Published online Nov 26, 2015. doi: 10.4330/wjc.v7.i11.784
Peer-review started: May 31, 2015
First decision: June 24, 2015
Revised: August 16, 2015
Accepted: September 25, 2015
Article in press: September 28, 2015
Published online: November 26, 2015
Processing time: 185 Days and 18.4 Hours
Cardiac fibrosis represents an adoptive response in the heart exposed to various stress cues. While resolution of the fibrogenic response heralds normalization of heart function, persistent fibrogenesis is usually associated with progressive loss of heart function and eventually heart failure. Cardiac fibrosis is regulated by a myriad of factors that converge on the transcription of genes encoding extracellular matrix proteins, a process the epigenetic machinery plays a pivotal role. In this mini-review, we summarize recent advances regarding the epigenetic regulation of cardiac fibrosis focusing on the role of histone and DNA modifications and non-coding RNAs.
Core tip: Cardiac fibrosis contributes to the increased accidence of sudden cardiac death, heart failure and arrhythmia. The molecular mechanisms underlying cardiac fibrosis remain obscure. Seminal studies have revealed complex pathways associated with cardiac fibrosis. How histone/DNA modifying enzymes and microRNAs fine-tune these events are actively pursued by investigators. This review provides an overview on recent advances regarding the epigenetic regulation of fibrosis.