Observational Study
Copyright ©The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Cardiol. Sep 26, 2016; 8(9): 553-558
Published online Sep 26, 2016. doi: 10.4330/wjc.v8.i9.553
Characterization of optimal resting tension in human pulmonary arteries
Azar Hussain, Robert T Bennett, Mubarak A Chaudhry, Syed S Qadri, Mike Cowen, Alyn H Morice, Mahmoud Loubani
Azar Hussain, Robert T Bennett, Mubarak A Chaudhry, Syed S Qadri, Mike Cowen, Mahmoud Loubani, Department of Cardiothoracic Surgery, Castle Hill Hospital, Cottingham HU16 5JQ, United Kingdom
Alyn H Morice, Centre for Cardiovascular and Metabolic Research, Hull York Medical School, Castle Hill Hospital, Cottingham HU16 5JQ, United Kingdom
Author contributions: Hussain A was the principal investigator and was responsible for the design and conduct of the study; Hussain A was responsible for the acquisition, analysis and interpretation of the data and initial draft of the manuscript; Bennett RT, Chaudhry MA, Qadri SS, Cowen M, Morice AH and Loubani M supervised the study and critically reviewed the article.
Institutional review board statement: The study was reviewed and approved by the Local Research Ethics Committee and local research and development department.
Informed consent statement: All patients were consulted and consented for resected lung tissue to be studied for our research prior to their operation at the time of their consent for surgery.
Conflict-of-interest statement: There are no conflicts of interest to report.
Data sharing statement: No additional data are available.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Azar Hussain, MBBS, MRCS (Ed), Clinical Research Fellow, Department of Cardiothoracic Surgery, Castle Hill Hospital, Castle Road, Cottingham HU16 5JQ, United Kingdom. dr_azarhussain@hotmail.com
Telephone: +44-77-48019242
Received: May 16, 2016
Peer-review started: May 16, 2016
First decision: July 5, 2016
Revised: July 15, 2016
Accepted: July 29, 2016
Article in press: August 1, 2016
Published online: September 26, 2016
Processing time: 127 Days and 13.1 Hours
Core Tip

Core tip: Pulmonary artery (PA) vasoconstriction is an important physiological process to regulate blood flow in the lungs but it also manifests in pathological conditions. Different models have been implemented to assess the baseline molecular and cellular functions of pulmonary ailments. However, a great deal of the research was undertaken on animals with little similarity to human tissue. Isolation of human PA and measurement of pulmonary vascular tension are vital to understand the pathophysiology of human pulmonary vessels. The objective behind this research is to assess the underlying resting tension for undertaking studies of the PA rings in humans.