Carbone A, D’Andrea A, Riegler L, Scarafile R, Pezzullo E, Martone F, America R, Liccardo B, Galderisi M, Bossone E, Calabrò R. Cardiac damage in athlete’s heart: When the “supernormal” heart fails! World J Cardiol 2017; 9(6): 470-480 [PMID: 28706583 DOI: 10.4330/wjc.v9.i6.470]
Corresponding Author of This Article
Antonello D’Andrea, MD, PhD, FESC, Chair of Cardiology, Second University of Naples, Monaldi Hospital, AORN Ospedali dei Colli, Corso Vittorio Emanuele 121A, 80131 Naples, Italy. antonellodandrea@libero.it
Research Domain of This Article
Cardiac & Cardiovascular Systems
Article-Type of This Article
Review
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Andreina Carbone, Antonello D’Andrea, Lucia Riegler, Raffaella Scarafile, Enrica Pezzullo, Francesca Martone, Raffaella America, Biagio Liccardo, Raffaele Calabrò, Chair of Cardiology, Second University of Naples, Monaldi Hospital, AORN Ospedali dei Colli, 80131 Naples, Italy
Maurizio Galderisi, Department of Advanced Biomedical Sciences, Federico II University Hospital, 80131 Naples, Italy
Eduardo Bossone, Department of Cardiology and Cardiac Surgery, University Hospital San Giovanni di Dio, 84131 Salern, Italy
Author contributions: Carbone A and D’Andrea A conceived and drafted the manuscript; Riegler L, Scarafile R, Pezzullo E, Martone F, America R and Liccardo B performed the literature review and analysis; Galderisi M, Bossone E and Calabrò R revised the final revision.
Conflict-of-interest statement: No potential conflicts of interest exist.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Antonello D’Andrea, MD, PhD, FESC, Chair of Cardiology, Second University of Naples, Monaldi Hospital, AORN Ospedali dei Colli, Corso Vittorio Emanuele 121A, 80131 Naples, Italy. antonellodandrea@libero.it
Telephone: +39-081-7065312 Fax: +39-081-7064234
Received: January 8, 2017 Peer-review started: January 11, 2017 First decision: February 17, 2017 Revised: March 14, 2017 Accepted: April 6, 2017 Article in press: April 10, 2017 Published online: June 26, 2017 Processing time: 169 Days and 0.6 Hours
Abstract
Intense exercise may cause heart remodeling to compensate increases in blood pressure or volume by increasing muscle mass. Cardiac changes do not involve only the left ventricle, but all heart chambers. Physiological cardiac modeling in athletes is associated with normal or enhanced cardiac function, but recent studies have documented decrements in left ventricular function during intense exercise and the release of cardiac markers of necrosis in athlete’s blood of uncertain significance. Furthermore, cardiac remodeling may predispose athletes to heart disease and result in electrical remodeling, responsible for arrhythmias. Athlete’s heart is a physiological condition and does not require a specific treatment. In some conditions, it is important to differentiate the physiological adaptations from pathological conditions, such as hypertrophic cardiomyopathy, arrhythmogenic dysplasia of the right ventricle, and non-compaction myocardium, for the greater risk of sudden cardiac death of these conditions. Moreover, some drugs and performance-enhancing drugs can cause structural alterations and arrhythmias, therefore, their use should be excluded.
Core tip: Athlete’s heart is a physiological condition that in some cases can simulate pathological disease, sometimes due to the use of doping drugs. Furthermore, exercise can induce atrial dilation and arrhythmias. Our objective is to analyze the current literature and to review the most important changes in the heart of athletes, from the different molecular pathways to the structural anomalies.