1
|
Bozovic G, Schaefer-Prokop CM, Bankier AA. Pulmonary functional imaging (PFI): A historical review and perspective. Acta Radiol 2022; 64:90-100. [PMID: 35118881 DOI: 10.1177/02841851221076324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PFI Pulmonary Functional Imaging (PFI) refers to visualization and measurement of ventilation, perfusion, gas flow and exchange as well as biomechanics. In this review, we will highlight the historical development of PFI, describing recent advances and listing the various techniques for PFI offered per modality. Challenges PFI is facing and requirements for PFI from a clinical point of view will be pointed out. Hereby the review is meant as an introduction to PFI.
Collapse
Affiliation(s)
- Gracijela Bozovic
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Cornelia M Schaefer-Prokop
- Department of Radiology, Meander Medical Centre, TZ Amersfoort, The Netherlands
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander A Bankier
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
2
|
Tanaka Y, Ohno Y, Hanamatsu S, Obama Y, Ueda T, Ikeda H, Iwase A, Fukuba T, Hattori H, Murayama K, Yoshikawa T, Takenaka D, Koyama H, Toyama H. State-of-the-art MR Imaging for Thoracic Diseases. Magn Reson Med Sci 2021; 21:212-234. [PMID: 33952785 PMCID: PMC9199970 DOI: 10.2463/mrms.rev.2020-0184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Since thoracic MR imaging was first used in a clinical setting, it has been suggested that MR imaging has limited clinical utility for thoracic diseases, especially lung diseases, in comparison with x-ray CT and positron emission tomography (PET)/CT. However, in many countries and states and for specific indications, MR imaging has recently become practicable. In addition, recently developed pulmonary MR imaging with ultra-short TE (UTE) and zero TE (ZTE) has enhanced the utility of MR imaging for thoracic diseases in routine clinical practice. Furthermore, MR imaging has been introduced as being capable of assessing pulmonary function. It should be borne in mind, however, that these applications have so far been academically and clinically used only for healthy volunteers, but not for patients with various pulmonary diseases in Japan or other countries. In 2020, the Fleischner Society published a new report, which provides consensus expert opinions regarding appropriate clinical indications of pulmonary MR imaging for not only oncologic but also pulmonary diseases. This review article presents a brief history of MR imaging for thoracic diseases regarding its technical aspects and major clinical indications in Japan 1) in terms of what is currently available, 2) promising but requiring further validation or evaluation, and 3) developments warranting research investigations in preclinical or patient studies. State-of-the-art MR imaging can non-invasively visualize lung structural and functional abnormalities without ionizing radiation and thus provide an alternative to CT. MR imaging is considered as a tool for providing unique information. Moreover, prospective, randomized, and multi-center trials should be conducted to directly compare MR imaging with conventional methods to determine whether the former has equal or superior clinical relevance. The results of these trials together with continued improvements are expected to update or modify recommendations for the use of MRI in near future.
Collapse
Affiliation(s)
- Yumi Tanaka
- Department of Radiology, Fujita Health University School of Medicine
| | - Yoshiharu Ohno
- Department of Radiology, Fujita Health University School of Medicine.,Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine
| | - Satomu Hanamatsu
- Department of Radiology, Fujita Health University School of Medicine
| | - Yuki Obama
- Department of Radiology, Fujita Health University School of Medicine
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University School of Medicine
| | - Hirotaka Ikeda
- Department of Radiology, Fujita Health University School of Medicine
| | - Akiyoshi Iwase
- Department of Radiology, Fujita Health University Hospital
| | - Takashi Fukuba
- Department of Radiology, Fujita Health University Hospital
| | - Hidekazu Hattori
- Department of Radiology, Fujita Health University School of Medicine
| | - Kazuhiro Murayama
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine
| | | | | | | | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine
| |
Collapse
|
3
|
Ohno Y, Seo JB, Parraga G, Lee KS, Gefter WB, Fain SB, Schiebler ML, Hatabu H. Pulmonary Functional Imaging: Part 1-State-of-the-Art Technical and Physiologic Underpinnings. Radiology 2021; 299:508-523. [PMID: 33825513 DOI: 10.1148/radiol.2021203711] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past few decades, pulmonary imaging technologies have advanced from chest radiography and nuclear medicine methods to high-spatial-resolution or low-dose chest CT and MRI. It is currently possible to identify and measure pulmonary pathologic changes before these are obvious even to patients or depicted on conventional morphologic images. Here, key technological advances are described, including multiparametric CT image processing methods, inhaled hyperpolarized and fluorinated gas MRI, and four-dimensional free-breathing CT and MRI methods to measure regional ventilation, perfusion, gas exchange, and biomechanics. The basic anatomic and physiologic underpinnings of these pulmonary functional imaging techniques are explained. In addition, advances in image analysis and computational and artificial intelligence (machine learning) methods pertinent to functional lung imaging are discussed. The clinical applications of pulmonary functional imaging, including both the opportunities and challenges for clinical translation and deployment, will be discussed in part 2 of this review. Given the technical advances in these sophisticated imaging methods and the wealth of information they can provide, it is anticipated that pulmonary functional imaging will be increasingly used in the care of patients with lung disease. © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- From the Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan (Y.O.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Medicine, Robarts Research Institute, and Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Departments of Medical Physics and Radiology (S.B.F., M.L.S.), UW-Madison School of Medicine and Public Health, Madison, Wis; and Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| | - Joon Beom Seo
- From the Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan (Y.O.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Medicine, Robarts Research Institute, and Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Departments of Medical Physics and Radiology (S.B.F., M.L.S.), UW-Madison School of Medicine and Public Health, Madison, Wis; and Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| | - Grace Parraga
- From the Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan (Y.O.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Medicine, Robarts Research Institute, and Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Departments of Medical Physics and Radiology (S.B.F., M.L.S.), UW-Madison School of Medicine and Public Health, Madison, Wis; and Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| | - Kyung Soo Lee
- From the Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan (Y.O.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Medicine, Robarts Research Institute, and Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Departments of Medical Physics and Radiology (S.B.F., M.L.S.), UW-Madison School of Medicine and Public Health, Madison, Wis; and Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| | - Warren B Gefter
- From the Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan (Y.O.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Medicine, Robarts Research Institute, and Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Departments of Medical Physics and Radiology (S.B.F., M.L.S.), UW-Madison School of Medicine and Public Health, Madison, Wis; and Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| | - Sean B Fain
- From the Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan (Y.O.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Medicine, Robarts Research Institute, and Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Departments of Medical Physics and Radiology (S.B.F., M.L.S.), UW-Madison School of Medicine and Public Health, Madison, Wis; and Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| | - Mark L Schiebler
- From the Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan (Y.O.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Medicine, Robarts Research Institute, and Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Departments of Medical Physics and Radiology (S.B.F., M.L.S.), UW-Madison School of Medicine and Public Health, Madison, Wis; and Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| | - Hiroto Hatabu
- From the Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan (Y.O.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Medicine, Robarts Research Institute, and Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Departments of Medical Physics and Radiology (S.B.F., M.L.S.), UW-Madison School of Medicine and Public Health, Madison, Wis; and Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| |
Collapse
|
4
|
Ohno Y, Hanamatsu S, Obama Y, Ueda T, Ikeda H, Hattori H, Murayama K, Toyama H. Overview of MRI for pulmonary functional imaging. Br J Radiol 2021; 95:20201053. [PMID: 33529053 DOI: 10.1259/bjr.20201053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Morphological evaluation of the lung is important in the clinical evaluation of pulmonary diseases. However, the disease process, especially in its early phases, may primarily result in changes in pulmonary function without changing the pulmonary structure. In such cases, the traditional imaging approaches to pulmonary morphology may not provide sufficient insight into the underlying pathophysiology. Pulmonary imaging community has therefore tried to assess pulmonary diseases and functions utilizing not only nuclear medicine, but also CT and MR imaging with various technical approaches. In this review, we overview state-of-the art MR methods and the future direction of: (1) ventilation imaging, (2) perfusion imaging and (3) biomechanical evaluation for pulmonary functional imaging.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan.,Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan
| | - Satomu Hanamatsu
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Yuki Obama
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Hirotaka Ikeda
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Hidekazu Hattori
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Kazuhiro Murayama
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University, School of Medicine, Toyoake, Japan
| |
Collapse
|
5
|
Tsuchiya N, Beek EJRV, Ohno Y, Hatabu H, Kauczor HU, Swift A, Vogel-Claussen J, Biederer J, Wild J, Wielpütz MO, Schiebler ML. Magnetic resonance angiography for the primary diagnosis of pulmonary embolism: A review from the international workshop for pulmonary functional imaging. World J Radiol 2018; 10:52-64. [PMID: 29988845 PMCID: PMC6033703 DOI: 10.4329/wjr.v10.i6.52] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/25/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023] Open
Abstract
Pulmonary contrast enhanced magnetic resonance angiography (CE-MRA) is useful for the primary diagnosis of pulmonary embolism (PE). Many sites have chosen not to use CE-MRA as a first line of diagnostic tool for PE because of the speed and higher efficacy of computerized tomographic angiography (CTA). In this review, we discuss the strengths and weaknesses of CE-MRA and the appropriate imaging scenarios for the primary diagnosis of PE derived from our unique multi-institutional experience in this area. The optimal patient for this test has a low to intermediate suspicion for PE based on clinical decision rules. Patients in extremis are not candidates for this test. Younger women (< 35 years of age) and patients with iodinated contrast allergies are best served by using this modality We discuss the history of the use of this test, recent technical innovations, artifacts, direct and indirect findings for PE, ancillary findings, and the effectiveness (patient outcomes) of CE-MRA for the exclusion of PE. Current outcomes data shows that CE-MRA and NM V/Q scans are effective alternative tests to CTA for the primary diagnosis of PE.
Collapse
Affiliation(s)
- Nanae Tsuchiya
- Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Okinawa 903-0215, Japan
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, United States
| | - Edwin JR van Beek
- Edinburgh Imaging, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Yoshiharu Ohno
- Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hiroto Hatabu
- Department of Radiology, Brigham and Women’s Hospital, Boston, MA 02115, United States
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg 69120, Germany
| | - Andrew Swift
- Department of Radiology, Royal Hallamshire Hospital, University of Sheffield, Sheffield S10 2JF, United Kingdom
| | - Jens Vogel-Claussen
- Department of Radiology, Carl-Neuberg Strasse 1, Hannover-Gr-Buchholz 30625, Germany
| | - Jürgen Biederer
- Radiology Darmstadt, Gross-Gerau County Hospital, Gross-Gerau 64521, Germany
| | - James Wild
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2JF, United Kingdom
| | - Mark O Wielpütz
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg 69120, Germany
| | - Mark L Schiebler
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, United States
| |
Collapse
|
6
|
Ohno Y, Koyama H, Lee HY, Miura S, Yoshikawa T, Sugimura K. Contrast-enhanced CT- and MRI-based perfusion assessment for pulmonary diseases: basics and clinical applications. Diagn Interv Radiol 2017; 22:407-21. [PMID: 27523813 DOI: 10.5152/dir.2016.16123] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Assessment of regional pulmonary perfusion as well as nodule and tumor perfusions in various pulmonary diseases are currently performed by means of nuclear medicine studies requiring radioactive macroaggregates, dual-energy computed tomography (CT), and dynamic first-pass contrast-enhanced perfusion CT techniques and unenhanced and dynamic first-pass contrast enhanced perfusion magnetic resonance imaging (MRI), as well as time-resolved three-dimensional or four-dimensional contrast-enhanced magnetic resonance angiography (MRA). Perfusion scintigraphy, single-photon emission tomography (SPECT) and SPECT fused with CT have been established as clinically available scintigraphic methods; however, they are limited by perfusion information with poor spatial resolution and other shortcomings. Although positron emission tomography with 15O water can measure absolute pulmonary perfusion, it requires a cyclotron for generation of a tracer with an extremely short half-life (2 min), and can only be performed for academic purposes. Therefore, clinicians are concentrating their efforts on the application of CT-based and MRI-based quantitative and qualitative perfusion assessment to various pulmonary diseases. This review article covers 1) the basics of dual-energy CT and dynamic first-pass contrast-enhanced perfusion CT techniques, 2) the basics of time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI, and 3) clinical applications of contrast-enhanced CT- and MRI-based perfusion assessment for patients with pulmonary nodule, lung cancer, and pulmonary vascular diseases. We believe that these new techniques can be useful in routine clinical practice for not only thoracic oncology patients, but also patients with different pulmonary vascular diseases.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- Division of Functional and Diagnostic Imaging Research, Department of Radiology and Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Unenhanced and Contrast-Enhanced MR Angiography and Perfusion Imaging for Suspected Pulmonary Thromboembolism. AJR Am J Roentgenol 2017; 208:517-530. [PMID: 28075625 DOI: 10.2214/ajr.16.17415] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE This article discusses the basics of unenhanced MR angiography (MRA) and MR venography (MRV), time-resolved contrast-enhanced (CE) MRA and dynamic first-pass CE perfusion MRI, and unenhanced and CE MRV, in addition to assessing the clinical relevance of these techniques for evaluating patients with suspected pulmonary thromboembolism and deep venous thrombosis. CONCLUSION Since the 1990s, the efficacy of MRA or MRV and dynamic perfusion MRI for patients with suspected pulmonary thromboembolism and deep venous thrombosis has been evaluated. On the basis of the results of single-center trials, comprehensive MRI protocols, including pulmonary unenhanced and CE MRA, perfusion MRI, and MRV, promise to be safe and time effective for assessing patients with suspected pulmonary thromboembolism, although future multicenter trials are required to assess the real clinical value of MRI.
Collapse
|
8
|
Krishnamurthy R, Bahouth SM, Muthupillai R. 4D Contrast-enhanced MR Angiography with the Keyhole Technique in Children: Technique and Clinical Applications. Radiographics 2016; 36:523-37. [DOI: 10.1148/rg.2016150106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Journal Club: Comparison of assessment of preoperative pulmonary vasculature in patients with non-small cell lung cancer by non-contrast- and 4D contrast-enhanced 3-T MR angiography and contrast-enhanced 64-MDCT. AJR Am J Roentgenol 2014; 202:493-506. [PMID: 24555585 DOI: 10.2214/ajr.13.10833] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The purpose of this article is to prospectively and directly compare the capabilities of non-contrast-enhanced MR angiography (MRA), 4D contrast-enhanced MRA, and contrast-enhanced MDCT for assessing pulmonary vasculature in patients with non-small cell lung cancer (NSCLC) before surgical treatment. SUBJECTS AND METHODS A total of 77 consecutive patients (41 men and 36 women; mean age, 71 years) with pathologically proven and clinically assessed stage I NSCLC underwent thin-section contrast-enhanced MDCT, non-contrast-enhanced and contrast-enhanced MRA, and surgical treatment. The capability for anomaly assessment of the three methods was independently evaluated by two reviewers using a 5-point visual scoring system, and final assessment for each patient was made by consensus of the two readers. Interobserver agreement for pulmonary arterial and venous assessment was evaluated with the kappa statistic. Then, sensitivity, specificity, and accuracy for the detection of anomalies were directly compared among the three methods by use of the McNemar test. RESULTS Interobserver agreement for pulmonary artery and vein assessment was substantial or almost perfect (κ=0.72-0.86). For pulmonary arterial and venous variation assessment, there were no significant differences in sensitivity, specificity, and accuracy among non-contrast-enhanced MRA (pulmonary arteries: sensitivity, 77.1%; specificity, 97.4%; accuracy, 87.7%; pulmonary veins: sensitivity, 50%; specificity, 98.5%; accuracy, 93.2%), 4D contrast-enhanced MRA (pulmonary arteries: sensitivity, 77.1%; specificity, 97.4%; accuracy, 87.7%; pulmonary veins: sensitivity, 62.5%; specificity, 100.0%; accuracy, 95.9%), and thin-section contrast-enhanced MDCT (pulmonary arteries: sensitivity, 91.4%; specificity, 89.5%; accuracy, 90.4%; pulmonary veins: sensitivity, 50%; specificity, 100.0%; accuracy, 95.9%) (p>0.05). CONCLUSION Pulmonary vascular assessment of patients with NSCLC before surgical resection by non-contrast-enhanced MRA can be considered equivalent to that by 4D contrast-enhanced MRA and contrast-enhanced MDCT.
Collapse
|
10
|
Abstract
Pulmonary embolism represents a major public healthcare problem and it also imposes frequent clinical diagnostic issues. Despite the availability of the D-dimer tests, imaging remains the mainstay for its diagnosis. Computed tomography pulmonary angiography (CTPA) is now the most widely used diagnostic test and its utility has been well validated in a large number of trials. Nuclear medicine techniques, which are also well established, are now used significantly less frequently. Magnetic resonance pulmonary angiography is developing as an alternative to CTPA in patients who have contraindications to iodinated contrast media. Catheter pulmonary angiography remains the gold standard, although it is being used increasingly less frequently. In this article, we review the current knowledge on the imaging diagnosis of acute pulmonary embolism with special emphasis on the noninvasive techniques.
Collapse
Affiliation(s)
- Ugur Bozlar
- University of Virginia Health System, Department of Radiology, Charlottesville, VA 22908, USA.
| | | | | | | |
Collapse
|
11
|
Dynamic contrast-enhanced magnetic resonance angiography of the thoracic vessels: an intraindividual comparison of different k-space acquisition strategies. Invest Radiol 2011; 45:708-14. [PMID: 20548241 DOI: 10.1097/rli.0b013e3181e5bbb0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The combination of parallel acquisition (generalized autocalibrating partially parallel acquisitions) and time-resolved three-dimensional (3D) view-sharing techniques is a promising tool for dynamic contrast-enhanced 3D-magnetic resonance angiography (MRA). We evaluated the influence of different k-space acquisition strategies on image quality for a recently developed time-resolved echo-shared angiographic technique during a contrast-enhanced 3D-MRA of the thoracic vessels. MATERIALS AND METHODS In 20 patients (16 men, 4 women; range, 28-75 years), 2 dynamic MRA protocols with different k-space acquisition strategies were performed on a 1.5-T whole-body scanner (MAGNETOM Avanto, Siemens AG, Erlangen, Germany) during injection of 5 mL (flow-rate, 3 mL/s) gadobutrol. For protocol 1, the central-region which was updated with every cycle included 20% of the entire k-space (protocol 2: 10%), the peripheral-region was undersampled by a factor of 10 (protocol 2: 5%). Image quality and details were compared visually. Signal-to-noise ratio and sharpness of vessel borders were estimated. RESULTS Morphologic and functional assessment of the pulmonary arteries and the aorta was significantly improved for protocol 1. The sharpness of vessel borders (3.3 mm vs. 4.1 mm; P = 0.001), image quality, and the visibility of image details were significantly improved for protocol 1 compared with protocol 2. CONCLUSION The size of the central region that is updated for every frame seems to be more crucial for image quality of echo-shared angiographic techniques than the sampling density in the periphery of the k-space.
Collapse
|
12
|
Okajima Y, Ohno Y, Washko GR, Hatabu H. Assessment of pulmonary hypertension what CT and MRI can provide. Acad Radiol 2011; 18:437-53. [PMID: 21377593 DOI: 10.1016/j.acra.2011.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/06/2011] [Accepted: 01/12/2011] [Indexed: 01/06/2023]
Abstract
RATIONALES AND OBJECTIVES Pulmonary hypertension (PH) is a life-threatening condition, characterized by elevated pulmonary arterial pressure, which is confirmed based on invasive right heart catheterization (RHC). Noninvasive examinations may support diagnosis of PH before proceeding to RHC and play an important role in management and treatment of the disease. Although echocardiography is considered a standard tool in diagnosis, recent advances have made computed tomography (CT) and magnetic resonance (MR) imaging promising tools, which may provide morphologic and functional information. In this article, we review image-based assessment of PH with a focus on CT and MR imaging. CONCLUSIONS CT may provide useful morphologic information for depicting PH and seeking for underlying diseases. With the accumulated technological advancement, CT and MRI may provide practical tools for not only morphologic but also functional assessment of patients with PH.
Collapse
Affiliation(s)
- Yuka Okajima
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
13
|
Muthupillai R, Douglas E, Huber S, Lambert B, Pereyra M, Wilson GJ, Flamm SD. Direct comparison of sensitivity encoding (SENSE) accelerated and conventional 3D contrast enhanced magnetic resonance angiography (CE-MRA) of renal arteries: effect of increasing spatial resolution. J Magn Reson Imaging 2010; 31:149-59. [PMID: 20027583 DOI: 10.1002/jmri.22002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To assess the effect of attaining higher spatial resolution in contrast-enhanced magnetic resonance angiography (MRA) of renal arteries using parallel imaging, sensitivity encoding (SENSE), by comparing the SENSE contrast-enhanced (CE) MRA against a conventional CE-MRA protocol with identical scan times, injection protocol, and other acquisition parameters. MATERIALS AND METHODS Numerical simulations and a direct comparison of SENSE-accelerated versus conventional acquisitions were performed. A total of 41 patients (18 male) were imaged using both protocols for a direct comparison. Both protocols used fluoroscopic triggering, centric encoding, breath-holding, equivalent injection protocol, and lasted approximately 30 seconds. RESULTS Simulated point-spread functions were narrower for the SENSE protocol compared to the conventional protocol. In the patient study, although the SENSE protocol produced images with lower signal-to-noise ratio (SNR), image quality was better for all segments of the renal arteries. In addition, ringing of kidney parenchyma and renal artery blurring were significantly reduced in the SENSE protocol. Finally, reader confidence improved with the SENSE protocol. CONCLUSION Despite a reduction in SNR, the higher-resolution SENSE CE-MRA provided improved image quality, reduced artifacts, and increased reader confidence compared to the conventional protocol.
Collapse
Affiliation(s)
- R Muthupillai
- Department of Radiology, St. Luke's Episcopal Hospital, Houston, Texas, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Time-resolved 3D pulmonary perfusion MRI: comparison of different k-space acquisition strategies at 1.5 and 3 T. Invest Radiol 2009; 44:525-31. [PMID: 19652608 DOI: 10.1097/rli.0b013e3181b4c252] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Time-resolved pulmonary perfusion MRI requires both high temporal and spatial resolution, which can be achieved by using several nonconventional k-space acquisition techniques. The aim of this study is to compare the image quality of time-resolved 3D pulmonary perfusion MRI with different k-space acquisition techniques in healthy volunteers at 1.5 and 3 T. METHODS Ten healthy volunteers underwent contrast-enhanced time-resolved 3D pulmonary MRI on 1.5 and 3 T using the following k-space acquisition techniques: (a) generalized autocalibrating partial parallel acquisition (GRAPPA) with an internal acquisition of reference lines (IRS), (b) GRAPPA with a single "external" acquisition of reference lines (ERS) before the measurement, and (c) a combination of GRAPPA with an internal acquisition of reference lines and view sharing (VS). The spatial resolution was kept constant at both field strengths to exclusively evaluate the influences of the temporal resolution achieved with the different k-space sampling techniques on image quality. The temporal resolutions were 2.11 seconds IRS, 1.31 seconds ERS, and 1.07 VS at 1.5 T and 2.04 seconds IRS, 1.30 seconds ERS, and 1.19 seconds VS at 3 T.Image quality was rated by 2 independent radiologists with regard to signal intensity, perfusion homogeneity, artifacts (eg, wrap around, noise), and visualization of pulmonary vessels using a 3 point scale (1 = nondiagnostic, 2 = moderate, 3 = good). Furthermore, the signal-to-noise ratio in the lungs was assessed. RESULTS At 1.5 T the lowest image quality (sum score: 154) was observed for the ERS technique and the highest quality for the VS technique (sum score: 201). In contrast, at 3 T images acquired with VS were hampered by strong artifacts and image quality was rated significantly inferior (sum score: 137) compared with IRS (sum score: 180) and ERS (sum score: 174). Comparing 1.5 and 3 T, in particular the overall rating of the IRS technique (sum score: 180) was very similar at both field strengths. At 1.5 T the peak signal-to-noise ratio of the ERS was significantly lower in comparison to the IRS and the VS technique (14.6 vs. 26.7 and 39.6 respectively, P < 0.004). CONCLUSION Using the IRS sampling algorithm comparable image quality and SNR can be achieved at 1.5 and 3 T. At 1.5 T VS offers the best possible solution for the conflicting requirements between a further increased temporal resolution and image quality. In consequence the gain of increased scanning efficiency from advanced k[r]-space sampling acquisition techniques can be exploited for a further improvement of image quality of pulmonary perfusion MRI.
Collapse
|
15
|
Affiliation(s)
- Hong Lei Zhang
- Department of Radiology, Weill Cornell Medical Center, New York, NY 10022, USA
| | | | | | | |
Collapse
|
16
|
Griffin M, Grist TM, François CJ. Dynamic Four-Dimensional MR Angiography of the Chest and Abdomen. Magn Reson Imaging Clin N Am 2009; 17:77-90. [DOI: 10.1016/j.mric.2008.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Frydrychowicz A, Bley TA, Zadeh ZA, Harloff A, Winterer JT, Hennig J, Langer M, Markl M. Image analysis in time-resolved large field of view 3D MR-angiography at 3T. J Magn Reson Imaging 2008; 28:1116-24. [DOI: 10.1002/jmri.21554] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
18
|
Prospective comparison of high- and low-spatial-resolution dynamic MR imaging with sensitivity encoding (SENSE) for hypervascular hepatocellular carcinoma. Eur Radiol 2008; 18:2206-12. [DOI: 10.1007/s00330-008-1003-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 03/15/2008] [Accepted: 03/22/2008] [Indexed: 11/26/2022]
|
19
|
Buerke B, Allkemper T, Kugel H, Bremer C, Evers S, Kooijman H, Heindel W, Tombach B. Qualitative and quantitative analysis of routinely postprocessed (CLEAR) CE-MRA data sets: are SNR and CNR calculations reliable? Acad Radiol 2008; 15:1111-7. [PMID: 18692751 DOI: 10.1016/j.acra.2008.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 01/28/2008] [Accepted: 04/07/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE AND OBJECTIVES To evaluate objective image quality parameters for contrast-enhanced magnetic resonance angiography (CE-MRA), contrast-to-noise (CNR), and signal-to-noise ratio (SNR) calculations based on signal intensity (SI) and standard deviation (SD) measurements of the vessel, the surrounding tissue (eg, muscle), and the background noise outside the body are commonly used. However, modern magnetic resonance scanners often use dedicated software algorithms such as Constant LEvel AppeaRance (CLEAR) to improve image quality, which may affect the established methods of SNR and CNR calculation. The purpose of this study was to intraindividually evaluate the feasibility of conventional techniques used for SNR and CNR calculation of MRA data sets that have been reconstructed with both, a standard (non-CLEAR) and a CLEAR algorithm. METHODS Supra-aortic high-resolution CE-MRA of 11 patients with headache symptoms was performed at 1.5 T using reconstruction algorithms generating both, non-CLEAR and CLEAR-corrected images from the acquired data set. A qualitative analysis with regard to image quality and contrast level was performed by two radiologists applying a score system. For quantitative analysis, distribution of SI values was measured in regions of interest in the common carotid artery (CCA) and the C1 segment of the internal carotid artery in identical positions of both data sets for intraindividual comparison of SNR and CNR calculations. For that purpose, three different equations were used for background noise assessment by determining the SD of SIs measured in the air outside the body (Eq. A), the soft tissue adjacent to the analyzed vessel segment (Eq. B), and in a contrast-medium filled tube (reference standard), which was placed around the patient's neck (Eq. C). RESULTS The qualitative analysis documented an improved image quality and a higher contrast level for CLEAR-based data sets. SNR and CNR calculations of the CCA and the C1 segment were significantly different for both reconstruction algorithms when using the background noise outside the body for image noise assessment (P<.05 [CCA]; P<.05 [C1]). SNR and CNR calculations based on the soft tissue adjacent to the analyzed segment or a reference standard were comparable. CONCLUSIONS For comparative analysis of CE-MRA data sets, SNR and CNR calculations based on SD determination of the background noise signal measured outside the body are not applicable for CE-MRA data sets reconstructed with a CLEAR-based algorithm. Therefore, noise should rather be assessed in the perivascular tissue to enable proper comparative analysis of CLEAR-enhanced CE-MRA data sets.
Collapse
|
20
|
Quantitatively Assessed Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Patients With Chronic Obstructive Pulmonary Disease: Correlation of Perfusion Parameters With Pulmonary Function Test and Quantitative Computed Tomography. Invest Radiol 2008; 43:403-10. [DOI: 10.1097/rli.0b013e31816901ab] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Krishnam MS, Tomasian A, Lohan DG, Tran L, Finn JP, Ruehm SG. Low-dose, time-resolved, contrast-enhanced 3D MR angiography in cardiac and vascular diseases: correlation to high spatial resolution 3D contrast-enhanced MRA. Clin Radiol 2008; 63:744-55. [PMID: 18555032 DOI: 10.1016/j.crad.2008.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 12/22/2007] [Accepted: 01/03/2008] [Indexed: 11/20/2022]
Abstract
AIM To evaluate the effectiveness of low-dose, contrast-enhanced, time-resolved, three-dimensional (3D) magnetic resonance (MR) angiography (TR-MRA) in the assessment of various cardiac and vascular diseases, and to compare the results with high-resolution contrast-enhanced MRA (CE-MRA). MATERIALS AND METHODS Thirty consecutive patients underwent contrast-enhanced 3D TR-MRA and high spatial resolution 3D CE-MRA for evaluation of cardiac and thoracic vascular diseases at 1.5 T, and neurovascular, abdominal and peripheral vascular diseases at 3T. Gadolinium-based contrast medium was administered at a constant dose of 5 ml for TR-MRA, and 20 ml (lower extremity 30 ml) for CE-MRA. Two readers evaluated image quality using a four-point scale (from 0=excellent to 3=non-diagnostic), artefacts and findings on both datasets. Interobserver variability was tested with kappa coefficient. RESULTS The overall image quality for TR-MRA was in the diagnostic range (median 0, range 0-1; k=0.74). Readers demonstrated important additional dynamic information on TR-MRA in 28 of 30 patients (k=0.84). Confident evaluation of organ perfusion (n=23), arteriovenous malformation/fistula flow patterns (n=7), exclusion of intra-cardiac shunts (n=6), and assessment of stent and conduit patency (n=5) were performed by both readers using TR-MRA. Readers demonstrated fine vascular details with higher confidence in 10 patients on CE-MRA. Using CE-MRA, Reader 1 and 2 depicted anatomical details in 6 and 5 patients, respectively, only on CE-MRA. CONCLUSION Low-dose TR-MRA yields rapid and important functional and anatomical information in patients with cardiac and vascular diseases. Due to limited spatial resolution, TR-MRA is inferior to CE-MRA in demonstrating fine vascular details.
Collapse
Affiliation(s)
- M S Krishnam
- Department of Radiological Sciences, University of California at Los Angeles, Los Angeles, CA 90095-7206, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Riederer SJ, Hu HH, Kruger DG, Haider CR, Campeau NG, Huston J. Intrinsic signal amplification in the application of 2D SENSE parallel imaging to 3D contrast-enhanced elliptical centric MRA and MRV. Magn Reson Med 2008; 58:855-64. [PMID: 17969124 DOI: 10.1002/mrm.21282] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The relative signal-to-noise ratio (SNR) provided by 2D sensitivity encoding (SENSE) when applied to 3D contrast-enhanced MR angiography (CE-MRA) is studied. If an elliptical centric phase-encoding order is used to map the waning magnetization of the contrast bolus to k-space, the application of SENSE will reduce the degree of k-space signal modulation, providing a signal amplification A over corresponding nonaccelerated acquisitions. This offsets the SNR loss in R-accelerated SENSE due to suquare root R and the geometry (g) factor. The theoretical bound on A is R and is reduced from this depending on the properties of the bolus profile and the duration over which it is imaged. In this work a signal amplification of 1.14-1.23 times that of nonvascular background tissue is demonstrated in a study of 20 volunteers using R = 4 2D SENSE whole-brain MR venography (MRV). The effects of a nonuniform g-factor and inhomogeneity of background tissue are accounted for. The observed amplification compares favorably with the value of 1.31 predicted numerically from a measured bolus curve.
Collapse
|
23
|
Goo HW, Yang DH, Park IS, Ko JK, Kim YH, Seo DM, Yun TJ, Park JJ. Time-resolved three-dimensional contrast-enhanced magnetic resonance angiography in patients who have undergone a Fontan operation or bidirectional cavopulmonary connection: initial experience. J Magn Reson Imaging 2007; 25:727-36. [PMID: 17335039 DOI: 10.1002/jmri.20870] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To evaluate the usefulness of time-resolved three-dimensional (3D) magnetic resonance angiography (MRA) using diluted contrast agent (CA) in patients who had undergone a Fontan operation or bidirectional cavopulmonary connection (BCPC). MATERIALS AND METHODS Time-resolved 3D MRA (10 dynamic data sets, two seconds per dynamic data set) using parallel imaging and keyhole data sampling was performed on 15 patients (median age=10 years, range=1-20 years) who had undergone a Fontan operation (N=11) or BCPC (N=4). Diluted gadolinium (Gd) contrast agent (CA) was intravenously injected into the arm and/or leg veins. The flow dynamics and morphology of pulmonary circulation, and lung perfusion were assessed. RESULTS Preferential or balanced pulmonary blood flow from each systemic vein was visualized on time-resolved 3D MRA in all patients. In addition, occlusion/stenosis of the central thoracic vein (N=4) and pulmonary artery (N=6), systemic venous (N=5) and arterial (N=6) collaterals, and lung perfusion defect (N=4) were identified. Persistent hepatic venous plexus, pulmonary arteriovenous malformation, and axillary arteriovenous fistula were delineated in three patients, respectively. CONCLUSION Time-resolved 3D MRA with diluted CA is useful for evaluating patients who have undergone a Fontan operation or BCPC because it can reveal the flow dynamics and morphology of pulmonary circulation, and lung perfusion status.
Collapse
Affiliation(s)
- Hyun Woo Goo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ohno Y, Murase K, Higashino T, Nogami M, Koyama H, Takenaka D, Kawamitu H, Matsumoto S, Hatabu H, Sugimura K. Assessment of bolus injection protocol with appropriate concentration for quantitative assessment of pulmonary perfusion by dynamic contrast-enhanced MR imaging. J Magn Reson Imaging 2007; 25:55-65. [PMID: 17152051 DOI: 10.1002/jmri.20790] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To determine the appropriate concentration for quantitative assessment of dynamic contrast-enhanced pulmonary MR imaging. MATERIALS AND METHODS A total of 40 consecutive patients with small bronchioalveolar carcinoma underwent perfusion single-photon emission tomography (SPECT) and three-dimensional (3D) dynamic MR imaging with a 3D radiofrequency spoiled gradient-echo sequence. In each patient, 5 mL of contrast media with 0.1, 0.3, and 0.5 mmol/mL were administered at a rate of 5 mL/second. All patients were divided into two groups (<70 kg and > or =70 kg) for assessment of appropriate concentration to quantitatively assess regional perfusion parameter in routine clinical practice. Pulmonary blood flow (PBF) in each protocol was calculated from a signal intensity (SI)-time course curve. Differences and limits of agreement of PBF between dynamic MR imaging (PBF(MR)) using three different concentrations and perfusion SPECT (PBF(SPECT)) were statistically compared in both patient groups. RESULTS PBF(MR) using 0.3 mmol/mL in the <70-kg group and 0.5 mmol/mL in the > or =70-kg group showed no significant difference compared with PBF(SPECT) (P > 0.05). Limits of agreements in 0.3 mmol/mL in the <70-kg group and 0.5 mmol/mL in the > or =70-kg group were smaller than those of the other concentrations and small enough for clinical purposes. CONCLUSION Appropriate concentrations provide accurate and reproducible assessments of regional pulmonary perfusion parameters on 3D dynamic MR perfusion imaging. We suggest using 5 mL of contrast media with 0.3 mmol/mL for patients weighing less than 70 kg and 0.5 mmol/mL for patients weighing 70 kg or more.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Safe, fast, accurate contrast arteriography can be obtained utilizing gadolinium (Gd) and 3D MR data acquisition for diagnosing vascular diseases. Optimizing contrast enhanced MRA (CE MRA), however, requires understanding the complex interplay between Gd injection timing, the Fourier mapping of 3D MR data acquisition and a multitude of parameters determining resolution, anatomic coverage, and sensitivity to motion artifacts. It is critical to time the bolus peak to coincide with central k-space data acquisition, which dominates image contrast. Oversampling the center of k-space allows reconstruction of multiple 3D acquisitions in rapid succession to time-resolve the passage of the contrast bolus. Parallel imaging increases resolution, shortens scan time and compresses the center of k-space into a shorter period of time, thereby minimizing motion and timing artifacts. Absence of ionizing radiation allows MRA to be repeated and combined with additional sequences to more fully characterize anatomy, flow, and physiology. Utilizing stepping table technology and thigh compression, whole body MRA is possible with a single contrast injection. As MR technology continues to advance, CE MRA becomes better and simpler to perform, increasing its efficacy in the diagnosis and management of vascular diseases.
Collapse
Affiliation(s)
- Honglei Zhang
- Department of Radiology, Weill Medical College of Cornell University, New York, New York, USA
| | | | | |
Collapse
|
26
|
Yoo SJ, Kellenberger CJ, Roman KS, Al-Habshan F, Branson H, Sun AM, Macgowan CK. Magnetic resonance evaluation of pulmonary circulation in children. PROGRESS IN PEDIATRIC CARDIOLOGY 2006. [DOI: 10.1016/j.ppedcard.2006.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Frydrychowicz A, Bley TA, Winterer JT, Harloff A, Langer M, Hennig J, Markl M. Accelerated time-resolved 3D contrast-enhanced MR angiography at 3T: clinical experience in 31 patients. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2006; 19:187-95. [PMID: 16937136 DOI: 10.1007/s10334-006-0046-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 07/24/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE To evaluate whether time-resolved 3D MR-angiography at 3T with a net acceleration factor of eight is applicable in clinical routine and to evaluate whether good image quality and a low artifact level can be achieved with a temporal update rate that allows for additional information on pathologies. MATERIALS AND METHODS Thirty-one consecutive patients underwent time-resolved 3D contrast-enhanced MR-angiography on a 3T system. Imaging consisted of accelerated 3D gradient echo sequences combining parallel imaging with an acceleration factor of four, partial Fourier acquisition along phase and slice encoding direction, and twofold temporal acceleration using view sharing. Data volumes representing the arterial and venous contrast phases were independently evaluated by two experienced radiologists by grading of image quality and artifact level on a 0-3 scale. RESULTS Time-resolved MR-angiography was successfully performed in all subjects without the need for contrast agent bolus timing. Excellent arterial (average score = 2.65 +/- 0.32) and good venous (average score = 2.56 +/- 0.28) diagnostic image quality and little image degrading due to artifacts (average score = 2.20 +/- 0.16) were confirmed by both independent readers (agreement in 65.2% of all evaluations). In 14 patients vascular pathologies were identified in the arterial phases. In eight examinations temporal resolution and depiction of contrast agent dynamics provided additional information about pathology. DISCUSSION Without the necessity for additional bolus timing, time-resolved 3D contrast-enhanced MR-angiography with imaging acceleration along both the spatial encoding direction and temporal domain revealed excellent diagnostic image quality in neurovascular and thoracic imaging. Despite the limited spatial resolution as compared to high-resolution imaging of the carotid artery bifurcation, the results demonstrate the applicability of contrast-enhanced MR-angiography in thoracic and abdominal MRA as well as cervical imaging with a temporal update rate allowing for additional information on pathologies. Future studies may include an evaluation of optimal trade-offs between spatial and temporal resolution, different acceleration factors and a comparison to the gold-standard for accuracy.
Collapse
Affiliation(s)
- Alex Frydrychowicz
- Department of Diagnostic Radiology and Medical Physics, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
28
|
Kreitner KF, Kunz RP, Ley S, Oberholzer K, Neeb D, Gast KK, Heussel CP, Eberle B, Mayer E, Kauczor HU, Düber C. Chronic thromboembolic pulmonary hypertension — assessment by magnetic resonance imaging. Eur Radiol 2006; 17:11-21. [PMID: 16838142 DOI: 10.1007/s00330-006-0327-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 04/25/2006] [Accepted: 05/02/2006] [Indexed: 11/29/2022]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a severe disease that has been ignored for a long time. However, with the development of improved therapeutic modalities, cardiologists and thoracic surgeons have shown increasing interest in the diagnostic work-up of this entity. The diagnosis and management of chronic thromboembolic pulmonary hypertension require a multidisciplinary approach involving the specialties of pulmonary medicine, cardiology, radiology, anesthesiology and thoracic surgery. With this approach, pulmonary endarterectomy (PEA) can be performed with an acceptable mortality rate. This review article describes the developments in magnetic resonance (MR) imaging techniques for the diagnosis of chronic thromboembolic pulmonary hypertension. Techniques include contrast-enhanced MR angiography (ce-MRA), MR perfusion imaging, phase-contrast imaging of the great vessels, cine imaging of the heart and combined perfusion-ventilation MR imaging with hyperpolarized noble gases. It is anticipated that MR imaging will play a central role in the initial diagnosis and follow-up of patients with CTEPH.
Collapse
Affiliation(s)
- Karl-Friedrich Kreitner
- Department of Diagnostic and Interventional Radiology, Johannes-Gutenberg-University, Langenbeckstrasse 1, D-55131 Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Niendorf T, Sodickson DK. Parallel imaging in cardiovascular MRI: methods and applications. NMR IN BIOMEDICINE 2006; 19:325-41. [PMID: 16705633 DOI: 10.1002/nbm.1051] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cardiovascular MR imaging (CVMR) has become a valuable modality for the non-invasive detection and characterization of cardiovascular diseases. CVMR requires high imaging speed and efficiency, which is fundamentally limited in conventional cardiovascular MRI studies. With the introduction of parallel imaging, alternative means for increasing acquisition speed beyond these limits have become available. In parallel imaging some image data are acquired simultaneously, using RF detector coil sensitivities to encode simultaneous spatial information that complements the information gleaned from sequential application of magnetic field gradients. The resulting improvements in imaging speed can be used in various ways, including shortening long examinations, improving spatial resolution and/or anatomic coverage, improving temporal resolution, enhancing image quality, overcoming physiological constraints, detecting and correcting for physiologic motion, and streamlining work flow. Examples of each of these strategies will be provided in this review. First, basic principles and key concepts of parallel MR are described. Second, practical considerations such as coil array design, coil sensitivity calibrations, customized pulse sequences and tailored imaging parameters are outlined. Next, cardiovascular applications of parallel MR are reviewed, ranging from cardiac anatomical and functional assessment to myocardial perfusion and viability to MR angiography of the coronary arteries and the large vessels. Finally, current trends and future directions in parallel CVMR are considered.
Collapse
Affiliation(s)
- Thoralf Niendorf
- Department of Diagnostic Radiology, University Hospital, RWTH Aachen, Pauwelsstrasse 30, 52057 Aachen, Germany
| | | |
Collapse
|
30
|
Pedersen MR, Fisher MT, van Beek EJR. MR imaging of the pulmonary vasculature—an update. Eur Radiol 2006; 16:1374-86. [PMID: 16391908 DOI: 10.1007/s00330-005-0109-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 11/21/2005] [Accepted: 11/29/2005] [Indexed: 10/25/2022]
Abstract
Although the advent of multi-detector row computed tomography (CT) angiography has been at the heart of improving the diagnostic management of pulmonary vascular disease, MR technology has also moved forward. This review outlines the current state of affairs of MR techniques for the assessment of pulmonary vascular diseases such as pulmonary hypertension, pulmonary arteritis and arteriovenous malformations. It highlights the main areas of MR angiography and MR perfusion imaging and discusses novel methods, such as non-contrast enhanced direct thrombus imaging, and will discuss its merits in the context of other diagnostic modalities.
Collapse
Affiliation(s)
- Mark R Pedersen
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242-1077, USA
| | | | | |
Collapse
|
31
|
Fink C, Puderbach M, Ley S, Risse F, Kuder TA, Bock M, Thaler J, Plathow C, Kauczor HU. Intraindividual comparison of 1.0 M gadobutrol and 0.5 M gadopentetate dimeglumine for time-resolved contrast-enhanced three-dimensional magnetic resonance angiography of the upper torso. J Magn Reson Imaging 2005; 22:286-90. [PMID: 16028246 DOI: 10.1002/jmri.20381] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To compare the signal characteristics and bolus dynamics of 1.0 M gadobutrol and 0.5 M Gd-DTPA for time-resolved, three-dimensional, contrast-enhanced (CE) MRA of the upper torso. MATERIALS AND METHODS Ten healthy volunteers were examined with time-resolved three-dimensional CE-MRA (scan time per three-dimensional data set: 0.86 second; voxel size: 3.6 x 2 x 6.3 mm(3)). Each volunteer underwent eight individual examinations after intravenous injection of 0.05 and 0.1 mmol/kg body weight (b.w.) of 1.0 M gadobutrol and 0.5 M Gd-DTPA using two injection rates (2.5 and 5 mL/second). The data analysis included quantitative measurements of the peak signal-to-noise ratio (SNR) and bolus dispersion (full width at half maximum (FWHM)) in the pulmonary artery, left atrium, and thoracic and abdominal aortas. RESULTS No significant differences in the peak SNR and bolus dispersion were observed between gadobutrol and Gd-DTPA for all dose levels and injection rates in any of the vascular segments. For both contrast agents a dose of 0.1 mmol/kg b.w. injected with 5 mL/second achieved the highest SNR in all vascular segments. CONCLUSION For the imaging parameters used in this study, higher-concentrated gadolinium chelates offer no relevant advantages for time-resolved three-dimensional CE-MRA of the upper torso.
Collapse
Affiliation(s)
- Christian Fink
- Department of Radiology, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Born M, Willinek WA, Gieseke J, von Falkenhausen M, Schild H, Kuhl CK. Sensitivity encoding (SENSE) for contrast-enhanced 3D MR angiography of the abdominal arteries. J Magn Reson Imaging 2005; 22:559-65. [PMID: 16161084 DOI: 10.1002/jmri.20425] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To assess sensitivity encoding (SENSE) for contrast-enhanced MR angiography (CE-MRA) of the abdominal arteries in comparison with standard MRA protocols. MATERIALS AND METHODS In 22 patients MRA of the abdominal arteries was performed twice (once using a standard protocol, and once with the additional use of SENSE). In 10 patients all examination parameters were kept constant (TR/TE/FA = 3.8 msec/1.3 msec/30 degrees ), and a reduction in scan time from 22 to 11 seconds was realized with the use of SENSE. In 12 patients, using SENSE the acquisition matrix was increased from 208 to 416, keeping the scan time constant. Image quality was scored on a five-point scale by three radiologists. Additionally, ROI-based measurements of CNR were performed. RESULTS For both protocols, image quality was significantly improved using SENSE. The time-reducing SENSE protocol yielded an average score of 4.2 points vs. 3.1 for the standard protocol. Using SENSE to increase the acquisition matrix, an average score of 4.3 was reached vs. 3.2 for the standard protocol (P < 0.05). The number of depictable small vessels and their bifurcations was significantly increased by either of the two SENSE protocols as compared to the standard imaging procedure. CONCLUSION SENSE for MRA of the abdominal arteries significantly increases image quality and permits a substantial reduction in breath-hold time or a significantly improved spatial resolution.
Collapse
Affiliation(s)
- Markus Born
- Department of Radiology, University of Bonn, Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Oddone M, Granata C, Vercellino N, Bava E, Tomà P. Multi-modality evaluation of the abnormalities of the aortic arches in children: techniques and imaging spectrum with emphasis on MRI. Pediatr Radiol 2005; 35:947-60. [PMID: 15973515 DOI: 10.1007/s00247-005-1436-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2004] [Revised: 01/12/2005] [Accepted: 01/25/2005] [Indexed: 11/29/2022]
Abstract
The failure of embryonic vascular arches to fuse and regress in the usual manner during the formation of the aortic arch, pulmonary arteries and ductus arteriosus can cause a wide spectrum of vascular congenital abnormalities of the aortic arch and its branches. These abnormal vascular structures may cause variable compression of the trachea and/or oesophagus with symptoms ranging from none to severe stridor, dyspnoea, dysphagia and cyanosis. Diagnosis and possible treatment of affected patients require multiple imaging modalities. In the majority of cases, the underlying malformation can be detected by chest radiography and barium oesophagography, visualizing the location of the aortic arch and the presence of anomalous compressions of the trachea and/or oesophagus. However, in most cases the exact configuration of the vascular abnormality cannot be fully defined with conventional radiology alone. MRI is fundamental for evaluation of the thoracic vessels. Not only is it non-invasive, but it can also provide large-field-of-view images in any number of planes with three-dimensional reconstruction, adding valuable information about exact vascular configuration, tracheobronchial compression and brachiocephalic vessel branching. The aim of this review is to describe the imaging findings in children affected with special emphasis on MRI.
Collapse
Affiliation(s)
- Mauro Oddone
- Department of Radiology, Giannina Gaslini Hospital for Sick Children, 16147 Genoa, Italy.
| | | | | | | | | |
Collapse
|
34
|
Abstract
Parallel imaging is a recently developed family of techniques that take advantage of the spatial information inherent in phased-array radiofrequency coils to reduce acquisition times in magnetic resonance imaging. In parallel imaging, the number of sampled k-space lines is reduced, often by a factor of two or greater, thereby significantly shortening the acquisition time. Parallel imaging techniques have only recently become commercially available, and the wide range of clinical applications is just beginning to be explored. The potential clinical applications primarily involve reduction in acquisition time, improved spatial resolution, or a combination of the two. Improvements in image quality can be achieved by reducing the echo train lengths of fast spin-echo and single-shot fast spin-echo sequences. Parallel imaging is particularly attractive for cardiac and vascular applications and will likely prove valuable as 3-T body and cardiovascular imaging becomes part of standard clinical practice. Limitations of parallel imaging include reduced signal-to-noise ratio and reconstruction artifacts. It is important to consider these limitations when deciding when to use these techniques.
Collapse
Affiliation(s)
- James F Glockner
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
35
|
Fink C, Puderbach M, Ley S, Zaporozhan J, Plathow C, Kauczor HU. Time-resolved echo-shared parallel MRA of the lung: observer preference study of image quality in comparison with non-echo-shared sequences. Eur Radiol 2005; 15:2070-4. [PMID: 15988585 DOI: 10.1007/s00330-005-2831-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 05/17/2005] [Accepted: 05/31/2005] [Indexed: 10/25/2022]
Abstract
The aim of this study was to evaluate the image quality of time-resolved echo-shared parallel MRA of the lung. The pulmonary vasculature of nine patients (seven females, two males; median age: 44 years) with pulmonary disease was examined using a time-resolved MRA sequence combining echo sharing with parallel imaging (time-resolved echo-shared angiography technique, or TREAT). The sharpness of the vessel borders, conspicuousness of peripheral lung vessels, artifact level, and overall image quality of TREAT was assessed independently by four readers in a side-by-side comparison with non-echo-shared time-resolved parallel MRA data (pMRA) previously acquired in the same patients. Furthermore, the SNR of pulmonary arteries (PA) and veins (PV) achieved with both pulse sequences was compared. The mean voxel size of TREAT MRA was decreased by 24% compared with the non-echo-shared MRA. Regarding the sharpness of the vessel borders, conspicuousness of peripheral lung vessels, and overall image quality the TREAT sequence was rated superior in 75-76% of all cases. If the TREAT images were preferred over the pMRA images, the advantage was rated as major in 61-71% of all cases. The level of artifacts was not increased with the TREAT sequence. The mean interobserver agreement for all categories ranged between fair (artifact level) and good (overall image quality). The maximum SNR of TREAT did not differ from non-echo-shared parallel MRA (PA: TREAT: 273+/-45; pMRA: 280+/-71; PV: TREAT: 273+/-33; pMRA: 258+/-62). TREAT achieves a higher spatial resolution than non-echo-shared parallel MRA which is also perceived as an improved image quality.
Collapse
Affiliation(s)
- C Fink
- Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Hu HH, Madhuranthakam AJ, Kruger DG, Huston J, Riederer SJ. Improved venous suppression and spatial resolution with SENSE in elliptical centric 3D contrast-enhanced MR angiography. Magn Reson Med 2005; 52:761-5. [PMID: 15389954 PMCID: PMC2702220 DOI: 10.1002/mrm.20216] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The elliptical centric (EC) view order samples a 3DFT acquisition from the center of k-space outward, and when applied to contrast-enhanced MR angiography (CE-MRA) provides intrinsic venous suppression. This is because the veins enhance several seconds after the scan is initiated, and are thus encoded solely by noncentral k-space frequencies. A separate method, sensitivity encoding (SENSE), accelerates the k-space sampling rate by reducing the phase FOV or, equivalently, by increasing the k-space sampling interval, and has been used to increase spatiotemporal resolution. We hypothesized that by combining SENSE with EC, sampling of central k-space would be accelerated and the k-space radius at which the veins first showed contrast enhancement would be increased over a reference scan, thus providing improved venous suppression and spatial resolution without additional scan time. This hypothesis was studied with the use of phantom and carotid CE-MRA experiments, and the results demonstrated an approximate 25% reduction in venous signal when SENSE was used.
Collapse
Affiliation(s)
| | | | | | | | - Stephen J. Riederer
- Correspondence to: Stephen J. Riederer, Ph.D., Magnetic Resonance Laboratory, Mayo Clinic College of Medicine, 200 1st Street SW, Rochester, MN 55905. E-mail:
| |
Collapse
|
37
|
Affiliation(s)
- Thomas K F Foo
- Applied Science Laboratory-East, General Electric Healthcare Technologies, 600 N Wolfe Street, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
38
|
Affiliation(s)
- James F Glockner
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
39
|
Ohno Y, Higashino T, Takenaka D, Sugimoto K, Yoshikawa T, Kawai H, Fujii M, Hatabu H, Sugimura K. MR angiography with sensitivity encoding (SENSE) for suspected pulmonary embolism: comparison with MDCT and ventilation-perfusion scintigraphy. AJR Am J Roentgenol 2004; 183:91-8. [PMID: 15208117 DOI: 10.2214/ajr.183.1.1830091] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The aim of our study was to determine the utility of time-resolved contrast-enhanced MR angiography combined with sensitivity encoding (SENSE) for patients with pulmonary embolism. SUBJECTS AND METHODS. Forty-eight consecutive patients (26 men and 22 women; age range, 27-73 years; mean age, 55 years) with suspected pulmonary embolism underwent chest radiography, contrast-enhanced MDCT, MR angiography with SENSE, ventilation-perfusion scintigraphy, and pulmonary angiography. MR angiography with SENSE was performed using IV administration of gadolinium contrast medium with a 3D turbo field-echo pulse sequence (TR/TE, 4.0/1.2; flip angle, 30 degrees ) on a 1.5-T scanner. Capabilities of diagnosing pulmonary embolism using MR angiography (data set A), contrast-enhanced MDCT (data set B), contrast-enhanced MDCT with MR angiography (data set C), ventilation-perfusion scintigraphy (data set D), and contrast-enhanced MDCT with ventilation-perfusion scintigraphy (data set E) were determined by receiver operating characteristic analysis, using the results of pulmonary angiography as the reference standard. The diagnostic capability of each data set was analyzed on a per-vascular zone and a per-patient basis with the McNemar test. RESULTS Sensitivity and specificity of data set A were 83% and 97%, respectively, on a per-vascular zone basis and 92% and 94%, respectively, on a per-patient basis. Specificity and accuracy of data set A were significantly higher than those of data set D on a per-patient basis (p < 0.05). CONCLUSION Time-resolved MR angiography with SENSE is effective for the diagnosis of pulmonary embolism.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Pulmonary blood flow is one of the primary determinants of gas exchange. While a number of methods can be used to evaluation pulmonary perfusion, these have substantial limitations. In this paper, we discuss the use of magnetic resonance imaging techniques for the evaluation of pulmonary blood flow. While these methods are not commonly used at present, they have the potential to contribute greatly to the evaluation of suspected pulmonary vascular disease.
Collapse
Affiliation(s)
- David L Levin
- Department of Radiology, University of California, San Diego UCSD Medical Center, San Diego, CA 92103-8756, USA.
| | | |
Collapse
|
41
|
Wilson GJ, Hoogeveen RM, Willinek WA, Muthupillai R, Maki JH. Parallel Imaging in MR Angiography. Top Magn Reson Imaging 2004; 15:169-85. [PMID: 15479999 DOI: 10.1097/01.rmr.0000134199.94874.70] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The recently developed techniques of parallel imaging with phased array coils are rapidly becoming accepted for magnetic resonance angiography (MRA) applications. This article reviews the various current parallel imaging techniques and their application to MRA. The increased scan efficiency provided by parallel imaging allows increased temporal or spatial resolution, and reduction of artifacts in contrast-enhanced MRA (CE-MRA). Increased temporal resolution in CE-MRA can be used to reduce the need for bolus timing and to provide hemodynamic information helpful for diagnosis. In addition, increased spatial resolution (or volume coverage) can be acquired in a breathhold (eg, in renal CE-MRA), or in otherwise limited clinically acceptable scan durations. The increased scan efficiency provided by parallel imaging has been successfully applied to CE-MRA as well as other MRA techniques such as inflow and phase contrast imaging. The large signal-to-noise ratio available in many MRA techniques lends these acquisitions to increased scan efficiency through parallel imaging.
Collapse
|
42
|
Fink C, Bock M, Kiessling F, Lichy MP, Krissak R, Zuna I, Schmähl A, Delorme S, Kauczor HU. Time-resolved contrast-enhanced three-dimensional pulmonary MR-angiography: 1.0 M gadobutrol vs. 0.5 M gadopentetate dimeglumine. J Magn Reson Imaging 2004; 19:202-8. [PMID: 14745754 DOI: 10.1002/jmri.10452] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To compare contrast characteristics and image quality of 1.0 M gadobutrol with 0.5 M Gd-DTPA for time-resolved three-dimensional pulmonary magnetic resonance angiography (MRA). MATERIALS AND METHODS Thirty-one patients and five healthy volunteers were examined with a contrast-enhanced time-resolved pulmonary MRA protocol (fast low-angle shot [FLASH] three-dimensional, TR/TE = 2.2/1.0 msec, flip angle: 25 degrees, scan time per three-dimensional data set = 5.6 seconds). Patients were randomized to receive either 0.1 mmol/kg body weight (bw) or 0.2 mmol/kg bw gadobutrol, or 0.2 mmol/kg bw Gd-DTPA. Volunteers were examined three times, twice with 0.2 mmol/kg bw gadobutrol using two different flip angles and once with 0.2 mmol/kg bw Gd-DTPA. All contrast injections were performed at a rate of 5 mL/second. Image analysis included signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) measurements in lung arteries and veins, as well as a subjective analysis of image quality. RESULTS In patients, significantly higher SNR and CNR were observed with Gd-DTPA compared to both doses of gadobutrol (SNR: 35-42 vs.17-25; CNR 33-39 vs. 16-23; P < or = 0.05). No relevant differences were observed between 0.1 mmol/kg bw and 0.2 mmol/kg bw gadobutrol. In volunteers, gadobutrol and Gd-DTPA achieved similar SNR and CNR. A significantly higher SNR and CNR was observed for gadobutrol-enhanced MRA with an increased flip angle of 40 degrees. Image quality was rated equal for both contrast agents. CONCLUSION No relevant advantages of 1.0 M gadobutrol over 0.5 M Gd-DTPA were observed for time-resolved pulmonary MRA in this study. Potential explanations are T2/T2*-effects caused by the high intravascular concentration when using high injection rates.
Collapse
Affiliation(s)
- Christian Fink
- Department of Radiology, Deutsches Krebsforschungszentrum, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Montgomery ML, Case RS. Magnetic resonance imaging of the vascular system: a practical approach for the radiologist. Top Magn Reson Imaging 2003; 14:376-85. [PMID: 14625466 DOI: 10.1097/00002142-200310000-00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Contrast-enhanced magnetic resonance angiography (CE-MRA) has benefited from rapid technologic developments, including specific hardware and pulse sequence design. This article provides a brief practical overview of technique together with clinical examples of utility in daily application, from the view of an interventional radiologist. CE-MRA is rapidly replacing catheter-based diagnostic angiography for examination of the carotid arteries, aorta, renal arteries, and lower extremity.
Collapse
Affiliation(s)
- Mark L Montgomery
- Department of Radiology, Scott & White Clinic and Hospital, Temple, Texas 76508, USA.
| | | |
Collapse
|