- Universitat Oberta de Catalunya, Barcelona, Spain
| | - David MacManus
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Francesco Grussu
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- University College London, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Anita Karsa
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Becky Samson
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- University College London, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Marco Battiston
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- University College London, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Karin Shmueli
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Olga Ciccarelli
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- National Institute for Health Research, Biomedical Research Centre, University College London Hospitals, London, United Kingdom
| | - Frederik Barkhof
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- University College London, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
- National Institute for Health Research, Biomedical Research Centre, University College London Hospitals, London, United Kingdom
- Vrije Universiteit Amsterdam, Department of Radiology & Nuclear Medicine, VU University Medical Centre, Amsterdam, Netherlands
| | - Jeremy Chataway
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- Medical Research Council Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, United Kingdom
- National Institute for Health Research, Biomedical Research Centre, University College London Hospitals, London, United Kingdom
| |
Collapse
|
16
|
Ji S, Jang J, Kim M, Lee H, Kim W, Lee J, Shin HG. Comparison between R2'-based and R2*-based χ-separation methods: A clinical evaluation in individuals with multiple sclerosis. NMR IN BIOMEDICINE 2024; 37:e5167. [PMID: 38697612 DOI: 10.1002/nbm.5167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
Susceptibility source separation, or χ-separation, estimates diamagnetic (χdia) and paramagnetic susceptibility (χpara) signals in the brain using local field and R2' (= R2* - R2) maps. Recently proposed R2*-based χ-separation methods allow for χ-separation using only multi-echo gradient echo (ME-GRE) data, eliminating the need for additional data acquisition for R2 mapping. Although this approach reduces scan time and enhances clinical utility, the impact of missing R2 information remains a subject of exploration. In this study, we evaluate the viability of two previously proposed R2*-based χ-separation methods as alternatives to their R2'-based counterparts: model-based R2*-χ-separation versus χ-separation and deep learning-based χ-sepnet-R2* versus χ-sepnet-R2'. Their performances are assessed in individuals with multiple sclerosis (MS), comparing them with their corresponding R2'-based counterparts (i.e., R2*-χ-separation vs. χ-separation and χ-sepnet-R2* vs. χ-sepnet-R2'). The evaluations encompass qualitative visual assessments by experienced neuroradiologists and quantitative analyses, including region of interest analyses and linear regression analyses. Qualitatively, R2*-χ-separation tends to report higher χpara and χdia values compared with χ-separation, leading to less distinct lesion contrasts, while χ-sepnet-R2* closely aligns with χ-sepnet-R2'. Quantitative analysis reveals a robust correlation between both R2*-based methods and their R2'-based counterparts (r ≥ 0.88). Specifically, in the whole-brain voxels, χ-sepnet-R2* exhibits higher correlation and better linearity than R2*-χ-separation (χdia/χpara from R2*-χ-separation: r = 0.88/0.90, slope = 0.79/0.86; χdia/χpara from χ-sepnet-R2*: r = 0.90/0.92, slope = 0.99/0.97). In MS lesions, both R2*-based methods display comparable correlation and linearity (χdia/χpara from R2*-χ-separation: r = 0.90/0.91, slope = 0.98/0.91; χdia/χpara from χ-sepnet-R2*: r = 0.88/0.88, slope = 0.91/0.95). Notably, χ-sepnet-R2* demonstrates negligible offsets, whereas R2*-χ-separation exhibits relatively large offsets (0.02 ppm in the whole brain and 0.01 ppm in the MS lesions), potentially indicating the false presence of myelin or iron in MS lesions. Overall, both R2*-based χ-separation methods demonstrated their viability as alternatives to their R2'-based counterparts. χ-sepnet-R2* showed better alignment with its R2'-based counterpart with minimal susceptibility offsets, compared with R2*-χ-separation that reported higher χpara and χdia values compared with R2'-based χ-separation.
Collapse
Affiliation(s)
- Sooyeon Ji
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Jinhee Jang
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Minjun Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Hyebin Lee
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Woojun Kim
- Department of Neurology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Hyeong-Geol Shin
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Paluru N, Susan Mathew R, Yalavarthy PK. DF-QSM: Data Fidelity based Hybrid Approach for Improved Quantitative Susceptibility Mapping of the Brain. NMR IN BIOMEDICINE 2024; 37:e5163. [PMID: 38649140 DOI: 10.1002/nbm.5163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/22/2024] [Accepted: 03/11/2024] [Indexed: 04/25/2024]
Abstract
Quantitative Susceptibility Mapping (QSM) is an advanced magnetic resonance imaging (MRI) technique to quantify the magnetic susceptibility of the tissue under investigation. Deep learning methods have shown promising results in deconvolving the susceptibility distribution from the measured local field obtained from the MR phase. Although existing deep learning based QSM methods can produce high-quality reconstruction, they are highly biased toward training data distribution with less scope for generalizability. This work proposes a hybrid two-step reconstruction approach to improve deep learning based QSM reconstruction. The susceptibility map prediction obtained from the deep learning methods has been refined in the framework developed in this work to ensure consistency with the measured local field. The developed method was validated on existing deep learning and model-based deep learning methods for susceptibility mapping of the brain. The developed method resulted in improved reconstruction for MRI volumes obtained with different acquisition settings, including deep learning models trained on constrained (limited) data settings.
Collapse
Affiliation(s)
- Naveen Paluru
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Raji Susan Mathew
- School of Data Science, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Phaneendra K Yalavarthy
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
18
|
Walter U, Buchmann J, Sülldorf A, Dück A, Russnak A, Hässler F, Berger C. Transcranial sonography of subcortical structures in tic/tourette disorder. J Psychiatr Res 2024; 176:18-22. [PMID: 38830296 DOI: 10.1016/j.jpsychires.2024.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Functional neuroimaging studies demonstrate disinhibition of the cortico-striatal-thalamo-cortical circuit. However, structural imaging studies revealed conflicting results, some suggesting smaller volumes of the caudate nucleus (CN) in children with Gilles de la Tourette syndrome (TS). Here we wanted to find out whether transcranial sonography (TCS) detects alterations of raphe nuclei, substantia nigra, lenticular nucleus (LN), or CN in children with Tic disorder or TS (TIC/TS).The study included 25 treatment-naive children (age: 12.2 ± 2.5 years) with a DSM-V based diagnosis of Tic disorder or TS (10 subjects), without other psychiatric or neurologic diagnosis, and 25 healthy controls (age: 12.17 ± 2.57 years), matched for age and sex. Parental rating of behavioral, emotional abnormalities, somatic complaints and social competencies of the participants were assessed using the Child Behavior Check List (CBCL/4-18R). TCS of deep brain structures was conducted through the preauricular acoustic bone windows using a 2.5-MHz phased-array ultrasound system. Fisher's exact test and Mann-Whitney-U test were used for comparisons between TIC/TS patients and healthy volunteers. The number of participants with hyperechogenic area of left CN in the TIC/TS sample was increased, compared to the healthy control group. TIC/TS patients with hyperechogenic CN showed an increased occurrence of thought- and obsessive-compulsive problems. This TCS study revealed pathologic structural changes in CN, its higher occurrence in TIC/TS compared to healthy controls and the relation to comorbidity of thought problems. Further research should focus on the molecular cause of these alterations, probably the disturbed iron metabolism.
Collapse
Affiliation(s)
- Uwe Walter
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Johannes Buchmann
- Department of Psychiatry, Neurology, Psychosomatics, and Psychotherapy in Childhood and Adolescence, Rostock University Medical Center, Rostock, Germany
| | - Anne Sülldorf
- Department of Psychiatry, Neurology, Psychosomatics, and Psychotherapy in Childhood and Adolescence, Rostock University Medical Center, Rostock, Germany
| | - Alexander Dück
- Department of Psychiatry, Neurology, Psychosomatics, and Psychotherapy in Childhood and Adolescence, Rostock University Medical Center, Rostock, Germany
| | - Antonia Russnak
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Frank Hässler
- Department of Psychiatry, Neurology, Psychosomatics, and Psychotherapy in Childhood and Adolescence, Rostock University Medical Center, Rostock, Germany
| | - Christoph Berger
- Department of Psychiatry, Neurology, Psychosomatics, and Psychotherapy in Childhood and Adolescence, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
19
|
Zhang M, Feng R, Li Z, Feng J, Wu Q, Zhang Z, Ma C, Wu J, Yan F, Liu C, Zhang Y, Wei H. A subject-specific unsupervised deep learning method for quantitative susceptibility mapping using implicit neural representation. Med Image Anal 2024; 95:103173. [PMID: 38657424 DOI: 10.1016/j.media.2024.103173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/11/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Quantitative susceptibility mapping (QSM) is an MRI-based technique that estimates the underlying tissue magnetic susceptibility based on phase signal. Deep learning (DL)-based methods have shown promise in handling the challenging ill-posed inverse problem for QSM reconstruction. However, they require extensive paired training data that are typically unavailable and suffer from generalization problems. Recent model-incorporated DL approaches also overlook the non-local effect of the tissue phase in applying the source-to-field forward model due to patch-based training constraint, resulting in a discrepancy between the prediction and measurement and subsequently suboptimal QSM reconstruction. This study proposes an unsupervised and subject-specific DL method for QSM reconstruction based on implicit neural representation (INR), referred to as INR-QSM. INR has emerged as a powerful framework for learning a high-quality continuous representation of the signal (image) by exploiting its internal information without training labels. In INR-QSM, the desired susceptibility map is represented as a continuous function of the spatial coordinates, parameterized by a fully-connected neural network. The weights are learned by minimizing a loss function that includes a data fidelity term incorporated by the physical model and regularization terms. Additionally, a novel phase compensation strategy is proposed for the first time to account for the non-local effect of tissue phase in data consistency calculation to make the physical model more accurate. Our experiments show that INR-QSM outperforms traditional established QSM reconstruction methods and the compared unsupervised DL method both qualitatively and quantitatively, and is competitive against supervised DL methods under data perturbations.
Collapse
Affiliation(s)
- Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ruimin Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenghao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Wu
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhiyong Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chengxin Ma
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
20
|
Gkotsoulias DG, Jäger C, Müller R, Gräßle T, Olofsson KM, Møller T, Unwin S, Crockford C, Wittig RM, Bilgic B, Möller HE. Chaos and COSMOS-Considerations on QSM methods with multiple and single orientations and effects from local anisotropy. Magn Reson Imaging 2024; 110:104-111. [PMID: 38631534 DOI: 10.1016/j.mri.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/07/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE Field-to-susceptibility inversion in quantitative susceptibility mapping (QSM) is ill-posed and needs numerical stabilization through either regularization or oversampling by acquiring data at three or more object orientations. Calculation Of Susceptibility through Multiple Orientations Sampling (COSMOS) is an established oversampling approach and regarded as QSM gold standard. It achieves a well-conditioned inverse problem, requiring rotations by 0°, 60° and 120° in the yz-plane. However, this is impractical in vivo, where head rotations are typically restricted to a range of ±25°. Non-ideal sampling degrades the conditioning with residual streaking artifacts whose mitigation needs further regularization. Moreover, susceptibility anisotropy in white matter is not considered in the COSMOS model, which may introduce additional bias. The current work presents a thorough investigation of these effects in primate brain. METHODS Gradient-recalled echo (GRE) data of an entire fixed chimpanzee brain were acquired at 7 T (350 μm resolution, 10 orientations) including ideal COSMOS sampling and realistic rotations in vivo. Comparisons of the results included ideal COSMOS, in-vivo feasible acquisitions with 3-8 orientations and single-orientation iLSQR QSM. RESULTS In-vivo feasible and optimal COSMOS yielded high-quality susceptibility maps with increased SNR resulting from averaging multiple acquisitions. COSMOS reconstructions from non-ideal rotations about a single axis required additional L2-regularization to mitigate residual streaking artifacts. CONCLUSION In view of unconsidered anisotropy effects, added complexity of the reconstruction, and the general challenge of multi-orientation acquisitions, advantages of sub-optimal COSMOS schemes over regularized single-orientation QSM appear limited in in-vivo settings.
Collapse
Affiliation(s)
- Dimitrios G Gkotsoulias
- Nuclear Magnetic Resonance Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Carsten Jäger
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Roland Müller
- Nuclear Magnetic Resonance Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tobias Gräßle
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany
| | | | | | - Steve Unwin
- Wildlife Health Australia, Canberra, Australia
| | - Catherine Crockford
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; The Ape Social Mind Lab, Institut des Sciences Cognitives Marc Jeannerod, Bron, France; Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - Roman M Wittig
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; The Ape Social Mind Lab, Institut des Sciences Cognitives Marc Jeannerod, Bron, France; Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard/MIT Health Sciences and Technology, Cambridge, MA, United States
| | - Harald E Möller
- Nuclear Magnetic Resonance Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
21
|
Lee J, Ji S, Oh SH. So You Want to Image Myelin Using MRI: Magnetic Susceptibility Source Separation for Myelin Imaging. Magn Reson Med Sci 2024; 23:291-306. [PMID: 38644201 PMCID: PMC11234950 DOI: 10.2463/mrms.rev.2024-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
In MRI, researchers have long endeavored to effectively visualize myelin distribution in the brain, a pursuit with significant implications for both scientific research and clinical applications. Over time, various methods such as myelin water imaging, magnetization transfer imaging, and relaxometric imaging have been developed, each carrying distinct advantages and limitations. Recently, an innovative technique named as magnetic susceptibility source separation has emerged, introducing a novel surrogate biomarker for myelin in the form of a diamagnetic susceptibility map. This paper comprehensively reviews this cutting-edge method, providing the fundamental concepts of magnetic susceptibility, susceptibility imaging, and the validation of the diamagnetic susceptibility map as a myelin biomarker that indirectly measures myelin content. Additionally, the paper explores essential aspects of data acquisition and processing, offering practical insights for readers. A comparison with established myelin imaging methods is also presented, and both current and prospective clinical and scientific applications are discussed to provide a holistic understanding of the technique. This work aims to serve as a foundational resource for newcomers entering this dynamic and rapidly expanding field.
Collapse
Affiliation(s)
- Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Sooyeon Ji
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Se-Hong Oh
- Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Korea
| |
Collapse
|
22
|
Radunsky D, Solomon C, Stern N, Blumenfeld-Katzir T, Filo S, Mezer A, Karsa A, Shmueli K, Soustelle L, Duhamel G, Girard OM, Kepler G, Shrot S, Hoffmann C, Ben-Eliezer N. A comprehensive protocol for quantitative magnetic resonance imaging of the brain at 3 Tesla. PLoS One 2024; 19:e0297244. [PMID: 38820354 PMCID: PMC11142522 DOI: 10.1371/journal.pone.0297244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/01/2024] [Indexed: 06/02/2024] Open
Abstract
Quantitative MRI (qMRI) has been shown to be clinically useful for numerous applications in the brain and body. The development of rapid, accurate, and reproducible qMRI techniques offers access to new multiparametric data, which can provide a comprehensive view of tissue pathology. This work introduces a multiparametric qMRI protocol along with full postprocessing pipelines, optimized for brain imaging at 3 Tesla and using state-of-the-art qMRI tools. The total scan time is under 50 minutes and includes eight pulse-sequences, which produce range of quantitative maps including T1, T2, and T2* relaxation times, magnetic susceptibility, water and macromolecular tissue fractions, mean diffusivity and fractional anisotropy, magnetization transfer ratio (MTR), and inhomogeneous MTR. Practical tips and limitations of using the protocol are also provided and discussed. Application of the protocol is presented on a cohort of 28 healthy volunteers and 12 brain regions-of-interest (ROIs). Quantitative values agreed with previously reported values. Statistical analysis revealed low variability of qMRI parameters across subjects, which, compared to intra-ROI variability, was x4.1 ± 0.9 times higher on average. Significant and positive linear relationship was found between right and left hemispheres' values for all parameters and ROIs with Pearson correlation coefficients of r>0.89 (P<0.001), and mean slope of 0.95 ± 0.04. Finally, scan-rescan stability demonstrated high reproducibility of the measured parameters across ROIs and volunteers, with close-to-zero mean difference and without correlation between the mean and difference values (across map types, mean P value was 0.48 ± 0.27). The entire quantitative data and postprocessing scripts described in the manuscript are publicly available under dedicated GitHub and Figshare repositories. The quantitative maps produced by the presented protocol can promote longitudinal and multi-center studies, and improve the biological interpretability of qMRI by integrating multiple metrics that can reveal information, which is not apparent when examined using only a single contrast mechanism.
Collapse
Affiliation(s)
- Dvir Radunsky
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
| | - Chen Solomon
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
| | - Neta Stern
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
| | | | - Shir Filo
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviv Mezer
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anita Karsa
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Karin Shmueli
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | | | | | | | - Gal Kepler
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Shai Shrot
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat-Gan, Israel
| | - Chen Hoffmann
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat-Gan, Israel
| | - Noam Ben-Eliezer
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Center for Advanced Imaging Innovation and Research (CAI2R), New-York University Langone Medical Center, New York, NY, United States of America
| |
Collapse
|
23
|
Du L, Ye F, Gao W, Yang A, Luan J, Xu M, Lv K, Hu P, Liu B, Yu H, Wang Y, Huang W, Shu N, Ouyang G, Yin Q, Shmuel A, Wang Y, Zhang Q, Xu P, Ma G. Decreased brain iron deposition based on quantitative susceptibility mapping correlates with reduced neurodevelopmental status in children with autism spectrum disorder. Cereb Cortex 2024; 34:63-71. [PMID: 38696609 DOI: 10.1093/cercor/bhae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 02/12/2024] [Indexed: 05/04/2024] Open
Abstract
To investigate potential correlations between the susceptibility values of certain brain regions and the severity of disease or neurodevelopmental status in children with autism spectrum disorder (ASD), 18 ASD children and 15 healthy controls (HCs) were recruited. The neurodevelopmental status was assessed by the Gesell Developmental Schedules (GDS) and the severity of the disease was evaluated by the Autism Behavior Checklist (ABC). Eleven brain regions were selected as regions of interest and the susceptibility values were measured by quantitative susceptibility mapping. To evaluate the diagnostic capacity of susceptibility values in distinguishing ASD and HC, the receiver operating characteristic (ROC) curve was computed. Pearson and Spearman partial correlation analysis were used to depict the correlations between the susceptibility values, the ABC scores, and the GDS scores in the ASD group. ROC curves showed that the susceptibility values of the left and right frontal white matter had a larger area under the curve in the ASD group. The susceptibility value of the right globus pallidus was positively correlated with the GDS-fine motor scale score. These findings indicated that the susceptibility value of the right globus pallidus might be a viable imaging biomarker for evaluating the neurodevelopmental status of ASD children.
Collapse
Affiliation(s)
- Lei Du
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian, Beijing 100142, China
| | - Fang Ye
- Department of Pediatrics, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Wenwen Gao
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
- Department of Radiology, the Sixth Medical Center of People's Liberation Army (PLA) General Hospital, No. 6 Fucheng Road, Haidian, Beijing 100048, China
| | - Aocai Yang
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Jixin Luan
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Manxi Xu
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Kuan Lv
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Pianpian Hu
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Bing Liu
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Hongwei Yu
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Yuli Wang
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, No. 19 Xinjiekouwai Road, Haidian, Beijing 100875, China
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, No. 19 Xinjiekouwai Road, Haidian, Beijing 100875, China
| | - Gaoxiang Ouyang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, No. 19 Xinjiekouwai Road, Haidian, Beijing 100875, China
| | - Qian Yin
- School of Artificial Intelligence, Beijing Normal University, No. 19 Xinjiekouwai Road, Haidian, Beijing 100875, China
| | - Amir Shmuel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 45 Sherbrooke St W, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, Physiology, and Biomedical Engineering, McGill University, 45 Sherbrooke St W, Montreal, QC, Canada
| | - Yunfeng Wang
- Department of Pediatrics, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Qi Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Pengfei Xu
- Department of Pediatrics, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, No. 2 East Yinghua Road, Chaoyang, Beijing 100029, China
| |
Collapse
|
24
|
Gao Y, Xiong Z, Shan S, Liu Y, Rong P, Li M, Wilman AH, Pike GB, Liu F, Sun H. Plug-and-Play latent feature editing for orientation-adaptive quantitative susceptibility mapping neural networks. Med Image Anal 2024; 94:103160. [PMID: 38552528 DOI: 10.1016/j.media.2024.103160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/09/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024]
Abstract
Quantitative susceptibility mapping (QSM) is a post-processing technique for deriving tissue magnetic susceptibility distribution from MRI phase measurements. Deep learning (DL) algorithms hold great potential for solving the ill-posed QSM reconstruction problem. However, a significant challenge facing current DL-QSM approaches is their limited adaptability to magnetic dipole field orientation variations during training and testing. In this work, we propose a novel Orientation-Adaptive Latent Feature Editing (OA-LFE) module to learn the encoding of acquisition orientation vectors and seamlessly integrate them into the latent features of deep networks. Importantly, it can be directly Plug-and-Play (PnP) into various existing DL-QSM architectures, enabling reconstructions of QSM from arbitrary magnetic dipole orientations. Its effectiveness is demonstrated by combining the OA-LFE module into our previously proposed phase-to-susceptibility single-step instant QSM (iQSM) network, which was initially tailored for pure-axial acquisitions. The proposed OA-LFE-empowered iQSM, which we refer to as iQSM+, is trained in a simulated-supervised manner on a specially-designed simulation brain dataset. Comprehensive experiments are conducted on simulated and in vivo human brain datasets, encompassing subjects ranging from healthy individuals to those with pathological conditions. These experiments involve various MRI platforms (3T and 7T) and aim to compare our proposed iQSM+ against several established QSM reconstruction frameworks, including the original iQSM. The iQSM+ yields QSM images with significantly improved accuracies and mitigates artifacts, surpassing other state-of-the-art DL-QSM algorithms. The PnP OA-LFE module's versatility was further demonstrated by its successful application to xQSM, a distinct DL-QSM network for dipole inversion. In conclusion, this work introduces a new DL paradigm, allowing researchers to develop innovative QSM methods without requiring a complete overhaul of their existing architectures.
Collapse
Affiliation(s)
- Yang Gao
- School of Computer Science and Engineering, Central South University, Changsha, China.
| | - Zhuang Xiong
- School of Electrical Engineering and Computer Science, University of Queensland, Brisbane, Australia
| | - Shanshan Shan
- State Key Laboratory of Radiation, Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yin Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Alan H Wilman
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Canada
| | - G Bruce Pike
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Feng Liu
- School of Electrical Engineering and Computer Science, University of Queensland, Brisbane, Australia
| | - Hongfu Sun
- School of Electrical Engineering and Computer Science, University of Queensland, Brisbane, Australia; School of Engineering, University of Newcastle, Newcastle, Australia
| |
Collapse
|
25
|
Xiong Z, Gao Y, Liu Y, Fazlollahi A, Nestor P, Liu F, Sun H. Quantitative susceptibility mapping through model-based deep image prior (MoDIP). Neuroimage 2024; 291:120583. [PMID: 38554781 DOI: 10.1016/j.neuroimage.2024.120583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024] Open
Abstract
The data-driven approach of supervised learning methods has limited applicability in solving dipole inversion in Quantitative Susceptibility Mapping (QSM) with varying scan parameters across different objects. To address this generalization issue in supervised QSM methods, we propose a novel training-free model-based unsupervised method called MoDIP (Model-based Deep Image Prior). MoDIP comprises a small, untrained network and a Data Fidelity Optimization (DFO) module. The network converges to an interim state, acting as an implicit prior for image regularization, while the optimization process enforces the physical model of QSM dipole inversion. Experimental results demonstrate MoDIP's excellent generalizability in solving QSM dipole inversion across different scan parameters. It exhibits robustness against pathological brain QSM, achieving over 32 % accuracy improvement than supervised deep learning methods. It is also 33 % more computationally efficient and runs 4 times faster than conventional DIP-based approaches, enabling 3D high-resolution image reconstruction in under 4.5 min.
Collapse
Affiliation(s)
- Zhuang Xiong
- School of Electrical Engineering and Computer Science, University of Queensland, Brisbane, Australia
| | - Yang Gao
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Yin Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Amir Fazlollahi
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Peter Nestor
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Feng Liu
- School of Electrical Engineering and Computer Science, University of Queensland, Brisbane, Australia
| | - Hongfu Sun
- School of Electrical Engineering and Computer Science, University of Queensland, Brisbane, Australia; School of Engineering, University of Newcastle, Newcastle, Australia.
| |
Collapse
|
26
|
Bilgic B, Costagli M, Chan KS, Duyn J, Langkammer C, Lee J, Li X, Liu C, Marques JP, Milovic C, Robinson SD, Schweser F, Shmueli K, Spincemaille P, Straub S, van Zijl P, Wang Y. Recommended implementation of quantitative susceptibility mapping for clinical research in the brain: A consensus of the ISMRM electro-magnetic tissue properties study group. Magn Reson Med 2024; 91:1834-1862. [PMID: 38247051 PMCID: PMC10950544 DOI: 10.1002/mrm.30006] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/31/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
This article provides recommendations for implementing QSM for clinical brain research. It is a consensus of the International Society of Magnetic Resonance in Medicine, Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available have generated a need in the neuroimaging community for guidelines on implementation. This article outlines considerations and implementation recommendations for QSM data acquisition, processing, analysis, and publication. We recommend that data be acquired using a monopolar 3D multi-echo gradient echo (GRE) sequence and that phase images be saved and exported in Digital Imaging and Communications in Medicine (DICOM) format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background field removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields within the brain mask should be removed using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of the whole brain as a region of interest in the analysis. The minimum acquisition and processing details required when reporting QSM results are also provided. These recommendations should facilitate clinical QSM research and promote harmonized data acquisition, analysis, and reporting.
Collapse
Affiliation(s)
- Berkin Bilgic
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Mauro Costagli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy
| | - Kwok-Shing Chan
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jeff Duyn
- Advanced MRI Section, NINDS, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Xu Li
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - José P Marques
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Carlos Milovic
- School of Electrical Engineering (EIE), Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Simon Daniel Robinson
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Centre of Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, Buffalo, New York, USA
- Center for Biomedical Imaging, Clinical and Translational Science Institute at the University at Buffalo, Buffalo, New York, USA
| | - Karin Shmueli
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Pascal Spincemaille
- MRI Research Institute, Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Sina Straub
- Department of Radiology, Mayo Clinic, Jacksonville, Florida, USA
| | - Peter van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Yi Wang
- MRI Research Institute, Departments of Radiology and Biomedical Engineering, Cornell University, New York, New York, USA
| |
Collapse
|
27
|
Kurian D, Hagberg GE, Scheffler K, Paul JS. A predictor-corrector phase unwrapping algorithm for temporally undersampled gradient-echo MRI. Magn Reson Med 2024; 91:1707-1722. [PMID: 38084410 DOI: 10.1002/mrm.29964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 02/03/2024]
Abstract
PURPOSE To develop a method for unwrapping temporally undersampled and nonlinear gradient recalled echo (GRE) phase. THEORY AND METHODS Temporal unwrapping is performed as a sequential one step prediction of the echo phase, followed by a correction to the nearest integer wrap-count. A spatio-temporal extension of the 1D predictor corrector unwrapping (PCU) algorithm improves the prediction accuracy, and thereby maintains spatial continuity. The proposed method is evaluated using numerical phantom, physical phantom, and in vivo brain data at both 3 T and 9.4 T. The unwrapping performance is compared with the state-of-the-art temporal and spatial unwrapping algorithms, and the spatio-temporal iterative virtual-echo based Nyquist sampled (iVENyS) algorithm. RESULTS Simulation results showed significant reduction in unwrapping errors at higher echoes compared with the state-of-the-art algorithms. Similar to the iVENyS algorithm, the PCU algorithm was able to generate spatially smooth phase images for in vivo data acquired at 3 T and 9.4 T, bypassing the use of additional spatial unwrapping step. A key advantage over iVENyS algorithm is the superior performance of PCU algorithm at higher echoes. CONCLUSION PCU algorithm serves as a robust phase unwrapping method for temporally undersampled and nonlinear GRE phase, particularly in the presence of high field gradients.
Collapse
Affiliation(s)
- Deepu Kurian
- School of Electronic Systems & Automation, Digital University Kerala, Trivandrum, Kerala, India
| | - Gisela E Hagberg
- High Field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
- Biomedical Magnetic Resonance, Department of Radiology, Eberhard Karl's University and University Hospital, Tübingen, Germany
| | - Klaus Scheffler
- High Field Magnetic Resonance, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
- Biomedical Magnetic Resonance, Department of Radiology, Eberhard Karl's University and University Hospital, Tübingen, Germany
| | - Joseph Suresh Paul
- School of Electronic Systems & Automation, Digital University Kerala, Trivandrum, Kerala, India
- School of Informatics, Digital University Kerala, Trivandrum, Kerala, India
| |
Collapse
|
28
|
Guan X, Lancione M, Ayton S, Dusek P, Langkammer C, Zhang M. Neuroimaging of Parkinson's disease by quantitative susceptibility mapping. Neuroimage 2024; 289:120547. [PMID: 38373677 DOI: 10.1016/j.neuroimage.2024.120547] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/02/2024] [Accepted: 02/17/2024] [Indexed: 02/21/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease, and apart from a few rare genetic causes, its pathogenesis remains largely unclear. Recent scientific interest has been captured by the involvement of iron biochemistry and the disruption of iron homeostasis, particularly within the brain regions specifically affected in PD. The advent of Quantitative Susceptibility Mapping (QSM) has enabled non-invasive quantification of brain iron in vivo by MRI, which has contributed to the understanding of iron-associated pathogenesis and has the potential for the development of iron-based biomarkers in PD. This review elucidates the biochemical underpinnings of brain iron accumulation, details advancements in iron-sensitive MRI technologies, and discusses the role of QSM as a biomarker of iron deposition in PD. Despite considerable progress, several challenges impede its clinical application after a decade of QSM studies. The initiation of multi-site research is warranted for developing robust, interpretable, and disease-specific biomarkers for monitoring PD disease progression.
Collapse
Affiliation(s)
- Xiaojun Guan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China
| | - Marta Lancione
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Scott Ayton
- Florey Institute, The University of Melbourne, Australia
| | - Petr Dusek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia; Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Auenbruggerplatz 22, Prague 8036, Czechia
| | | | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China.
| |
Collapse
|
29
|
Mathew RS, Paluru N, Yalavarthy PK. Model resolution-based deconvolution for improved quantitative susceptibility mapping. NMR IN BIOMEDICINE 2024; 37:e5055. [PMID: 37803940 DOI: 10.1002/nbm.5055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/22/2023] [Accepted: 09/02/2023] [Indexed: 10/08/2023]
Abstract
Quantitative susceptibility mapping (QSM) utilizes the relationship between the measured local field and the unknown susceptibility map to perform dipole deconvolution. The aim of this work is to introduce and systematically evaluate the model resolution-based deconvolution for improved estimation of the susceptibility map obtained using the thresholded k-space division (TKD). A two-step approach has been proposed, wherein the first step involves the TKD susceptibility map computation and the second step involves the correction of this susceptibility map using the model-resolution matrix. The TKD-estimated susceptibility map can be expressed as the weighted average of the true susceptibility map, where the weights are determined by the rows of the model-resolution matrix, and hence a deconvolution of the TKD susceptibility map using the model-resolution matrix yields a better approximation to the true susceptibility map. The model resolution-based deconvolution is realized using closed-form, iterative, and sparsity-regularized implementations. The proposed approach was compared with L2 regularization, TKD, rescaled TKD in superfast dipole inversion, the modulated closed-form method, and iterative dipole inversion, as well as sparsity-regularized dipole inversion. It was observed that the proposed approach showed a substantial reduction in the streaking artifacts across 94 test volumes considered in this study. The proposed approach also showed better error reduction and edge preservation compared with other approaches. The proposed model resolution-based deconvolution compensates for the truncation of zero coefficients in the dipole kernel at the magic angle and hence provides a closer approximation to the true susceptibility map compared with other direct methods.
Collapse
Affiliation(s)
- Raji Susan Mathew
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Naveen Paluru
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Phaneendra K Yalavarthy
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
30
|
Ikram A, Sharma R, Selim M, Kim-Sun G, Shahraki T, Thomas AJ, Filippidis A, Wen Y, Spincemaille P, Wang Y, Soman S. mcTFI QSM MRI ABC/2 intracranial hemorrhage to noncontrast head CT volume measurement equivalence. J Neurol Sci 2024; 456:122859. [PMID: 38171071 PMCID: PMC10796171 DOI: 10.1016/j.jns.2023.122859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND/OBJECTIVES Intracranial hemorrhage (ICH) volume assessment is an important part of patient management and is routinely obtained by non-contrast head CT (NCHCT) using the validated ABC/2 measurement method. Because conventional MRI imaging sequences demonstrate variability in ICH appearance, volumetric analyses for MRI bleed volume in a standardized manner using ABC/2 is not possible. The recently introduced multiecho-complex total field inversion quantitative susceptibility mapping (mcTFI QSM) MRI technique, which maps brain tissue susceptibility to both depict brain tissue structures and quantify tissue susceptibility, may provide a viable alternative. In this study we evaluated mcTFI QSM ABC/2 ICH volume assessment relative to NCHCT. METHODS Patients with ICH who had undergone NCHCT and MRI brain scans within 48 h were recruited for this retrospective study. The ABC/2 method was applied to estimate the bleed volume for both NCHCT and MRI by a CAQ-certified neuroradiologist with 10 years of experience and a trained laboratory assistant. Results were analyzed via Bland-Altman (B-A) and linear regression. RESULTS 54 patients (27 females) who had undergone NCHCT and MRI within 48 h (<24 h., n = 31, 24-48 h, n = 10) were enrolled. mcTFI QSM ICH volume measurement method showed a positive correlation (99.5%) compared to NCHCT. B-A plot comparing ABC/2 ICH volume on NCHCT and mcTFI MRI done for patients within 24 h demonstrates a bias of -0.09%. CONCLUSIONS ICH volume calculation using ABC/2 on mcTFI QSM showed a high correlation with NCHCT measurement. These results suggest mcTFI QSM is a promising MRI method for ABC/2 for bleed volume measurement.
Collapse
Affiliation(s)
- Asad Ikram
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Ria Sharma
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Magdy Selim
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | | | - Tamkin Shahraki
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ajith J Thomas
- Cooper University Healthcare/Cooper Medical School of Rowan University, Camden, NJ, United States.
| | - Aristotelis Filippidis
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Yan Wen
- GE Healthcare, Lincoln Medical Center, New York, NY, USA
| | | | - Yi Wang
- Weill Cornell Medicine, New York, NY, USA.
| | - Salil Soman
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Amemiya T, Yokosawa S, Taniguchi Y, Sato R, Soutome Y, Ochi H, Shirai T. Simultaneous Arterial and Venous Imaging Using 3D Quantitative Parameter Mapping. Magn Reson Med Sci 2024; 23:56-65. [PMID: 36543227 PMCID: PMC10838721 DOI: 10.2463/mrms.mp.2021-0170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 10/10/2022] [Indexed: 01/05/2024] Open
Abstract
PURPOSE To increase the number of images that can be acquired in MR examinations using quantitative parameters, we developed a method for obtaining arterial and venous images with mapping of proton density (PD), RF inhomogeneity (B1), longitudinal relaxation time (T1), apparent transverse relaxation time (T2*), and magnetic susceptibility through calculation, all with the same spatial resolution. METHODS The proposed method uses partially RF-spoiled gradient echo sequences to obtain 3D images of a subject with multiple scan parameters. The PD, B1, T1, T2*, and magnetic susceptibility maps are estimated using the quantification method we previously developed. Arterial images are obtained by adding images using optimized weights to emphasize the arteries. A morphology filter is used to obtain venous images from the magnetic susceptibility maps. For evaluation, images obtained from four out of five healthy volunteers were used to optimize the weights used in the arterial-image calculation, and the optimized weights were applied to the images from the fifth volunteer to obtain an arterial image. Arterial images of the five volunteers were calculated using the leave-one-out method, and the contrast between the arterial and background regions defined using the reference time-of-flight (TOF) method was evaluated using the area under the receiver operation characteristic curve (AUC). The contrast between venous and background regions defined by a reference quantitative susceptibility mapping (QSM) method was also evaluated for the venous image. RESULTS The AUC to discriminate blood vessels and background using the proposed method was 0.905 for the arterial image and 0.920 for the venous image. CONCLUSION The results indicate that the arterial images and venous images have high signal intensity at the same region as determined from the reference TOF and QSM methods, demonstrating the possibility of acquiring vasculature images with quantitative parameter mapping through calculation in an integrated manner.
Collapse
Affiliation(s)
- Tomoki Amemiya
- Innovative Technology Laboratory, FUJIFILM Healthcare Corporation, Kokubunji, Tokyo, Japan
| | - Suguru Yokosawa
- Innovative Technology Laboratory, FUJIFILM Healthcare Corporation, Kokubunji, Tokyo, Japan
| | - Yo Taniguchi
- Innovative Technology Laboratory, FUJIFILM Healthcare Corporation, Kokubunji, Tokyo, Japan
| | - Ryota Sato
- Innovative Technology Laboratory, FUJIFILM Healthcare Corporation, Kokubunji, Tokyo, Japan
| | - Yoshihisa Soutome
- Innovative Technology Laboratory, FUJIFILM Healthcare Corporation, Kokubunji, Tokyo, Japan
| | - Hisaaki Ochi
- Innovative Technology Laboratory, FUJIFILM Healthcare Corporation, Kokubunji, Tokyo, Japan
| | - Toru Shirai
- Innovative Technology Laboratory, FUJIFILM Healthcare Corporation, Kokubunji, Tokyo, Japan
| |
Collapse
|
32
|
Bachrata B, Bollmann S, Jin J, Tourell M, Dal-Bianco A, Trattnig S, Barth M, Ropele S, Enzinger C, Robinson SD. Super-resolution QSM in little or no additional time for imaging (NATIve) using 2D EPI imaging in 3 orthogonal planes. Neuroimage 2023; 283:120419. [PMID: 37871759 DOI: 10.1016/j.neuroimage.2023.120419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/22/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023] Open
Abstract
Quantitative Susceptibility Mapping has the potential to provide additional insights into neurological diseases but is typically based on a quite long (5-10 min) 3D gradient-echo scan which is highly sensitive to motion. We propose an ultra-fast acquisition based on three orthogonal (sagittal, coronal and axial) 2D simultaneous multi-slice EPI scans with 1 mm in-plane resolution and 3 mm thick slices. Images in each orientation are corrected for susceptibility-related distortions and co-registered with an iterative non-linear Minimum Deformation Averaging (Volgenmodel) approach to generate a high SNR, super-resolution data set with an isotropic resolution of close to 1 mm. The net acquisition time is 3 times the volume acquisition time of EPI or about 12 s, but the three volumes could also replace "dummy scans" in fMRI, making it feasible to acquire QSM in little or No Additional Time for Imaging (NATIve). NATIve QSM values agreed well with reference 3D GRE QSM in the basal ganglia in healthy subjects. In patients with multiple sclerosis, there was also a good agreement between the susceptibility values within lesions and control ROIs and all lesions which could be seen on 3D GRE QSMs could also be visualized on NATIve QSMs. The approach is faster than conventional 3D GRE by a factor of 25-50 and faster than 3D EPI by a factor of 3-5. As a 2D technique, NATIve QSM was shown to be much more robust to motion than the 3D GRE and 3D EPI, opening up the possibility of studying neurological diseases involving iron accumulation and demyelination in patients who find it difficult to lie still for long enough to acquire QSM data with conventional methods.
Collapse
Affiliation(s)
- Beata Bachrata
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria; Karl Landsteiner Institute for Clinical Molecular MR in Musculoskeletal Imaging, Vienna, Austria; Department of Medical Engineering, Carinthia University of Applied Sciences, Klagenfurt, Austria
| | - Steffen Bollmann
- Centre of Advanced Imaging, University of Queensland, Brisbane, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, University of Queensland, Brisbane, Australia; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Jin Jin
- Centre of Advanced Imaging, University of Queensland, Brisbane, Australia; Siemens Healthcare Pty Ltd, Australia
| | - Monique Tourell
- Centre of Advanced Imaging, University of Queensland, Brisbane, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, University of Queensland, Brisbane, Australia
| | - Assunta Dal-Bianco
- Department of Neurology, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria
| | - Siegfried Trattnig
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria; Karl Landsteiner Institute for Clinical Molecular MR in Musculoskeletal Imaging, Vienna, Austria
| | - Markus Barth
- Centre of Advanced Imaging, University of Queensland, Brisbane, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, University of Queensland, Brisbane, Australia; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Austria
| | | | - Simon Daniel Robinson
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria; Centre of Advanced Imaging, University of Queensland, Brisbane, Australia; Department of Neurology, Medical University of Graz, Austria.
| |
Collapse
|
33
|
Sun Y, Yang Z, Deng K, Geng Y, Hu X, Song Y, Jiang R. Histogram analysis of quantitative susceptibility mapping and apparent diffusion coefficient for identifying isocitrate dehydrogenase genotypes and tumor subtypes of adult-type diffuse gliomas. Quant Imaging Med Surg 2023; 13:8681-8693. [PMID: 38106258 PMCID: PMC10722066 DOI: 10.21037/qims-23-832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/19/2023] [Indexed: 12/19/2023]
Abstract
Background Accurate preoperative identification of isocitrate dehydrogenase (IDH) genotypes and tumor subtypes is highly important for proper treatment planning and prognosis evaluation in patients with glioma. This study aimed to differentiate IDH genotypes and tumor subtypes of adult-type diffuse gliomas using histogram features of quantitative susceptibility mapping (QSM) and apparent diffusion coefficient (ADC). Methods This prospective study enrolled patients with suspected gliomas between March 2019 and January 2022 in a random series. Histogram features of QSM and ADC were extracted from the tumor parenchyma. The Mann-Whitney U test was used to compare the difference in histogram features between different IDH genotypes and among tumor subtypes. Receiver operating characteristic (ROC) curves were constructed to assess the corresponding diagnostic performance. Results This study included 47 patients with histopathologically confirmed adult-type diffuse gliomas. Totals of seven QSM features including 10th percentile (P10), 90th percentile (P90), interquartile range (IQR), maximum, mean absolute deviation (MAD), root mean squared (RMS), and variance, and five ADC features including P10, mean, median, RMS, and skewness exhibited significant differences between different IDH genotypes (P<0.05 for all), with the IQR of QSM demonstrating the highest area under curve (AUC) of 0.774 [95% confidence interval (CI): 0.635-0.913]. For separating tumor subtypes, the IQR of QSM also showed the highest AUC of 0.745 (95% CI: 0.566-0.924) for glioblastoma (GBM) versus astrocytoma and 0.848 (95% CI: 0.706-0.989) for GBM versus oligodendroglioma, but none of the features could discriminate astrocytoma from oligodendroglioma. The combination of the IQR of QSM, P10 of ADC, and age achieved the highest AUC of 0.910 (95% CI: 0.826-0.994) for IDH genotypes, and 0.939 (95% CI: 0.859-1.000) and 0.967 (95% CI: 0.904-1.000) for GBM versus astrocytoma and GBM versus oligodendroglioma, respectively. Conclusions QSM and ADC histogram features may serve as potential imaging markers for noninvasively assessing IDH genotypes and tumor subtypes of adult-type diffuse gliomas. Combining significant features may enhance the diagnostic performance substantially.
Collapse
Affiliation(s)
- Yifan Sun
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
- School of Medical Imaging, Fujian Medical University, Fuzhou, China
| | - Zheting Yang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
- School of Medical Imaging, Fujian Medical University, Fuzhou, China
| | - Kaiji Deng
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
- School of Medical Imaging, Fujian Medical University, Fuzhou, China
| | - Yingqian Geng
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
- School of Medical Imaging, Fujian Medical University, Fuzhou, China
| | - Xiaomei Hu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yang Song
- MR Scientific Marketing, Siemens Healthcare, Shanghai, China
| | - Rifeng Jiang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
- School of Medical Imaging, Fujian Medical University, Fuzhou, China
| |
Collapse
|
34
|
Naji N, Wilman A. Thin slab quantitative susceptibility mapping. Magn Reson Med 2023; 90:2290-2305. [PMID: 37526029 DOI: 10.1002/mrm.29800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE Susceptibility maps reconstructed from thin slabs may suffer underestimation due to background-field removal imperfections near slab boundaries and the increased difficulty of solving a 3D-inversion problem with reduced support, particularly in the direction of the main magnetic field. Reliable QSM reconstruction from thin slabs would enable focal acquisitions in a much-reduced scan time. METHODS This work proposes using additional rapid low-resolution data of extended spatial coverage to improve background-field estimation and regularize the inversion-to-susceptibility process for high resolution, thin slab data. The new method was tested using simulated and in-vivo brain data of high resolution (0.33 × 0.33 × 0.33 mm3 and 0.54 × 0.54 × 0.65 mm3 , respectively) at 3T, and compared to the standard large volume approach. RESULTS Using the proposed method, in-vivo high-resolution QSM at 3T was obtained from slabs of width as small as 10.4 mm, aided by a lower-resolution dataset of 24 times coarser voxels. Simulations showed that the proposed method produced more consistent measurements from slabs of at least eight slices. Reducing the mean ROI error to 5% required the low-resolution data to cover ˜60 mm in the direction of the main field, have at least 2-mm isotropic resolution that is not coarser than the high-resolution data by more than four-fold in any direction. CONCLUSION Applying the proposed method enabled focal QSM acquisitions at sub-millimeter resolution within reasonable acquisition time.
Collapse
Affiliation(s)
- Nashwan Naji
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Alan Wilman
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
35
|
Gkotsoulias DG, Müller R, Jäger C, Schlumm T, Mildner T, Eichner C, Pampel A, Jaffe J, Gräßle T, Alsleben N, Chen J, Crockford C, Wittig R, Liu C, Möller HE. High angular resolution susceptibility imaging and estimation of fiber orientation distribution functions in primate brain. Neuroimage 2023; 276:120202. [PMID: 37247762 DOI: 10.1016/j.neuroimage.2023.120202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/21/2023] [Accepted: 05/27/2023] [Indexed: 05/31/2023] Open
Abstract
Uncovering brain-tissue microstructure including axonal characteristics is a major neuroimaging research focus. Within this scope, anisotropic properties of magnetic susceptibility in white matter have been successfully employed to estimate primary axonal trajectories using mono-tensorial models. However, anisotropic susceptibility has not yet been considered for modeling more complex fiber structures within a voxel, such as intersecting bundles, or an estimation of orientation distribution functions (ODFs). This information is routinely obtained by high angular resolution diffusion imaging (HARDI) techniques. In applications to fixed tissue, however, diffusion-weighted imaging suffers from an inherently low signal-to-noise ratio and limited spatial resolution, leading to high demands on the performance of the gradient system in order to mitigate these limitations. In the current work, high angular resolution susceptibility imaging (HARSI) is proposed as a novel, phase-based methodology to estimate ODFs. A multiple gradient-echo dataset was acquired in an entire fixed chimpanzee brain at 61 orientations by reorienting the specimen in the magnetic field. The constant solid angle method was adapted for estimating phase-based ODFs. HARDI data were also acquired for comparison. HARSI yielded information on whole-brain fiber architecture, including identification of peaks of multiple bundles that resembled features of the HARDI results. Distinct differences between both methods suggest that susceptibility properties may offer complementary microstructural information. These proof-of-concept results indicate a potential to study the axonal organization in post-mortem primate and human brain at high resolution.
Collapse
Affiliation(s)
- Dimitrios G Gkotsoulias
- Nuclear Magnetic Resonance Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Roland Müller
- Nuclear Magnetic Resonance Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Carsten Jäger
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Torsten Schlumm
- Nuclear Magnetic Resonance Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Toralf Mildner
- Nuclear Magnetic Resonance Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Cornelius Eichner
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - André Pampel
- Nuclear Magnetic Resonance Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jennifer Jaffe
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Côte d'Ivoire
| | - Tobias Gräßle
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Côte d'Ivoire; Helmholtz Institute for One Health, Greifswald, Germany; Robert Koch Institute, Epidemiology of Highly Pathogenic Microorganisms, Berlin, Germany
| | - Niklas Alsleben
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jingjia Chen
- Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Catherine Crockford
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Côte d'Ivoire; Institute of Cognitive Sciences, CNRS UMR5229 University of Lyon, Bron, France
| | - Roman Wittig
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Côte d'Ivoire; Institute of Cognitive Sciences, CNRS UMR5229 University of Lyon, Bron, France
| | - Chunlei Liu
- Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Harald E Möller
- Nuclear Magnetic Resonance Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
36
|
Bilgic B, Costagli M, Chan KS, Duyn J, Langkammer C, Lee J, Li X, Liu C, Marques JP, Milovic C, Robinson S, Schweser F, Shmueli K, Spincemaille P, Straub S, van Zijl P, Wang Y. Recommended Implementation of Quantitative Susceptibility Mapping for Clinical Research in The Brain: A Consensus of the ISMRM Electro-Magnetic Tissue Properties Study Group. ARXIV 2023:arXiv:2307.02306v1. [PMID: 37461418 PMCID: PMC10350101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
This article provides recommendations for implementing quantitative susceptibility mapping (QSM) for clinical brain research. It is a consensus of the ISMRM Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available give rise to the need in the neuroimaging community for guidelines on implementation. This article describes relevant considerations and provides specific implementation recommendations for all steps in QSM data acquisition, processing, analysis, and presentation in scientific publications. We recommend that data be acquired using a monopolar 3D multi-echo GRE sequence, that phase images be saved and exported in DICOM format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields should be removed within the brain mask using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of whole brain as a region of interest in the analysis, and QSM results should be reported with - as a minimum - the acquisition and processing specifications listed in the last section of the article. These recommendations should facilitate clinical QSM research and lead to increased harmonization in data acquisition, analysis, and reporting.
Collapse
Affiliation(s)
- Berkin Bilgic
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Mauro Costagli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy
| | - Kwok-Shing Chan
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Jeff Duyn
- Advanced MRI Section, NINDS, National Institutes of Health, Bethesda, MD, United States
| | | | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Xu Li
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - José P Marques
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Carlos Milovic
- School of Electrical Engineering (EIE), Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Simon Robinson
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, Buffalo, NY, USA
- Center for Biomedical Imaging, Clinical and Translational Science Institute at the University at Buffalo, Buffalo, NY, United States
| | - Karin Shmueli
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Pascal Spincemaille
- MRI Research Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Sina Straub
- Department of Radiology, Mayo Clinic, Jacksonville, FL, United States
| | - Peter van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Yi Wang
- MRI Research Institute, Departments of Radiology and Biomedical Engineering, Cornell University, New York, NY, United States
| |
Collapse
|
37
|
Chen Z, Zhai X, Chen Z. Brain intrinsic magnetic susceptibility mapping depicts whole-brain functional connectivity balance of normal aging in lifespan. Brain Struct Funct 2023; 228:1443-1458. [PMID: 37332061 DOI: 10.1007/s00429-023-02661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
We hypothesized that brain normal aging maintains a balanced whole-brain functional connectivity (FC) in lifetime: some connections decline while other connections increase or retain, in a summation balance as a result of the cancellation of positive and negative connections. We validated this hypothesis through the use of the brain intrinsic magnetic susceptibility source (denoted by χ) as reconstructed from fMRI phase data. In implementation, we first acquired brain fMRI magnitude (m) and phase (p) data from a cohort of 245 healthy subjects in an age span of 20-60 years, then sought MRI-free brain χ source data by computationally solving an inverse mapping problem, thereby obtained triple datasets {χ, m, p} as brain images in different measurements. We performed GIG-ICA for brain function decomposition and constructed the FC matrices (χFC, mFC, pFC} (in size of 50 × 50 for a selection of 50 ICA nodes), followed by a comparative analysis on brain FC agings using {χ, m, p} data. In the results, we found that: (i) χFC aging upholds a FC balance in life span, in an intermediator between mFC and pFC agings by: mean(pFC) = -0.011 < mean(χFC) = 0.015 < mean(mFC) = 0.036; and (ii) the χFC aging exhibits a slight decline with a slightly downward fitting line in intermediation between the two slightly upward fitting lines for the mFC and pFC agings. On the rationale of the χ-depicted MRI-free brain functional state, the brain χFC aging is closer to the brain FC aging truth than the MRI-borne mFC and pFC agings.
Collapse
Affiliation(s)
- Zikuan Chen
- Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, 91010, USA.
- Zinv LLC, Albuquerque, NM, 87108, USA.
| | | | - Zeyuan Chen
- Department of Computer Sciences, University of California-Davis, Davis, CA, 95616, USA
- Microsoft Corporation, Seattle, WA, 98052, USA
| |
Collapse
|
38
|
Cogswell PM, Fan AP. Multimodal comparisons of QSM and PET in neurodegeneration and aging. Neuroimage 2023; 273:120068. [PMID: 37003447 PMCID: PMC10947478 DOI: 10.1016/j.neuroimage.2023.120068] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Quantitative susceptibility mapping (QSM) has been used to study susceptibility changes that may occur based on tissue composition and mineral deposition. Iron is a primary contributor to changes in magnetic susceptibility and of particular interest in applications of QSM to neurodegeneration and aging. Iron can contribute to neurodegeneration through inflammatory processes and via interaction with aggregation of disease-related proteins. To better understand the local susceptibility changes observed on QSM, its signal has been studied in association with other imaging metrics such as positron emission tomography (PET). The associations of QSM and PET may provide insight into the pathophysiology of disease processes, such as the role of iron in aging and neurodegeneration, and help to determine the diagnostic utility of QSM as an indirect indicator of disease processes typically evaluated with PET. In this review we discuss the proposed mechanisms and summarize prior studies of the associations of QSM and amyloid PET, tau PET, TSPO PET, FDG-PET, 15O-PET, and F-DOPA PET in evaluation of neurologic diseases with a focus on aging and neurodegeneration.
Collapse
Affiliation(s)
- Petrice M Cogswell
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | - Audrey P Fan
- Department of Biomedical Engineering and Department of Neurology, University of California, Davis, 1590 Drew Avenue, Davis, CA 95618, USA
| |
Collapse
|
39
|
He J, Peng Y, Fu B, Zhu Y, Wang L, Wang R. msQSM: Morphology-based Self-supervised Deep Learning for Quantitative Susceptibility Mapping. Neuroimage 2023; 275:120181. [PMID: 37220799 DOI: 10.1016/j.neuroimage.2023.120181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/20/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
Quantitative susceptibility mapping (QSM) has been applied to the measurement of iron deposition and the auxiliary diagnosis of neurodegenerative disease. There still exists a dipole inversion problem in QSM reconstruction. Recently, deep learning approaches have been proposed to resolve this problem. However, most of these approaches are supervised methods that need pairs of the input phase and ground-truth. It remains a challenge to train a model for all resolutions without using the ground-truth and only using one resolution data. To address this, we proposed a self-supervised QSM deep learning method based on morphology. It consists of a morphological QSM builder to decouple the dependency of the QSM on acquisition resolution, and a morphological loss to reduce artifacts effectively and save training time efficiently. The proposed method can reconstruct arbitrary resolution QSM on both human data and animal data, regardless of whether the resolution is higher or lower than that of the training set. Our method outperforms the previous best unsupervised method with a 3.6% higher peak signal-to-noise ratio, 16.2% lower normalized root mean square error, and 22.1% lower high-frequency error norm. The morphological loss reduces training time by 22.1% with respect to the cycle gradient loss used in the previous unsupervised methods. Experimental results show that the proposed method accurately measures QSM with arbitrary resolutions, and achieves state-of-the-art results among unsupervised deep learning methods. Research on applications in neurodegenerative diseases found that our method is robust enough to measure significant increase in striatal magnetic susceptibility in patients during Alzheimer's disease progression, as well as significant increase in substantia nigra susceptibility in Parkinson's disease patients, and can be used as an auxiliary differential diagnosis tool for Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Junjie He
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, No. 2288, Huaxi Avenue, Guiyang, 550002, Guizhou, China; Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People's Hospital, No. 83, Zhongshan Dong Road, Guiyang, 550002, Guizhou, China
| | - Yunsong Peng
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People's Hospital, No. 83, Zhongshan Dong Road, Guiyang, 550002, Guizhou, China
| | - Bangkang Fu
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People's Hospital, No. 83, Zhongshan Dong Road, Guiyang, 550002, Guizhou, China
| | - Yuemin Zhu
- CREATIS, IRP Metislab, University of Lyon, INSA Lyon, CNRS UMR 5220, Inserm U1294, Lyon, France
| | - Lihui Wang
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, No. 2288, Huaxi Avenue, Guiyang, 550002, Guizhou, China
| | - Rongpin Wang
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People's Hospital, No. 83, Zhongshan Dong Road, Guiyang, 550002, Guizhou, China.
| |
Collapse
|
40
|
Kiersnowski OC, Karsa A, Wastling SJ, Thornton JS, Shmueli K. Investigating the effect of oblique image acquisition on the accuracy of QSM and a robust tilt correction method. Magn Reson Med 2023; 89:1791-1808. [PMID: 36480002 PMCID: PMC10953050 DOI: 10.1002/mrm.29550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Quantitative susceptibility mapping (QSM) is used increasingly for clinical research where oblique image acquisition is commonplace, but its effects on QSM accuracy are not well understood. THEORY AND METHODS The QSM processing pipeline involves defining the unit magnetic dipole kernel, which requires knowledge of the direction of the main magnetic fieldB ^ 0 $$ {\hat{\boldsymbol{B}}}_{\mathbf{0}} $$ with respect to the acquired image volume axes. The direction ofB ^ 0 $$ {\hat{\boldsymbol{B}}}_{\mathbf{0}} $$ is dependent on the axis and angle of rotation in oblique acquisition. Using both a numerical brain phantom and in vivo acquisitions in 5 healthy volunteers, we analyzed the effects of oblique acquisition on magnetic susceptibility maps. We compared three tilt-correction schemes at each step in the QSM pipeline: phase unwrapping, background field removal and susceptibility calculation, using the RMS error and QSM-tuned structural similarity index. RESULTS Rotation of wrapped phase images gave severe artifacts. Background field removal with projection onto dipole fields gave the most accurate susceptibilities when the field map was first rotated into alignment withB ^ 0 $$ {\hat{\boldsymbol{B}}}_{\mathbf{0}} $$ . Laplacian boundary value and variable-kernel sophisticated harmonic artifact reduction for phase data background field removal methods gave accurate results without tilt correction. For susceptibility calculation, thresholded k-space division, iterative Tikhonov regularization, and weighted linear total variation regularization, all performed most accurately when local field maps were rotated into alignment withB ^ 0 $$ {\hat{\boldsymbol{B}}}_{\mathbf{0}} $$ before susceptibility calculation. CONCLUSION For accurate QSM, oblique acquisition must be taken into account. Rotation of images into alignment withB ^ 0 $$ {\hat{\boldsymbol{B}}}_{\mathbf{0}} $$ should be carried out after phase unwrapping and before background-field removal. We provide open-source tilt-correction code to incorporate easily into existing pipelines: https://github.com/o-snow/QSM_TiltCorrection.git.
Collapse
Affiliation(s)
- Oliver C. Kiersnowski
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUnited Kingdom
| | - Anita Karsa
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUnited Kingdom
| | - Stephen J. Wastling
- Neuroradiological Academic UnitUCL Queen Square Institute of NeurologyLondonUnited Kingdom
- Lysholm Department of NeuroradiologyNational Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | - John S. Thornton
- Neuroradiological Academic UnitUCL Queen Square Institute of NeurologyLondonUnited Kingdom
- Lysholm Department of NeuroradiologyNational Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| | - Karin Shmueli
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
41
|
Li Z, Feng R, Liu Q, Feng J, Lao G, Zhang M, Li J, Zhang Y, Wei H. APART-QSM: an improved sub-voxel quantitative susceptibility mapping for susceptibility source separation using an iterative data fitting method. Neuroimage 2023; 274:120148. [PMID: 37127191 DOI: 10.1016/j.neuroimage.2023.120148] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/06/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023] Open
Abstract
The brain tissue phase contrast in MRI sequences reflects the spatial distributions of multiple substances, such as iron, myelin, calcium, and proteins. These substances with paramagnetic and diamagnetic susceptibilities often colocalize in one voxel in brain regions. Both opposing susceptibilities play vital roles in brain development and neurodegenerative diseases. Conventional QSM methods only provide voxel-averaged susceptibility value and cannot disentangle intravoxel susceptibilities with opposite signs. Advanced susceptibility imaging methods have been recently developed to distinguish the contributions of opposing susceptibility sources for QSM. The basic concept of separating paramagnetic and diamagnetic susceptibility proportions is to include the relaxation rate R2* with R2' in QSM. The magnitude decay kernel, describing the proportionality coefficient between R2' and susceptibility, is an essential reconstruction coefficient for QSM separation methods. In this study, we proposed a more comprehensive complex signal model that describes the relationship between 3D GRE signal and the contributions of paramagnetic and diamagnetic susceptibility to the frequency shift and R2* relaxation. The algorithm is implemented as a constrained minimization problem in which the voxel-wise magnitude decay kernel and sub-voxel susceptibilities are determined alternately in each iteration until convergence. The calculated voxel-wise magnitude decay kernel could realistically model the relationship between the R2' relaxation and the volume susceptibility. Thus, the proposed method effectively prevents the errors of the magnitude decay kernel from propagating to the final susceptibility separation reconstruction. Phantom studies, ex vivo macaque brain experiments, and in vivo human brain imaging studies were conducted to evaluate the ability of the proposed method to distinguish paramagnetic and diamagnetic susceptibility sources. The results demonstrate that the proposed method provides state-of-the-art performances for quantifying brain iron and myelin compared to previous QSM separation methods. Our results show that the proposed method has the potential to simultaneously quantify whole brain iron and myelin during brain development and aging. The proposed model was also deployed with multiple-orientation complex GRE data input measurements, resulting in high-quality QSM separation maps with more faithful tissue delineation between brain structures compared to those reconstructed by single-orientation QSM separation methods.
Collapse
Affiliation(s)
- Zhenghao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ruimin Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiangqiang Liu
- Department of Neurosurgery, Clinical Neuroscience Center Comprehensive Epilepsy Unit, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyan Lao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Li
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
42
|
Li J, Guan X, Wu Q, He C, Zhang W, Lin X, Liu C, Wei H, Xu X, Zhang Y. Direct localization and delineation of human pedunculopontine nucleus based on a self-supervised magnetic resonance image super-resolution method. Hum Brain Mapp 2023; 44:3781-3794. [PMID: 37186095 DOI: 10.1002/hbm.26311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
The pedunculopontine nucleus (PPN) is a small brainstem structure and has attracted attention as a potentially effective deep brain stimulation (DBS) target for the treatment of Parkinson's disease (PD). However, the in vivo location of PPN remains poorly described and barely visible on conventional structural magnetic resonance (MR) images due to a lack of high spatial resolution and tissue contrast. This study aims to delineate the PPN on a high-resolution (HR) atlas and investigate the visibility of the PPN in individual quantitative susceptibility mapping (QSM) images. We combine a recently constructed Montreal Neurological Institute (MNI) space unbiased QSM atlas (MuSus-100), with an implicit representation-based self-supervised image super-resolution (SR) technique to achieve an atlas with improved spatial resolution. Then guided by a myelin staining histology human brain atlas, we localize and delineate PPN on the atlas with improved resolution. Furthermore, we examine the feasibility of directly identifying the approximate PPN location on the 3.0-T individual QSM MR images. The proposed SR network produces atlas images with four times the higher spatial resolution (from 1 to 0.25 mm isotropic) without a training dataset. The SR process also reduces artifacts and keeps superb image contrast for further delineating small deep brain nuclei, such as PPN. Using the myelin staining histological atlas as guidance, we first identify and annotate the location of PPN on the T1-weighted (T1w)-QSM hybrid MR atlas with improved resolution in the MNI space. Then, we relocate and validate that the optimal targeting site for PPN-DBS is at the middle-to-caudal part of PPN on our atlas. Furthermore, we confirm that the PPN region can be identified in a set of individual QSM images of 10 patients with PD and 10 healthy young adults. The contrast ratios of the PPN to its adjacent structure, namely the medial lemniscus, on images of different modalities indicate that QSM substantially improves the visibility of the PPN both in the atlas and individual images. Our findings indicate that the proposed SR network is an efficient tool for small-size brain nucleus identification. HR QSM is promising for improving the visibility of the PPN. The PPN can be directly identified on the individual QSM images acquired at the 3.0-T MR scanners, facilitating a direct targeting of PPN for DBS surgery.
Collapse
Affiliation(s)
- Jun Li
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Wu
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chenyu He
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Weimin Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiyue Lin
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, California, USA
- Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, California, USA
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
- Ihuman Institute, ShanghaiTech University, Shanghai, China
| |
Collapse
|
43
|
Meng Y, Li CX, Zhang X. Quantitative Evaluation of Oxygen Extraction Fraction Changes in the Monkey Brain during Acute Stroke by Using Quantitative Susceptibility Mapping. Life (Basel) 2023; 13:1008. [PMID: 37109537 PMCID: PMC10146121 DOI: 10.3390/life13041008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND The oxygen extraction fraction (OEF) indicates the brain's oxygen consumption and can be estimated by using the quantitative susceptibility mapping (QSM) MRI technique. Recent studies have suggested that OEF alteration following stroke is associated with the viability of at-risk tissue. In the present study, the temporal evolution of OEF in the monkey brain during acute stroke was investigated using QSM. METHODS Ischemic stroke was induced in adult rhesus monkeys (n = 8) with permanent middle cerebral artery occlusion (pMCAO) by using an interventional approach. Diffusion-, T2-, and T2*-weighted images were conducted on day 0, day 2, and day 4 post-stroke using a clinical 3T scanner. Progressive changes in magnetic susceptibility and OEF, along with their correlations with the transverse relaxation rates and diffusion indices, were examined. RESULTS The magnetic susceptibility and OEF in injured gray matter of the brain significantly increased during the hyperacute phase, and then decreased significantly on day 2 and day 4. Moreover, the temporal changes of OEF in gray matter were moderately correlated with mean diffusivity (MD) (r = 0.52; p = 0.046) from day 0 to day 4. Magnetic susceptibility in white matter progressively increased (from negative values to near zero) during acute stroke, and significant increases were seen on day 2 (p = 0.08) and day 4 (p = 0.003) when white matter was significantly degenerated. However, significant reduction of OEF in white matter was not seen until day 4 post-stroke. CONCLUSION The preliminary results demonstrate that QSM-derived OEF is a robust approach to examine the progressive changes of gray matter in the ischemic brain from the hyperacute phase to the subacute phase of stroke. The changes of OEF in gray matter were more prominent than those in white matter following stroke insult. The findings suggest that QSM-derived OEF may provide complementary information for understanding the neuropathology of the brain tissue following stroke and predicting stroke outcomes.
Collapse
Affiliation(s)
- Yuguang Meng
- EPC Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Chun-Xia Li
- EPC Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Xiaodong Zhang
- EPC Imaging Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| |
Collapse
|
44
|
Li Z, Ying S, Wang J, He H, Shi J. Reconstruction of Quantitative Susceptibility Mapping From Total Field Maps With Local Field Maps Guided UU-Net. IEEE J Biomed Health Inform 2023; 27:2047-2058. [PMID: 37022058 DOI: 10.1109/jbhi.2023.3238714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Quantitative susceptibility mapping (QSM) is an emerging computational technique based on the magnetic resonance imaging (MRI) phase signal, which can provide magnetic susceptibility values of tissues. The existing deep learning-based models mainly reconstruct QSM from local field maps. However, the complicated inconsecutive reconstruction steps not only accumulate errors for inaccurate estimation, but also are inefficient in clinical practice. To this end, a novel local field maps guided UU-Net with Self- and Cross-Guided Transformer (LGUU-SCT-Net) is proposed to reconstruct QSM directly from the total field maps. Specifically, we propose to additionally generate the local field maps as the auxiliary supervision during the training stage. This strategy decomposes the more complicated mapping from total maps to QSM into two relatively easier ones, effectively alleviating the difficulty of direct mapping. Meanwhile, an improved U-Net model, named LGUU-SCT-Net, is further designed to promote the nonlinear mapping ability. The long-range connections are designed between two sequentially stacked U-Nets to bring more feature fusions and facilitate the information flow. The Self- and Cross-Guided Transformer integrated into these connections further captures multi-scale channel-wise correlations and guides the fusion of multi-scale transferred features, assisting in the more accurate reconstruction. The experimental results on an in-vivo dataset demonstrate the superior reconstruction results of our proposed algorithm.
Collapse
|
45
|
Chen Z, Zhai X, Chen Z. Tilted quantitative susceptibility mapping at oblique MRI (tiltQSM). Comput Biol Med 2023; 157:106802. [PMID: 36965324 DOI: 10.1016/j.compbiomed.2023.106802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
OBJECTIVE If the phase image matrix was acquired from oblique MRI, it is needed to deal with the oblique effect for quantitative susceptibility mapping (QSM), as addressed in this paper. METHODS We proposed two methods for QSM reconstruction from slice-tilted MRI phase image (tiltQSM): 1) rotData per anti-tilting phase image rotation back into the B0-upright system, and 2) rotKernel per pro-tilting dipole kernel rotation into the same oblique setting as defined by the tilted phase image. Both matrix methods were implemented in an additional preprocessing subroutine to ensure that the phase image and the dipole kernel were represented in the same coordinate system (either in B0-upright system or in B0-tilted system); thereafter tiltQSM could be completed through a regular QSM procedure. Besides the oblique effect, tiltQSM also suffers from MRI anisotropy. We provided numeric simulations, phantom tests and in vivo brain experiments on tiltQSM with oblique MRI (axial slice tilting at 3T). RESULTS The tiltQSM reconstruction could attain a performance corr > 0.90 (spatial correlation conformance) for small tilting angles <10°. The tiltQSM performance could be further degraded by voxel anisotropy due to image matrix rotation (digital geometry error). CONCLUSIONS To seek inverse solutions of MRI phase images acquired at oblique MRI (e.g. in axial slice tilting), we proposed tiltQSM to deal with the oblique effect per matrix rotation (either rotData or rotKernel) in a preprocessing subroutine prior to a regular QSM procedure. In practice, it is always recommended to acquire MRI phase images in isotropic matrix at zero obliqueness (or limited to small tilting angles <10°) for maximal (optimal) QSM reconstruction.
Collapse
Affiliation(s)
- Zeyuan Chen
- Department of Computer Sciences, University of California-Davis, Davis, CA, USA; Microsoft Corporation, Seattle, WA, USA
| | | | - Zikuan Chen
- Zinv LLC, Albuquerque, NM, USA; Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
46
|
Sandgaard AD, Shemesh N, Kiselev VG, Jespersen SN. Larmor frequency shift from magnetized cylinders with arbitrary orientation distribution. NMR IN BIOMEDICINE 2023; 36:e4859. [PMID: 36285793 PMCID: PMC10078263 DOI: 10.1002/nbm.4859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 06/01/2023]
Abstract
The magnetic susceptibility of tissue can provide valuable information about its chemical composition and microstructural organization. However, the relation between the magnetic microstructure and the measurable Larmor frequency shift is understood only for a few idealized cases. Here we analyze the microstructure formed by magnetized, NMR-invisible infinite cylinders suspended in an NMR-reporting fluid. Through simulations, we scrutinize various geometries of mesoscopic Lorentz cavities and inclusions, and show that the cavity size should be approximately one order of magnitude larger than the width of the inclusions. We also analytically derive the Larmor frequency shift for a population of cylinders with arbitrary orientation dispersion and show that it is determined by the l = 2 Laplace expansion coefficients p 2 m of the cylinders' orientation distribution function. Our work underscores the need to account for microstructural organization when estimating magnetic tissue properties.
Collapse
Affiliation(s)
- Anders Dyhr Sandgaard
- Center for Functionally Integrative Neuroscience, Department of Clinical MedicineAarhus UniversityDenmark
| | - Noam Shemesh
- Champalimaud ResearchChampalimaud Centre for the UnknownLisbonPortugal
| | - Valerij G. Kiselev
- Division of Medical Physics, Department of RadiologyUniversity Medical Center FreiburgFreiburgGermany
| | - Sune Nørhøj Jespersen
- Center for Functionally Integrative Neuroscience, Department of Clinical MedicineAarhus UniversityDenmark
- Department of Physics and AstronomyAarhus UniversityDenmark
| |
Collapse
|
47
|
Lee S, Shin HG, Kim M, Lee J. Depth-wise profiles of iron and myelin in the cortex and white matter using χ-separation: A preliminary study. Neuroimage 2023; 273:120058. [PMID: 36997135 DOI: 10.1016/j.neuroimage.2023.120058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
The in-vivo profiling of iron and myelin across cortical depths and underlying white matter has important implications for advancing knowledge about their roles in brain development and degeneration. Here, we utilize χ-separation, a recently-proposed advanced susceptibility mapping that creates positive (χpos) and negative (χneg) susceptibility maps, to generate the depth-wise profiles of χpos and χneg as surrogate biomarkers for iron and myelin, respectively. Two regional sulcal fundi of precentral and middle frontal areas are profiled and compared with findings from previous studies. The results show that the χpos profiles peak at superificial white matter (SWM), which is an area beneath cortical gray matter known to have the highest accumulation of iron within the cortex and white matter. On the other hand, the χneg profiles increase in SWM toward deeper white matter. These characteristics in the two profiles are in agreement with histological findings of iron and myelin. Furthermore, the χneg profiles report regional differences that agree with well-known distributions of myelin concentration. When the two profiles are compared with those of QSM and R2*, different shapes and peak locations are observed. This preliminary study offers an insight into one of the possible applications of χ-separation for exploring microstructural information of the human brain, as well as clinical applications in monitoring changes of iron and myelin in related diseases.
Collapse
|
48
|
Cognolato F, O'Brien K, Jin J, Robinson S, Laun FB, Barth M, Bollmann S. NeXtQSM-A complete deep learning pipeline for data-consistent Quantitative Susceptibility Mapping trained with hybrid data. Med Image Anal 2023; 84:102700. [PMID: 36529002 DOI: 10.1016/j.media.2022.102700] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/16/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Deep learning based Quantitative Susceptibility Mapping (QSM) has shown great potential in recent years, obtaining similar results to established non-learning approaches. Many current deep learning approaches are not data consistent, require in vivo training data or solve the QSM problem in consecutive steps resulting in the propagation of errors. Here we aim to overcome these limitations and developed a framework to solve the QSM processing steps jointly. We developed a new hybrid training data generation method that enables the end-to-end training for solving background field correction and dipole inversion in a data-consistent fashion using a variational network that combines the QSM model term and a learned regularizer. We demonstrate that NeXtQSM overcomes the limitations of previous deep learning methods. NeXtQSM offers a new deep learning based pipeline for computing quantitative susceptibility maps that integrates each processing step into the training and provides results that are robust and fast.
Collapse
Affiliation(s)
- Francesco Cognolato
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia
| | - Kieran O'Brien
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia; Siemens Healthcare Pty Ltd, Brisbane, Queensland, Australia
| | - Jin Jin
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia; Siemens Healthcare Pty Ltd, Brisbane, Queensland, Australia
| | - Simon Robinson
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia; High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria; Department of Neurology, Medical University of Graz, Graz, Austria; Karl Landsteiner Institute for Clinical Molecular MR in Musculoskeletal Imaging, Vienna, Austria
| | - Frederik B Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Steffen Bollmann
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
49
|
Kames C, Doucette J, Rauscher A. Multi-echo dipole inversion for magnetic susceptibility mapping. Magn Reson Med 2023; 89:2391-2401. [PMID: 36695283 DOI: 10.1002/mrm.29588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/08/2022] [Accepted: 12/31/2022] [Indexed: 01/26/2023]
Abstract
PURPOSE Reconstructing tissue magnetic susceptibility (QSM) from MRI phase data involves solving multiple consecutive ill-posed inverse problems such as phase unwrapping, background field removal, and field-to-source inversion. Multi-echo acquisitions present an additional challenge, as the magnetization field is typically computed from the multiple phase data prior to reconstructing the susceptibility map. Processing the multiple phase data introduces errors during the field estimation, violating assumptions of the subsequent inverse problems, manifesting as streaking artifacts in the susceptibility map. To address this challenge, we propose a multi-echo field-to-source forward model that forgoes the field estimation step. Moreover, we propose a fully general underestimation correction step to recover susceptibility sources that were regularized away during the field-to-source inversion. METHODS The multi-echo forward model and correction step were validated on the QSM Challenge 2.0 datasets and compared to the standard single field-to-source model in in vivo human brains using different types of deconvolution algorithms. RESULTS On the QSM Challenge 2.0 datasets the multi-echo forward model and correction step attain state-of-the-art results on all metrics by a wide margin. Experiments in in vivo brains show that the multi-echo model is in agreement with the single field-to-source model and that the proposed forward model and correction step can be used with any available dipole inversion method. CONCLUSION A multi-echo field-to-source forward model forgoes the need to fit multi-echo phase data and achieves state-of-the-art results on the QSM Challenge 2.0 data. Underestimated low-frequency susceptibility distributions can be partially recovered using a correction step.
Collapse
Affiliation(s)
- Christian Kames
- UBC MRI Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan Doucette
- UBC MRI Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander Rauscher
- UBC MRI Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
50
|
Li K, Rashid T, Li J, Honnorat N, Nirmala AB, Fadaee E, Wang D, Charisis S, Liu H, Franklin C, Maybrier M, Katragadda H, Abazid L, Ganapathy V, Valaparla VL, Badugu P, Vasquez E, Solano L, Clarke G, Maestre G, Richardson T, Walker J, Fox PT, Bieniek K, Seshadri S, Habes M. Postmortem Brain Imaging in Alzheimer's Disease and Related Dementias: The South Texas Alzheimer's Disease Research Center Repository. J Alzheimers Dis 2023; 96:1267-1283. [PMID: 37955086 PMCID: PMC10693476 DOI: 10.3233/jad-230389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Neuroimaging bears the promise of providing new biomarkers that could refine the diagnosis of dementia. Still, obtaining the pathology data required to validate the relationship between neuroimaging markers and neurological changes is challenging. Existing data repositories are focused on a single pathology, are too small, or do not precisely match neuroimaging and pathology findings. OBJECTIVE The new data repository introduced in this work, the South Texas Alzheimer's Disease research center repository, was designed to address these limitations. Our repository covers a broad diversity of dementias, spans a wide age range, and was specifically designed to draw exact correspondences between neuroimaging and pathology data. METHODS Using four different MRI sequences, we are reaching a sample size that allows for validating multimodal neuroimaging biomarkers and studying comorbid conditions. Our imaging protocol was designed to capture markers of cerebrovascular disease and related lesions. Quantification of these lesions is currently underway with MRI-guided histopathological examination. RESULTS A total of 139 postmortem brains (70 females) with mean age of 77.9 years were collected, with 71 brains fully analyzed. Of these, only 3% showed evidence of AD-only pathology and 76% had high prevalence of multiple pathologies contributing to clinical diagnosis. CONCLUSION This repository has a significant (and increasing) sample size consisting of a wide range of neurodegenerative disorders and employs advanced imaging protocols and MRI-guided histopathological analysis to help disentangle the effects of comorbid disorders to refine diagnosis, prognosis and better understand neurodegenerative disorders.
Collapse
Affiliation(s)
- Karl Li
- Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Tanweer Rashid
- Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jinqi Li
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nicolas Honnorat
- Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Anoop Benet Nirmala
- Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Elyas Fadaee
- Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Di Wang
- Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sokratis Charisis
- Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hangfan Liu
- Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Crystal Franklin
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mallory Maybrier
- Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Haritha Katragadda
- Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Leen Abazid
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Vinutha Ganapathy
- Department of Neurology, University of Texas Health Science Center, San Antonio, TX, USA
| | | | - Pradeepthi Badugu
- Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Eliana Vasquez
- Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Leigh Solano
- Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Geoffrey Clarke
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Gladys Maestre
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, Harlingen, TX, USA
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Tim Richardson
- Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jamie Walker
- Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter T. Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kevin Bieniek
- Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Pathology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mohamad Habes
- Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|