1
|
Wang S, Ma L, Wang S, Duan C, Wang X, Bian X, Zhai D, Sun Y, Xie S, Zhang S, Liu Y, Lin X, Wang R, Liu X, Yu S, Lou X, Dong Z. Effects of acute sleep deprivation on the brain function of individuals with migraine: a resting-state functional magnetic resonance imaging study. J Headache Pain 2025; 26:60. [PMID: 40155843 PMCID: PMC11954264 DOI: 10.1186/s10194-025-02004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/06/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Sleep deprivation can trigger acute headache attacks in individuals with migraine; however, the underlying mechanism remains poorly understood. The aim of this study was to investigate the effects of acute sleep deprivation (ASD) on brain function in individuals with migraine without aura (MWoA) via functional magnetic resonance imaging (fMRI). METHODS Twenty three MWoA individuals and 23 healthy controls (HCs) were fairly included in this study. All participants underwent two MRI scans: one at baseline (prior to sleep deprivation) and another following 24 h of ASD. Images were obtained with blood-oxygen-level-dependent and T1-weighted sequences on a Siemens 7.0 T MRI scanner. We conducted analyses of changes in the low-frequency fluctuations (ALFF) values and functional connectivity (FC) between brain networks and within network before and after ASD in both MWoA group and HC group. Additionally, we investigated the relationship between the changes in ALFF before and after ASD and the clinical features (VAS and monthly headache days). RESULTS In the HC group, ASD led to a significant increase in ALFF values in the left parahippocampal gyrus compared to baseline (p-FDR = 0.01). In the MWoA group, ALFF values were significantly greater in 64 brain regions after ASD than at baseline. The most significant change in ALFF before and after ASD in the MWoA group was detected in the right medial pulvinar of the thalamus (p-FDR = 0.017), which showed a significant negative correlation with monthly headache days. Moreover, seed-based connectivity (SBC) analysis using the right medial pulvinar of the thalamus as the seed point revealed significantly increased connectivity with the cerebellar vermis (p-FWE = 0.035) after ASD in individuals with MWoA, whereas connectivity with the right postcentral gyrus was significantly decreased (p-FWE = 0.048). Furthermore, we performed analyses of between-network connectivity (BNC) and within-network connectivity across 17 brain networks, utilizing the Yeo-17 atlas. Both MWoA individuals and HCs showed no significant changes in BNC after ASD compared to baseline. However, our analysis in within-network revealed that MWoA individuals exhibited a reduced within-network FC in dorsal attention network (DAN) after ASD compared to baseline (p-FDR = 0.031), whereas HCs showed no significant differences in within-network FC across all networks before and after ASD. CONCLUSIONS In comparison to HCs, MWoA individuals exhibited significant alterations in brain function after ASD, particularly within the thalamus, and MWoA individuals exhibited a reduced within-network FC in DAN after ASD compared to baseline. Brain regions and networks in MWoA individuals were more susceptible to the effects of ASD.
Collapse
Affiliation(s)
- Shuqing Wang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- International Headache Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Longteng Ma
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, The PLA Joint Logistic Support Force 983 Hospital, Tianjin, 300142, China
- International Headache Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Song Wang
- Department of Radiology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Caohui Duan
- Department of Radiology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Xinyu Wang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Radiology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Xiangbing Bian
- Department of Radiology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Deqi Zhai
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- International Headache Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yin Sun
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- International Headache Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Siyuan Xie
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
- International Headache Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shuhua Zhang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- International Headache Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yingyuan Liu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- International Headache Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaoxue Lin
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- International Headache Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ruobing Wang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- International Headache Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiu Liu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- International Headache Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shengyuan Yu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- International Headache Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xin Lou
- Department of Radiology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
| | - Zhao Dong
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
- International Headache Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
2
|
Fischer M, Saetti U, Godfroy-Cooper M, Fischer D. Characterization of 2D precision and accuracy for combined visual-haptic localization. Front Neurosci 2025; 19:1528601. [PMID: 40143850 PMCID: PMC11936952 DOI: 10.3389/fnins.2025.1528601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
This article describes a combined visual and haptic localization experiment that addresses the area of multimodal cueing. The aim of the present investigation was to characterize two-dimensional (2D) localization precision and accuracy of visual, haptic, and combined visual-tactile targets in the peri-personal space, the space around the body in which sensory information is perceived as ecologically relevant. Participants were presented with visual, haptic, or bimodal cues using the body-centered reference frame and were instructed to indicate the corresponding perceived target location in space using a mouse pointer in an open-loop feedback condition. Outcomes of the unimodal (visual and haptic) and bimodal (combined visual-haptic) localization performance were used to assess the nature of the multisensory combination, using a Bayesian integration model. Results of the study revealed that the visual and haptic perceptive fields are characterized differently in terms of localization performance, providing important considerations for the transformation of each sensory modality when combining cues into a unified percept. The results reaffirmed many well known radial characteristics of vision with respect to localization, and identified a nonlinear pattern of haptic localization performance that was largely influenced by the midline of the center of the torso and each side of the cutaneous region. Overall, the lack of improvement in precision for bimodal cueing relative to the best unimodal cueing modality, vision, is in favor of sensory combination rather than optimal integration predicted by the Maximum Likelihood Estimation (MLE) model. Conversely, the hypothesis that accuracy in localizing the bimodal visual-haptic targets would represent a compromise between visual and haptic performance in favor of the most precise modality was rejected. Instead, the bimodal accuracy was found to be equivalent to or to exceed that of the best unimodal condition, vision. The results provide some insight into the structure of the underlying sensorimotor processes employed by the brain and confirm the usefulness of capitalizing on naturally occurring differences between vision and haptic to better understand their interaction and their contribution to multimodal perception These results will help inform the development of future human-machine interfaces implementing haptic feedback mechanisms In the context of pilot performance, haptic localization can have several benefits including enhanced situational awareness, improved spatial orientation, reduced workload, thereby contributing to safer operations. These benefits can be applied to future systems for aircraft handling by helping overcome visual illusions and discrepancies between visual and vestibular sensory channels, especially in degraded visual environments.
Collapse
Affiliation(s)
- Madeline Fischer
- Department of Mathematics, University of Maryland, College Park, MD, United States
| | - Umberto Saetti
- Department of Aerospace Engineering, University of Maryland, College Park, MD, United States
| | | | | |
Collapse
|
3
|
Barbaresi P, Fabri M, Lorenzi T, Sagrati A, Morroni M. Intrinsic organization of the corpus callosum. Front Physiol 2024; 15:1393000. [PMID: 39035452 PMCID: PMC11259024 DOI: 10.3389/fphys.2024.1393000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/16/2024] [Indexed: 07/23/2024] Open
Abstract
The corpus callosum-the largest commissural fiber system connecting the two cerebral hemispheres-is considered essential for bilateral sensory integration and higher cognitive functions. Most studies exploring the corpus callosum have examined either the anatomical, physiological, and neurochemical organization of callosal projections or the functional and/or behavioral aspects of the callosal connections after complete/partial callosotomy or callosal lesion. There are no works that address the intrinsic organization of the corpus callosum. We review the existing information on the activities that take place in the commissure in three sections: I) the topographical and neurochemical organization of the intracallosal fibers, II) the role of glia in the corpus callosum, and III) the role of the intracallosal neurons.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Mara Fabri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Teresa Lorenzi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Andrea Sagrati
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Manrico Morroni
- Electron Microscopy Unit, Azienda Ospedaliero-Universitaria, Ancona, Italy
| |
Collapse
|
4
|
Lamorie-Foote K, Kramer DR, Sundaram S, Cavaleri J, Gilbert ZD, Tang AM, Bashford L, Liu CY, Kellis S, Lee B. Primary somatosensory cortex organization for engineering artificial somatosensation. Neurosci Res 2024; 204:1-13. [PMID: 38278220 DOI: 10.1016/j.neures.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Somatosensory deficits from stroke, spinal cord injury, or other neurologic damage can lead to a significant degree of functional impairment. The primary (SI) and secondary (SII) somatosensory cortices encode information in a medial to lateral organization. SI is generally organized topographically, with more discrete cortical representations of specific body regions. SII regions corresponding to anatomical areas are less discrete and may represent a more functional rather than topographic organization. Human somatosensory research continues to map cortical areas of sensory processing with efforts primarily focused on hand and upper extremity information in SI. However, research into SII and other body regions is lacking. In this review, we synthesize the current state of knowledge regarding the cortical organization of human somatosensation and discuss potential applications for brain computer interface. In addition to accurate individualized mapping of cortical somatosensation, further research is required to uncover the neurophysiological mechanisms of how somatosensory information is encoded in the cortex.
Collapse
Affiliation(s)
- Krista Lamorie-Foote
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Daniel R Kramer
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurological Surgery, University of Colorado School of Medicine, Denver, CO, United States
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.
| | - Jonathon Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Zachary D Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Austin M Tang
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurological Surgery, University of Texas at Houston, Houston, TX, United States
| | - Luke Bashford
- Department of Biology and Biological Engineering, T&C Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, United States; Department of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Spencer Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
5
|
Deemyad T. Lateralized Changes in Language Associated Auditory and Somatosensory Cortices in Autism. Front Syst Neurosci 2022; 16:787448. [PMID: 35300070 PMCID: PMC8923120 DOI: 10.3389/fnsys.2022.787448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Lateralized specialization of the two cerebral hemispheres is a fundamental structural hallmark of the human brain and underlies many cognitive functions and behavioral abilities. In typical developing individuals the influence of handedness on performance of various sensory modalities and the cortical processing has been well recognized. Increasing evidence suggests that several neurodevelopmental and psychiatric disorders such as bipolar disorder, schizophrenia, and autism spectrum disorders (ASD) are associated with abnormal patterns of cerebral lateralization. Individuals with ASD exhibit abnormal structural and functional lateralization of circuits subserving motor, auditory, somatosensory, visual face processing, and language-related functions. Furthermore, a high prevalence of atypical handedness has been reported in ASD individuals. While the hemispheric dominance is also related to functions other than handedness, there is a clear relationship between handedness and language-related cortical dominance. This minireview summarizes these recent findings on asymmetry in somatosensory and auditory cortical structures associated with language processing in ASD. I will also discuss the importance of cortical dominance and interhemispheric disruption of balance between excitatory and inhibitory synapses as pathophysiological mechanisms in ASD.
Collapse
Affiliation(s)
- Tara Deemyad
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Analysis of Intracerebral Activity during Reflex Locomotion Stimulation According to Vojta’s Principle. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vojta’s therapy is a widely used approach in both the prevention and therapy of musculoskeletal disorders. Changes in the musculoskeletal system have been described repeatedly, but the principles of the approach have not yet been clarified. The objective of our study was to evaluate changes of intracerebral activity using electromagnetic tomography (sLORETA) that arise during reflex locomotion stimulation of the breast trigger zone according to Vojta’s therapy. Seventeen healthy women took part in the experiment (aged 20–30 years old). EEG activity was recorded 5 min prior to the reflex locomotion stimulation, during stimulation, and 5 min after the stimulation. The obtained data were subsequently processed in the sLORETA program and statistically evaluated at the significance level p ≤ 0.05. The analysis found statistically significant differences in the frequency bands alpha-2, beta-1, and beta-2 between the condition prior to stimulation and the actual stimulation in BAs 6, 7, 23, 24, and 31 and between the resting condition prior to stimulation, and the condition after the stimulation was terminated in the frequency bands alpha-1, alpha-2, beta-1, and beta-2 in BAs 3, 4, 6, and 24. The results showed that reflex locomotion stimulation according to Vojta’s therapy modulates electrical activity in the brain areas responsible for movement planning and regulating and performing the movement.
Collapse
|
7
|
Zlatkina V, Sprung-Much T, Petrides M. Spatial probability maps of the segments of the postcentral sulcus in the human brain. Cereb Cortex 2021; 32:3651-3668. [PMID: 34963136 PMCID: PMC9433426 DOI: 10.1093/cercor/bhab439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/31/2022] Open
Abstract
The postcentral sulcus is the posterior boundary of the postcentral gyrus where the somatosensory cortex is represented. In the human brain, the postcentral sulcus is composed of five distinct segments that are related to the somatosensory representation of different parts of the body. Segment 1 of the postcentral sulcus, located near the dorsomedial boundary of each hemisphere, is associated with toe/leg representations, segment 2 with arm/hand representations, segment 3 with blinking, and segments 4 and 5, which are near the lateral fissure and the parietal operculum, with the mouth and tongue representations. The variability in location and spatial extent of these five segments were quantified in 40 magnetic resonance imaging (MRI) anatomical brain scans registered to the stereotaxic space of the Montreal Neurological Institute (MNI space), in the form of volumetric (using MINC Toolkit) and surface (using FreeSurfer) spatial probability maps. These probability maps can be used by researchers and clinicians to improve the localization of the segments of the postcentral sulcus in MRI images of interest and also to improve the interpretation of the location of activation peaks generated in functional neuroimaging studies investigating somatosensory cortex.
Collapse
Affiliation(s)
- Veronika Zlatkina
- Address correspondence to Veronika Zlatkina, Montreal Neurological Institute, 3801 University St., Montreal, QC H3A 2B4, Canada.
| | - Trisanna Sprung-Much
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Michael Petrides
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
8
|
Jablonka JA, Binkowski R, Kazmierczak M, Sadowska M, Sredniawa W, Szlachcic A, Urban P. The Role of Interhemispheric Interactions in Cortical Plasticity. Front Neurosci 2021; 15:631328. [PMID: 34305511 PMCID: PMC8299724 DOI: 10.3389/fnins.2021.631328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/18/2021] [Indexed: 12/04/2022] Open
Abstract
Despite the fact that there is a growing awareness to the callosal connections between hemispheres the two hemispheres of the brain are commonly treated as independent structures when peripheral or cortical manipulations are applied to one of them. The contralateral hemisphere is often used as a within-animal control of plastic changes induced onto the other side of the brain. This ensures uniform conditions for producing experimental and control data, but it may overlook possible interhemispheric interactions. In this paper we provide, for the first time, direct proof that cortical, experience-dependent plasticity is not a unilateral, independent process. We mapped metabolic brain activity in rats with 2-[14C] deoxyglucose (2DG) following experience-dependent plasticity induction after a month of unilateral (left), partial whiskers deprivation (only row B was left). This resulted in ∼45% widening of the cortical sensory representation of the spared whiskers in the right, contralateral barrel field (BF). We show that the width of 2DG visualized representation is less than 20% when only contralateral stimulation of the spared row of whiskers is applied in immobilized animals. This means that cortical map remodeling, which is induced by experience-dependent plasticity mechanisms, depends partially on the contralateral hemisphere. The response, which is observed by 2DG brain mapping in the partially deprived BF after standard synchronous bilateral whiskers stimulation, is therefore the outcome of at least two separately activated plasticity mechanisms. A focus on the integrated nature of cortical plasticity, which is the outcome of the emergent interactions between deprived and non-deprived areas in both hemispheres may have important implications for learning and rehabilitation. There is also a clear implication that there is nothing like “control hemisphere” since any plastic changes in one hemisphere have to have influence on functioning of the opposite one.
Collapse
Affiliation(s)
| | | | - Marcin Kazmierczak
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - Maria Sadowska
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Władysław Sredniawa
- Faculty of Biology, University of Warsaw, Warsaw, Poland.,Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.,College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | | | - Paulina Urban
- Faculty of Biology, University of Warsaw, Warsaw, Poland.,College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Thomas J, Sharma D, Mohanta S, Jain N. Resting-State functional networks of different topographic representations in the somatosensory cortex of macaque monkeys and humans. Neuroimage 2020; 228:117694. [PMID: 33385552 DOI: 10.1016/j.neuroimage.2020.117694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
Information processing in the brain is mediated through a complex functional network architecture whose comprising nodes integrate and segregate themselves on different timescales. To gain an understanding of the network function it is imperative to identify and understand the network structure with respect to the underlying anatomical connectivity and the topographic organization. Here we show that the previously described resting-state network for the somatosensory area 3b comprises of distinct networks that are characteristic for different topographic representations. Seed-based resting-state functional connectivity analysis in macaque monkeys and humans using BOLD-fMRI signals from the face, the hand and rest of the medial somatosensory representations of area 3b revealed different correlation patterns. Both monkeys and humans have many similarities in the connectivity networks, although the networks are more complex in humans with many more nodes. In both the species face area network has the highest ipsilateral and contralateral connectivity, which included areas 3b and 4, and ventral premotor area. The area 3b hand network included ipsilateral hand representation in area 4. The emergent functional network structures largely reflect the known anatomical connectivity. Our results show that different body part representations in area 3b have independent functional networks perhaps reflecting differences in the behavioral use of different body parts. The results also show that large cortical areas if considered together, do not give a complete and accurate picture of the network architecture.
Collapse
Affiliation(s)
- John Thomas
- National Brain Research Centre, NH 8, Manesar 122052, Haryana, India
| | - Dixit Sharma
- National Brain Research Centre, NH 8, Manesar 122052, Haryana, India
| | - Sounak Mohanta
- National Brain Research Centre, NH 8, Manesar 122052, Haryana, India
| | - Neeraj Jain
- National Brain Research Centre, NH 8, Manesar 122052, Haryana, India.
| |
Collapse
|
10
|
|
11
|
Single subject and group whole-brain fMRI mapping of male genital sensation at 7 Tesla. Sci Rep 2020; 10:2487. [PMID: 32051426 PMCID: PMC7015912 DOI: 10.1038/s41598-020-58966-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 01/13/2020] [Indexed: 01/07/2023] Open
Abstract
Processing of genital sensations in the central nervous system of humans is still poorly understood. Current knowledge is mainly based on neuroimaging studies using electroencephalography (EEG), magneto-encephalography (MEG), and 1.5- or 3- Tesla (T) functional magnetic resonance imaging (fMRI), all of which suffer from limited spatial resolution and sensitivity, thereby relying on group analyses to reveal significant data. Here, we studied the impact of passive, yet non-arousing, tactile stimulation of the penile shaft using ultra-high field 7T fMRI. With this approach, penile stimulation evoked significant activations in distinct areas of the primary and secondary somatosensory cortices (S1 & S2), premotor cortex, insula, midcingulate gyrus, prefrontal cortex, thalamus and cerebellum, both at single subject and group level. Passive tactile stimulation of the feet, studied for control, also evoked significant activation in S1, S2, insula, thalamus and cerebellum, but predominantly, yet not exclusively, in areas that could be segregated from those associated with penile stimulation. Evaluation of the whole-brain activation patterns and connectivity analyses indicate that genital sensations following passive stimulation are, unlike those following feet stimulation, processed in both sensorimotor and affective regions.
Collapse
|
12
|
Rebollo I, Devauchelle AD, Béranger B, Tallon-Baudry C. Stomach-brain synchrony reveals a novel, delayed-connectivity resting-state network in humans. eLife 2018; 7:33321. [PMID: 29561263 PMCID: PMC5935486 DOI: 10.7554/elife.33321] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/20/2018] [Indexed: 12/30/2022] Open
Abstract
Resting-state networks offer a unique window into the brain’s functional architecture, but their characterization remains limited to instantaneous connectivity thus far. Here, we describe a novel resting-state network based on the delayed connectivity between the brain and the slow electrical rhythm (0.05 Hz) generated in the stomach. The gastric network cuts across classical resting-state networks with partial overlap with autonomic regulation areas. This network is composed of regions with convergent functional properties involved in mapping bodily space through touch, action or vision, as well as mapping external space in bodily coordinates. The network is characterized by a precise temporal sequence of activations within a gastric cycle, beginning with somato-motor cortices and ending with the extrastriate body area and dorsal precuneus. Our results demonstrate that canonical resting-state networks based on instantaneous connectivity represent only one of the possible partitions of the brain into coherent networks based on temporal dynamics. The brain is always active. Even when it is not receiving sensory input, it generates its own spontaneous activity. This activity shapes how we interpret future sensory signals and creates our inner mental world. Moreover, this spontaneous activity is not random. When a healthy volunteer lies inside a brain scanner without performing any task, his or her brain shows predictable patterns of activity. Specific groups of brain regions – often with related roles – become active at the same time as one another. Each set of regions is referred to as a resting state network. Of course, the brain does not operate in isolation from the rest of the body. Our internal organs continuously send signals to the brain via the spinal cord and cranial nerves. Specialized cells in the stomach wall in particular produce a slow rhythmic pattern of electrical activity. Known as the gastric rhythm, this activity helps ensure that the stomach muscles contract at the correct speed for digestion. But the stomach also produces this rhythm even when empty, suggesting that it has other roles too. To find out what these might be, Rebollo et al. placed electrodes on the abdomen of healthy volunteers lying inside brain scanners. By examining the volunteers’ spontaneous brain activity, Rebollo et al. identified a new resting state network that is active in synchrony with the gastric rhythm. The regions within this so-called gastric network are not active at the same time as each other, but instead become active in a specific sequence that is repeated at each gastric cycle. Many of the regions within the gastric network belong to other resting state networks too. Some of the regions help regulate automatic bodily functions such as heart rate, while others process information about the body’s position in space. The existence of the gastric network suggests a link between the automatic regulation of processes such as digestion, and spontaneous brain activity. Future studies could examine whether this link impacts perception and cognition, and whether this link plays a role in disorders where the connection between the digestive system and the brain appears to be altered.
Collapse
Affiliation(s)
- Ignacio Rebollo
- Laboratoire de neurosciences cognitives, Département d'études cognitives, École normale supérieure, INSERM, PSL Research University, Paris, France
| | - Anne-Dominique Devauchelle
- Laboratoire de neurosciences cognitives, Département d'études cognitives, École normale supérieure, INSERM, PSL Research University, Paris, France.,Fondation Campus Biotech Geneva, Geneva, Switzerland
| | - Benoît Béranger
- Centre de NeuroImagerie de Recherche, Institut du Cerveau et de la Moelle épinière - ICM, Paris, France
| | - Catherine Tallon-Baudry
- Laboratoire de neurosciences cognitives, Département d'études cognitives, École normale supérieure, INSERM, PSL Research University, Paris, France
| |
Collapse
|
13
|
Mansour ZM, Martin LE, Lepping RJ, Kanaan SF, Brooks WM, Yeh HW, Sharma NK. Brain Response to Non-Painful Mechanical Stimulus to Lumbar Spine. Brain Sci 2018; 8:brainsci8030041. [PMID: 29494490 PMCID: PMC5870359 DOI: 10.3390/brainsci8030041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/15/2018] [Accepted: 02/22/2018] [Indexed: 12/17/2022] Open
Abstract
Pressure application to the lumbar spine is an important assessment and treatment method of low back pain. However, few studies have characterized brain activation patterns in response to mechanical pressure. The objective of this study was to map brain activation associated with various levels of mechanical pressure to the lumbar spine in healthy subjects. Fifteen healthy subjects underwent functional magnetic resonance imaging (fMRI) scanning while mechanical pressure was applied to their lumbar spine with a custom-made magnetic resonance imaging (MRI)-compatible pressure device. Each subject received three levels of pressure (low/medium/high) based on subjective ratings determined prior to the scan using a block design (pressure/rest). Pressure rating was assessed with an 11-point scale (0 = no touch; 10 = max pain-free pressure). Brain activation differences between pressure levels and rest were analyzed. Subjective pressure ratings were significantly different across pressure levels (p < 0.05). The overall brain activation pattern was not different across pressure levels (all p > 0.05). However, the overall effect of pressure versus rest showed significant decreases in brain activation in response to the mechanical stimulus in regions associated with somatosensory processing including the precentral gyri, left hippocampus, left precuneus, left medial frontal gyrus, and left posterior cingulate. There was increase in brain activation in the right inferior parietal lobule and left cerebellum. This study offers insight into the neural mechanisms that may relate to manual mobilization intervention used for managing low back pain.
Collapse
Affiliation(s)
- Zaid M Mansour
- Department of Physical and Occupational Therapy, Hashemite University, Zarqa 13115, Jordan.
| | - Laura E Martin
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS 66160, USA.
- Department of Preventive Medicine and Public Health, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Rebecca J Lepping
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Saddam F Kanaan
- Department of Rehabilitation Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - William M Brooks
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Hung-Wen Yeh
- Laureate Institute for Brain Research, 6655 South Yale Ave, Tulsa, OK 74136, USA.
| | - Neena K Sharma
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
14
|
Tal Z, Geva R, Amedi A. Positive and Negative Somatotopic BOLD Responses in Contralateral Versus Ipsilateral Penfield Homunculus. Cereb Cortex 2017; 27:962-980. [PMID: 28168279 PMCID: PMC6093432 DOI: 10.1093/cercor/bhx024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/17/2017] [Indexed: 11/20/2022] Open
Abstract
One of the basic properties of sensory cortices is their topographical organization. Most imaging studies explored this organization using the positive blood oxygenation level-dependent (BOLD) signal. Here, we studied the topographical organization of both positive and negative BOLD in contralateral and ipsilateral primary somatosensory cortex (S1). Using phase-locking mapping methods, we verified the topographical organization of contralateral S1, and further showed that different body segments elicit pronounced negative BOLD responses in both hemispheres. In the contralateral hemisphere, we found a sharpening mechanism in which stimulation of a given body segment triggered a gradient of activation with a significant deactivation in more remote areas. In the ipsilateral cortex, deactivation was not only located in the homolog area of the stimulated parts but rather was widespread across many parts of S1. Additionally, analysis of resting-state functional magnetic resonance imaging signal showed a gradient of connectivity to the neighboring contralateral body parts as well as to the ipsilateral homologous area for each body part. Taken together, our results indicate a complex pattern of baseline and activity-dependent responses in the contralateral and ipsilateral sides. Both primary sensory areas were characterized by unique negative BOLD responses, suggesting that they are an important component in topographic organization of sensory cortices.
Collapse
Affiliation(s)
- Zohar Tal
- Department of Medical Neurobiology, Institute of Medical Research Israel – Canada (IMRIC), Faculty of Medicine
| | - Ran Geva
- Department of Medical Neurobiology, Institute of Medical Research Israel – Canada (IMRIC), Faculty of Medicine
| | - Amir Amedi
- Department of Medical Neurobiology, Institute of Medical Research Israel – Canada (IMRIC), Faculty of Medicine
- The Edmond and Lily Safra Center for Brain Science (ELSC)
- Program of Cognitive Science, The Hebrew University of Jerusalem, Jerusalem 91220, Israel
| |
Collapse
|
15
|
Paolucci T, Piccinini G, Paolucci S, Spadini E, Saraceni VM, Morone G. Tactile and proprioceptive sensory stimulation modifies estimation of walking distance but not upright gait stability: a pilot study. J Phys Ther Sci 2015; 27:3287-93. [PMID: 26644695 PMCID: PMC4668186 DOI: 10.1589/jpts.27.3287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/27/2015] [Indexed: 01/11/2023] Open
Abstract
[Purpose] Recently, there has been growing interest in the somatosensory system, but little data exist on the interaction between dynamic postural control and the somatosensory system. The purpose of this study was to determine whether a training program, based on tactile and proprioceptive sensory stimulation of the trunk with the use of perceptual surfaces, improved the estimation of walking distance by healthy subjects, the ability to walk toward a memorized distance without vision, and whether it increases upright gait stability. [Subjects and Methods] Ten healthy subjects with a mean age of 31.9 ± 2.5 years were enrolled and participated in 10 daily sessions of perceptive training using perceptual surfaces, for 45 minutes each session. An experimental indoor test measured the subjects' ability to perceive walking distances to a memorized target in an indoor environment. [Results] After treatment, the distances that were traversed were closer to the target than before treatment. Trunk acceleration did not differ significantly between pre- and post-training and did not increase significantly after training. [Conclusion] Treatment with perceptual surfaces stimulating the trunk midline improves the estimation of walking distance and modifies proprioceptive gait patterns, allowing various corrective strategies to be implemented during ambulation.
Collapse
Affiliation(s)
- Teresa Paolucci
- Physical Medicine and Rehabilitation, Policlinico Umberto I Hospital, Sapienza University, Italy
| | - Giulia Piccinini
- Physical Medicine and Rehabilitation, Policlinico Umberto I Hospital, Sapienza University, Italy
| | - Stefano Paolucci
- Clinical Laboratory of Experimental Neurorehabilitation, IRCCS, Italy
| | - Ennio Spadini
- Physical Medicine and Rehabilitation, S. Filippo Neri Hospital, Italy
| | - Vincenzo Maria Saraceni
- Physical Medicine and Rehabilitation, Policlinico Umberto I Hospital, Sapienza University, Italy
| | - Giovanni Morone
- Clinical Laboratory of Experimental Neurorehabilitation, IRCCS, Italy
| |
Collapse
|
16
|
Zlatkina V, Amiez C, Petrides M. The postcentral sulcal complex and the transverse postcentral sulcus and their relation to sensorimotor functional organization. Eur J Neurosci 2015; 43:1268-83. [PMID: 26296305 DOI: 10.1111/ejn.13049] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 12/19/2022]
Abstract
It has been demonstrated that the postcentral sulcus, which forms the posterior boundary of the sensorimotor region, is a complex of distinct sulcal segments. Although the general somatotopic arrangement in the human sensorimotor cortex is relatively well known, we do not know whether the different segments of the postcentral sulcus relate in a systematic way to the sensorimotor functional representations. Participants were scanned with functional magnetic resonance imaging while they made movements of different body parts and the location of functional activity was examined on a subject-by-subject basis with respect to the morphological features of the postcentral sulcus. The findings demonstrate that the postcentral sulcus of each subject may be divided into five segments and there is a tight relationship between sensorimotor representations of different body parts and specific segments of the postcentral sulcus. The results also addressed the issue of the transverse postcentral sulcus, a short sulcus that is present within the ventral part of the postcentral gyrus in some brains. It was shown that, when present, this sulcus is functionally related to the oral (mouth and tongue) sensorimotor representation. When this sulcus is not present, the inferior postcentral sulcus which is also related to the oral representation is longer. Thus, the sulcal morphology provides an improved framework for functional assignments in individual subjects.
Collapse
Affiliation(s)
- Veronika Zlatkina
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Céline Amiez
- Stem Cell and Brain Research Institute, INSERM U846, Bron, France
| | - Michael Petrides
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| |
Collapse
|
17
|
Fabri M, Pierpaoli C, Barbaresi P, Polonara G. Functional topography of the corpus callosum investigated by DTI and fMRI. World J Radiol 2014; 6:895-906. [PMID: 25550994 PMCID: PMC4278150 DOI: 10.4329/wjr.v6.i12.895] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/02/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
This short review examines the most recent functional studies of the topographic organization of the human corpus callosum, the main interhemispheric commissure. After a brief description of its anatomy, development, microstructure, and function, it examines and discusses the latest findings obtained using diffusion tensor imaging (DTI) and tractography (DTT) and functional magnetic resonance imaging (fMRI), three recently developed imaging techniques that have significantly expanded and refined our knowledge of the commissure. While DTI and DTT have been providing insights into its microstructure, integrity and level of myelination, fMRI has been the key technique in documenting the activation of white matter fibers, particularly in the corpus callosum. By combining DTT and fMRI it has been possible to describe the trajectory of the callosal fibers interconnecting the primary olfactory, gustatory, motor, somatic sensory, auditory and visual cortices at sites where the activation elicited by peripheral stimulation was detected by fMRI. These studies have demonstrated the presence of callosal fiber tracts that cross the commissure at the level of the genu, body, and splenium, at sites showing fMRI activation. Altogether such findings lend further support to the notion that the corpus callosum displays a functional topographic organization that can be explored with fMRI.
Collapse
|
18
|
Interplay between intra- and interhemispheric remodeling of neural networks as a substrate of functional recovery after stroke: Adaptive versus maladaptive reorganization. Neuroscience 2014; 283:178-201. [DOI: 10.1016/j.neuroscience.2014.06.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 11/18/2022]
|
19
|
Callan D, Mills L, Nott C, England R, England S. A tool for classifying individuals with chronic back pain: using multivariate pattern analysis with functional magnetic resonance imaging data. PLoS One 2014; 9:e98007. [PMID: 24905072 PMCID: PMC4048172 DOI: 10.1371/journal.pone.0098007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/27/2014] [Indexed: 12/19/2022] Open
Abstract
Chronic pain is one of the most prevalent health problems in the world today, yet neurological markers, critical to diagnosis of chronic pain, are still largely unknown. The ability to objectively identify individuals with chronic pain using functional magnetic resonance imaging (fMRI) data is important for the advancement of diagnosis, treatment, and theoretical knowledge of brain processes associated with chronic pain. The purpose of our research is to investigate specific neurological markers that could be used to diagnose individuals experiencing chronic pain by using multivariate pattern analysis with fMRI data. We hypothesize that individuals with chronic pain have different patterns of brain activity in response to induced pain. This pattern can be used to classify the presence or absence of chronic pain. The fMRI experiment consisted of alternating 14 seconds of painful electric stimulation (applied to the lower back) with 14 seconds of rest. We analyzed contrast fMRI images in stimulation versus rest in pain-related brain regions to distinguish between the groups of participants: 1) chronic pain and 2) normal controls. We employed supervised machine learning techniques, specifically sparse logistic regression, to train a classifier based on these contrast images using a leave-one-out cross-validation procedure. We correctly classified 92.3% of the chronic pain group (N = 13) and 92.3% of the normal control group (N = 13) by recognizing multivariate patterns of activity in the somatosensory and inferior parietal cortex. This technique demonstrates that differences in the pattern of brain activity to induced pain can be used as a neurological marker to distinguish between individuals with and without chronic pain. Medical, legal and business professionals have recognized the importance of this research topic and of developing objective measures of chronic pain. This method of data analysis was very successful in correctly classifying each of the two groups.
Collapse
Affiliation(s)
- Daniel Callan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka University, Osaka, Japan
- Chronic Pain Diagnostics, Roseville, California, United States of America
| | - Lloyd Mills
- Chronic Pain Diagnostics, Roseville, California, United States of America
| | - Connie Nott
- Chronic Pain Diagnostics, Roseville, California, United States of America
| | - Robert England
- Chronic Pain Diagnostics, Roseville, California, United States of America
| | - Shaun England
- Chronic Pain Diagnostics, Roseville, California, United States of America
| |
Collapse
|
20
|
Gastl M, Brünner YF, Wiesmann M, Freiherr J. Depicting the inner and outer nose: the representation of the nose and the nasal mucosa on the human primary somatosensory cortex (SI). Hum Brain Mapp 2014; 35:4751-66. [PMID: 24659451 DOI: 10.1002/hbm.22509] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/01/2014] [Accepted: 03/05/2014] [Indexed: 11/08/2022] Open
Abstract
The nose is important not only for breathing, filtering air, and perceiving olfactory stimuli. Although the face and hands have been mapped, the representation of the internal and external surface of the nose on the primary somatosensory cortex (SI) is still poorly understood. To fill this gap functional magnetic resonance imaging (fMRI) was used to localize the nose and the nasal mucosa in the Brodman areas (BAs) 3b, 1, and 2 of the human postcentral gyrus (PG). Tactile stimulation during fMRI was applied via a customized pneumatically driven device to six stimulation sites: the alar wing of the nose, the lateral nasal mucosa, and the hand (serving as a reference area) on the left and right side of the body. Individual representations could be discriminated for the left and right hand, for the left nasal mucosa and left alar wing of the nose in BA 3b and BA 1 by comparing mean activation maxima and Euclidean distances. Right-sided nasal conditions and conditions in BA 2 could further be separated by different Euclidean distances. Regarding the alar wing of the nose, the results concurred with the classic sensory homunculus proposed by Penfield and colleagues. The nasal mucosa was not only determined an individual and bilateral representation, its position on the somatosensory cortex is also situated closer to the caudal end of the PG compared to that of the alar wing of the nose and the hand. As SI is commonly activated during the perception of odors, these findings underscore the importance of the knowledge of the representation of the nasal mucosa on the primary somatosensory cortex, especially for interpretation of results of functional imaging studies about the sense of smell.
Collapse
Affiliation(s)
- Mareike Gastl
- Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Aachen, Germany
| | | | | | | |
Collapse
|
21
|
Boendermaker B, Meier ML, Luechinger R, Humphreys BK, Hotz-Boendermaker S. The cortical and cerebellar representation of the lumbar spine. Hum Brain Mapp 2014; 35:3962-71. [PMID: 24464423 DOI: 10.1002/hbm.22451] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/11/2013] [Accepted: 12/02/2013] [Indexed: 11/09/2022] Open
Abstract
Eight decades after Penfield's discovery of the homunculus only sparse evidence exists on the cortical representation of the lumbar spine. The aim of our investigation was the description of the lumbar spine's cortical representation in healthy subjects during the application of measured manual pressure. Twenty participants in the prone position were investigated during functional magnetic resonance imaging (fMRI). An experienced manual therapist applied non-painful, posterior-to-anterior (PA) pressure on three lumbar spinous processes (L1, L3, and L5). The pressure (30 N) was monitored and controlled by sensors. The randomized stimulation protocol consisted of 68 pressure stimuli of 5 s duration. Blood oxygenation level dependent (BOLD) responses were analyzed in relation to the lumbar stimulations. The results demonstrate that controlled PA pressure on the lumbar spine induced significant activation patterns. The major new finding was a strong and consistent activation bilaterally in the somatosensory cortices (S1 and S2). In addition, bilateral activation was located medially in the anterior cerebellum. The activation pattern also included other cortical areas probably related to anticipatory postural adjustments. These revealed stable somatosensory maps of the lumbar spine in healthy subjects can subsequently be used as a baseline to investigate cortical and subcortical reorganization in low back pain patients.
Collapse
Affiliation(s)
- Bart Boendermaker
- Department of Experimental Anatomy, Vrije Universiteit Brussel, Brussel, Belgium
| | | | | | | | | |
Collapse
|
22
|
Fabri M, Polonara G. Functional topography of human corpus callosum: an FMRI mapping study. Neural Plast 2013; 2013:251308. [PMID: 23476810 PMCID: PMC3586479 DOI: 10.1155/2013/251308] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/26/2012] [Accepted: 12/04/2012] [Indexed: 12/13/2022] Open
Abstract
The concept of a topographical map of the corpus callosum (CC) has emerged from human lesion studies and from electrophysiological and anatomical tracing investigations in other mammals. Over the last few years a rising number of researchers have been reporting functional magnetic resonance imaging (fMRI) activation in white matter, particularly the CC. In this study the scope for describing CC topography with fMRI was explored by evoking activation through simple sensory stimulation and motor tasks. We reviewed our published and unpublished fMRI and diffusion tensor imaging data on the cortical representation of tactile, gustatory, auditory, and visual sensitivity and of motor activation, obtained in 36 normal volunteers and in 6 patients with partial callosotomy. Activation foci were consistently detected in discrete CC regions: anterior (taste stimuli), central (motor tasks), central and posterior (tactile stimuli), and splenium (auditory and visual stimuli). Reconstruction of callosal fibers connecting activated primary gustatory, motor, somatosensory, auditory, and visual cortices by diffusion tensor tracking showed bundles crossing, respectively, through the genu, anterior and posterior body, and splenium, at sites harboring fMRI foci. These data confirm that the CC commissure has a topographical organization and demonstrate that its functional topography can be explored with fMRI.
Collapse
Affiliation(s)
- Mara Fabri
- Sezione di Neuroscienze e Biologia Cellulare, Dipartimento di Medicina Sperimentale e Clinica, Università Politecnica delle Marche, 60020 Ancona, Italy.
| | | |
Collapse
|
23
|
Schäfer K, Blankenburg F, Kupers R, Grüner JM, Law I, Lauritzen M, Larsson HB. Negative BOLD signal changes in ipsilateral primary somatosensory cortex are associated with perfusion decreases and behavioral evidence for functional inhibition. Neuroimage 2012; 59:3119-27. [DOI: 10.1016/j.neuroimage.2011.11.085] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/21/2011] [Accepted: 11/22/2011] [Indexed: 11/25/2022] Open
|
24
|
Yang J, Han H, Chui D, Shen Y, Wu J. Prominent activation of the intraparietal and somatosensory areas during angle discrimination by intra-active touch. Hum Brain Mapp 2011; 33:2957-70. [PMID: 22020967 DOI: 10.1002/hbm.21419] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 04/28/2011] [Accepted: 06/24/2011] [Indexed: 11/07/2022] Open
Abstract
Intra-active touch (IAT) is a process that involves a body part doing the touching (active touch [AT]) and another body part being touched (passive touch [PT]) simultaneously. The brain representation related to IAT is still unclear. A total of 23 subjects carried out angle discrimination under PT, AT and IAT conditions with functional magnetic resonance imaging. All of the tasks were strictly dependent on cutaneous feedback from the finger(s). As the subjects were able to perceive the angle stimuli from the right (touching) and left (touched) sides during the IAT condition, we expected there would be greater brain activation with the IAT condition than for the AT or PT condition. Therefore, we hypothesized that the region within and/or around the intraparietal sulcus (IPS) and the part of the primary somatosensory cortex (SI) that is associated with high-level tactile spatial processing would be more active during the IAT task than during the AT and PT tasks. Compared with the areas activated by the motor somatosensory control task, the most prominent activation areas evoked by the three-angle discrimination tasks were in the SI and secondary somatosensory cortex areas in the bilateral parietal operculum, IPS, lateral occipital complex, insula and cerebellum. Finally, we directly compared IAT with AT and PT, and the results suggest that the contralateral part of IPS and part of the SI are more active under IAT conditions than under either AT or PT conditions. These results suggest that both hemispheres contribute to angle discrimination during IAT.
Collapse
Affiliation(s)
- Jiajia Yang
- Biomedical Engineering Laboratory, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | | | | | | |
Collapse
|
25
|
Morone G, Iosa M, Paolucci T, Fusco A, Alcuri R, Spadini E, Saraceni VM, Paolucci S. Efficacy of perceptive rehabilitation in the treatment of chronic nonspecific low back pain through a new tool: a randomized clinical study. Clin Rehabil 2011; 26:339-50. [PMID: 21965520 DOI: 10.1177/0269215511414443] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To evaluate the efficacy of a perceptive rehabilitative approach, based on a new device, with regard to pain and disability in patients with chronic nonspecific low back pain. DESIGN Single blind, randomized, controlled trial. SETTING An outpatient academic hospital. PATIENTS Seventy-five patients with chronic low back pain. INTERVENTIONS Patients were randomized into three groups. Twenty-five subjects received 10 sessions in one month, based on specific perceptive exercises that were performed on a suitably developed device. Twenty-five patients entered a Back School programme. Twenty-five patients comprised a control group that received the same medical and pharmacological assistance as the other groups. MAIN OUTCOME MEASURES Pain was assessed using the Visual Analogue Scale and McGill Pain Questionnaire. Disability was evaluated using the Oswestry Disability Index and Waddell Disability Index. All measurements were recorded before treatment, at the end of the study, and at 12 and 24 weeks. RESULTS General pain relief was recorded in all the groups, which was elicited more quickly in the perceptive treatment group; significant differences in pain scores were observed at the end of treatment (P < 0.001 for visual analogue scale and P = 0.001 for Questionnaire) versus the other groups. Disability scores in the perceptive group did not differ significantly from those in the other group, whereas these scores significantly differed between Back School and control groups at the follow-ups (P < 0.01 for both scales). CONCLUSION Perceptive rehabilitation has immediate positive effects on pain. Back School reduces disabilities at follow-up.
Collapse
Affiliation(s)
- Giovanni Morone
- Movement and Brain Laboratory, Santa Lucia foundation, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Topographical organization of human corpus callosum: an fMRI mapping study. Brain Res 2010; 1370:99-111. [PMID: 21081115 DOI: 10.1016/j.brainres.2010.11.039] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 11/09/2010] [Accepted: 11/09/2010] [Indexed: 12/11/2022]
Abstract
The concept of a topographical map of the corpus callosum (CC) has emerged from human lesion studies and from anatomical tracing investigations in other mammals. Over the last few years, a rising number of researchers have been reporting functional magnetic resonance imaging (fMRI) activation in white matter, particularly the CC. In this study, the scope for describing CC topography with fMRI was explored by evoking activation through simple sensory stimulation and motor tasks. We reviewed our published and unpublished fMRI data on the cortical representation of tactile, gustatory, and visual sensitivity and of motor activation, obtained in 36 volunteers. Activation foci were consistently detected in discrete CC regions: anterior (taste stimuli), central (motor tasks), central and posterior (tactile stimuli), and splenium (visual stimuli). These findings demonstrate that the functional topography of the CC can be explored with fMRI.
Collapse
|
27
|
Suppressing sensorimotor activity modulates the discrimination of auditory emotions but not speaker identity. J Neurosci 2010; 30:13552-7. [PMID: 20943896 DOI: 10.1523/jneurosci.0786-10.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Our ability to recognize the emotions of others is a crucial feature of human social cognition. Functional neuroimaging studies indicate that activity in sensorimotor cortices is evoked during the perception of emotion. In the visual domain, right somatosensory cortex activity has been shown to be critical for facial emotion recognition. However, the importance of sensorimotor representations in modalities outside of vision remains unknown. Here we use continuous theta-burst transcranial magnetic stimulation (cTBS) to investigate whether neural activity in the right postcentral gyrus (rPoG) and right lateral premotor cortex (rPM) is involved in nonverbal auditory emotion recognition. Three groups of participants completed same-different tasks on auditory stimuli, discriminating between the emotion expressed and the speakers' identities, before and following cTBS targeted at rPoG, rPM, or the vertex (control site). A task-selective deficit in auditory emotion discrimination was observed. Stimulation to rPoG and rPM resulted in a disruption of participants' abilities to discriminate emotion, but not identity, from vocal signals. These findings suggest that sensorimotor activity may be a modality-independent mechanism which aids emotion discrimination.
Collapse
|
28
|
Zlatkina V, Petrides M. Morphological patterns of the postcentral sulcus in the human brain. J Comp Neurol 2010; 518:3701-24. [PMID: 20653030 DOI: 10.1002/cne.22418] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The morphological structure of the postcentral sulcus and its variability were investigated in 40 structural magnetic resonance images of the human brain registered to the Montreal Neurological Institute (MNI) proportional stereotaxic space. This analysis showed that the postcentral sulcus is not a single sulcus, but rather a complex of sulcal segments separated by gyri, which merge their banks at distinct locations. Most of these gyri are submerged deep within the sulcus and can be observed only by examining the depth of the sulcus, although a small proportion may be observed from the surface of the brain. In the majority of the examined cerebral hemispheres (73.75%), the postcentral sulcus is separated into two or three segments or, less frequently, into four or five segments (12.5%), or it remains continuous (13.75%). Examination of the in-depth relationship between the postcentral sulcus and the intraparietal sulcus revealed that these two sulci may appear to join on the surface of the brain but they are in fact always separated by a gyrus in the cortical depth. In 32.5% of the examined hemispheres, a dorsoventrally oriented sulcus, the transverse postcentral sulcus, is located anterior to the postcentral sulcus on the lower part of the postcentral gyrus. Systematic examination of the morphology of the postcentral sulcus in the proportional stereotaxic space that is used in functional neuroimaging studies is the first step toward the establishment of anatomical-functional correlations in the anterior parietal lobe.
Collapse
Affiliation(s)
- Veronika Zlatkina
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada.
| | | |
Collapse
|
29
|
Category-specific activations during word generation reflect experiential sensorimotor modalities. Neuroimage 2009; 48:717-25. [PMID: 19559802 DOI: 10.1016/j.neuroimage.2009.06.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 06/10/2009] [Accepted: 06/18/2009] [Indexed: 11/22/2022] Open
Abstract
According to the sensorimotor theory of lexicosemantic organization, semantic representations are neurally distributed and anatomically linked to category-specific sensory areas. Previous functional neuroimaging studies have demonstrated category specificity in lexicosemantic representations. However, little evidence is available from word generation paradigms, which provide access to semantic representations while minimizing confounds resulting from low-level perceptual features of stimulus presentation. In this study, 13 healthy young adults underwent fMRI scanning while performing a word generation task, generating exemplars to nine different semantic categories. Each semantic category was assigned to one of three superordinate category types, based upon sensorimotor modalities (visual, motor, somatosensory) presumed to predominate in lexical acquisition. For word generation overall, robust activation was seen in left inferior frontal cortex. Analyses by sensorimotor modality categories yielded activations in brain regions related to perceptual and motor processing: Visual categories activated extrastriate cortex, motor categories activated the intraparietal sulcus and posterior middle temporal cortex, and somatosensory categories activated postcentral and inferior parietal regions. Our results are consistent with the sensorimotor theory, according to which lexicosemantic representations are distributed across brain regions participating in sensorimotor processing associated with the experiential components of lexicosemantic acquisition.
Collapse
|
30
|
Effects of oropharyngeal air-pulse stimulation on swallowing in healthy older adults. Dysphagia 2009; 24:302-13. [PMID: 19390893 DOI: 10.1007/s00455-009-9207-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 01/05/2009] [Indexed: 01/20/2023]
Abstract
While previous research has shown that air-pulse stimulation of the oropharynx facilitates saliva swallowing in young adults, the effects of air pulses in older adults have not been examined. Responses to air-pulse stimulation may differ in young and older adults given age-related changes in sensation, swallowing physiology, and swallow-related brain activation. Therefore, this study sought to determine the effects of oropharyngeal air-pulse stimulation on saliva swallowing rates in 18 healthy older adults. Saliva swallowing rates were monitored across six conditions: baseline without mouthpiece, baseline with mouthpiece in situ, unilateral right oropharyngeal stimulation, unilateral left oropharyngeal stimulation, bilateral oropharyngeal stimulation, and sham stimulation. Results indicated that bilateral oropharyngeal air-pulse stimulation was associated with a statistically significant increase in mean saliva swallowing rate compared to baseline without mouthpiece, baseline with mouthpiece in situ, and sham stimulation. In previous studies, young adults reported an irrepressible urge to swallow in response to oropharyngeal air-pulse delivery, but the older adults in the current study did not perceive the air-pulse stimulation as being associated with swallowing or other behaviors. These findings indicate that oropharyngeal air-pulse stimulation facilitates the elicitation of saliva swallowing in older adults.
Collapse
|
31
|
Functional MRI of oropharyngeal air-pulse stimulation. Neuroscience 2008; 153:1300-8. [DOI: 10.1016/j.neuroscience.2008.02.079] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 02/23/2008] [Accepted: 02/27/2008] [Indexed: 11/21/2022]
|
32
|
Eickhoff SB, Grefkes C, Fink GR, Zilles K. Functional lateralization of face, hand, and trunk representation in anatomically defined human somatosensory areas. Cereb Cortex 2008; 18:2820-30. [PMID: 18372289 DOI: 10.1093/cercor/bhn039] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We used functional magnetic resonance imaging (fMRI) and cytoarchitectonic probability maps to investigate the responsiveness of individual areas in the human primary and secondary somatosensory cortices to hand, face, or trunk stimulation of either body-side. A Bayesian modeling approach to quantify the probability of ipsilateral activations revealed that areas OP 1, OP 4, and OP 3 of the SII cortex as well as the trunk and face representations within all SI subareas (areas 3b, 1, and 2) show robust bilateral responses to unilateral stimulation. Such bilateral response properties are in good agreement with the transcallosal projections demonstrated for these areas in nonhuman primates and other mammals. In contrast, the SI hand region showed a different pattern. Whereas ipsilateral areas 3b and 1 were deactivated by tactile hand stimulation, particularly on the left, there was strong evidence for ipsilateral processing of information from the right hand in area 2. These results demonstrate not only the behavioral importance of the hand representation, but also suggest that area 2 may have particularly evolved to form the cortical substrate of these specialized demands, in line with recent studies on cortical evolution hypothesizing that area 2 has developed with increasing manual abilities in anthropoid primates featuring opposable thumbs.
Collapse
Affiliation(s)
- S B Eickhoff
- Institut für Neurowissenschaften und Biophysik - Medizin (INB 3), Forschungszentrum Jülich, Germany.
| | | | | | | |
Collapse
|
33
|
Asseman F, Bronstein AM, Gresty MA. Guidance of visual direction by topographical vibrotactile cues on the torso. Exp Brain Res 2007; 186:283-92. [PMID: 18071680 DOI: 10.1007/s00221-007-1231-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
Abstract
Vibration on localised areas of skin can be used to signal spatial orientation, multi-directional motion and also to guide arm and hand movements. This study investigated the possibility that vibration at loci on the skin might also be used to cue gaze direction. Eight subjects made eye or (head + eye) gaze saccades in the dark cued by vibration stimulation at discrete loci spaced on a horizontal contour across the chest. Saccade and gaze amplitudes, latencies, and directions were analysed. In the first experiment, performed without training, subjects could only use vibration cues to direct their gaze in cardinal directions and gross quadrature. There was a high variability in the relationship between locus on the trunk and gaze direction in space, both within and between subjects. Saccade latencies ranged from 377 to 433 ms and were related to the loci of vibration; the further from the body midline the quicker the response. Since the association of skin loci with gaze direction did not appear intuitive a sub-group of four subjects were retested after intensive training with feedback until they attained criterion on midline identical with 0 degrees and 15 cm (to right/left of midline) identical with 45 degrees gaze shifts right and left. Training gave a moderate improvement in directional specificity of gaze to a particular locus on the skin. Gaze direction was linearly rescaled with respect to skin loci but variability and saccade latencies remained high. The uncertainty in the relationship between vibration locus and gaze direction and the prolonged latencies of responses indicate circuitous neuronal processing. There appears to be no pre-existing stimulus-response compatibility mapping between loci on the skin and gaze direction. Vibrotactile cues on the skin of the trunk only serve a gross indication of visual direction in space.
Collapse
Affiliation(s)
- Francois Asseman
- Division of Neuroscience and Mental, Department of Clinical Neuroscience, Imperial College London, Charing Cross Campus, Fulham Palace Road, London, W6 8RF, UK.
| | | | | |
Collapse
|
34
|
Blatow M, Nennig E, Durst A, Sartor K, Stippich C. fMRI reflects functional connectivity of human somatosensory cortex. Neuroimage 2007; 37:927-36. [PMID: 17629500 DOI: 10.1016/j.neuroimage.2007.05.038] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 04/24/2007] [Accepted: 05/17/2007] [Indexed: 02/08/2023] Open
Abstract
Unilateral sensory stimulation reliably elicits contralateral somatotopic activation of primary (SI) and secondary (SII) somatosensory cortex. There is an ongoing debate about the occurrence and nature of concomitant ipsilateral SI and SII activation. Here we used functional magnetic resonance imaging (fMRI) in healthy human subjects with unilateral tactile stimulation of fingers and lips, to compare somatosensory activation patterns from distal and proximal body parts. We hypothesized that fMRI in humans should reflect the functional connectivity of somatosensory cortex as predicted by animal studies. We show that both unilateral finger and lip stimulations activate contra- and ipsilateral SI and SII cortices with high detection frequency. Correlations of BOLD-signals to the applied hemodynamic reference function were significantly higher in contralateral as compared to ipsilateral SI and SII cortices for both finger and lip stimulation, reflecting strong contribution of contralateral thalamocortical input. Furthermore, BOLD-signal correlations were higher in SI than in SII activations on the contralateral but not on the ipsilateral side. While these asymmetries within and across hemispheres were consistent for finger and lip stimulations, indicating analogous underlying organizing principles, they were less prominent for lip stimulation. Somatotopic organization was detected in SI but not in SII representations of fingers and lips. These results qualitatively and quantitatively support the prevalent concepts of anatomical and functional connectivity in the somatosensory system and therefore may allow interpretation of sensory evoked fMRI signals in terms of normal human brain function. Thus, the assessment of human somatosensory function with fMRI may permit in the future investigations of pathological conditions.
Collapse
Affiliation(s)
- Maria Blatow
- Division of Neuroradiology, Department of Neurology, University of Heidelberg Medical School, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
35
|
Eickhoff SB, Grefkes C, Zilles K, Fink GR. The Somatotopic Organization of Cytoarchitectonic Areas on the Human Parietal Operculum. Cereb Cortex 2006; 17:1800-11. [PMID: 17032710 DOI: 10.1093/cercor/bhl090] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The secondary somatosensory cortex (SII) of nonhuman primates is located on the parietal operculum. In the monkey, electrophysiological and connectivity tracing studies as well as histological investigations provide converging evidence for 3 distinct cortical areas (SII, PV, and VS) within this region, each of which contains a complete somatotopic map. Although the equivalency of the parietal operculum as the location of SII between humans and nonhuman primates is undisputed, the internal organization of the human SII region is still largely unknown. Based on their topography, we have previously argued that the cytoarchitectonic areas OP 1, OP 4, and OP 3 may constitute the human homologues of areas SII, PV, and VS, respectively. To test this hypothesis, we here examined (using functional magnetic resonance imaging) the somatotopic organization of the human parietal operculum by applying tactile stimulation to the skin at 4 different locations on either side of the body (face, hands, trunk, and legs). The locations of the resulting activation foci were then compared with the cytoarchitectonic maps of this region. Data analysis revealed 2 somatotopic body representations on the lateral operculum in areas OP 1 and OP 4. The functional border between these 2 body maps was defined by a mirror reversal in the somatotopic arrangement and coincided with the cytoarchitectonically defined border between these 2 areas. This somatotopic arrangement closely matches that described for SII and PV in nonhuman primates. The data also suggested a third somatotopic map located deeper inside the Sylvian fissure in area OP 3. Based on the observed topographic arrangement and their functional response characteristics, we conclude that cytoarchitectonic areas OP1, OP 4, and OP 3 on the human parietal operculum constitute the human homologues of primate areas SII, PV, and VS, respectively.
Collapse
Affiliation(s)
- Simon B Eickhoff
- Institut für Medizin, Forschungszentrum Jülich, Jülich, Germany.
| | | | | | | |
Collapse
|
36
|
Fabri M, Polonara G, Mascioli G, Paggi A, Salvolini U, Manzoni T. Contribution of the corpus callosum to bilateral representation of the trunk midline in the human brain: an fMRI study of callosotomized patients. Eur J Neurosci 2006; 23:3139-48. [PMID: 16820004 DOI: 10.1111/j.1460-9568.2006.04823.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human brain studies have shown that the cutaneous receptors of trunk regions close to the midline are represented in the first somatosensory cortex (SI) of both hemispheres. The present study aims to establish whether in humans, as in non-human primates, the bilateral representation of the trunk midline in area SI depends on the corpus callosum. Data were obtained from eight callosotomized patients: three with complete callosal resection, one with a partial posterior resection including the splenium and the callosal trunk, and four with partial anterior resections sparing the splenium and in one case also the posterior part of the callosal trunk. The investigation was carried out with functional magnetic resonance imaging. Unilateral tactile stimulation was applied by rubbing ventral trunk regions close to the midline (about 20 x 10 cm in width) with a soft cotton pad (frequency 1 Hz). Cortical activation foci elicited by unilateral stimulation of cutaneous regions adjacent to the midline were detected in the contralateral post-central gyrus (PCG), in a region corresponding to the trunk ventral midline representation zone of area SI, as described in a previous study of intact subjects. In most patients, activation foci were also found in the ipsilateral PCG, again as in subjects with an intact corpus callosum. The data confirm that the skin regions adjacent to the trunk midline are represented bilaterally in SI, and indicate that ipsilateral activation is at least partially independent of the corpus callosum.
Collapse
Affiliation(s)
- M Fabri
- Dipartimento di Neuroscienze, Sezione di Fisiologia, Università Politecnica delle Marche, Via Tronto 10/A, 60020 Ancona, Torrette, Italy.
| | | | | | | | | | | |
Collapse
|