Published online Mar 26, 2023. doi: 10.4330/wjc.v15.i3.95
Peer-review started: November 25, 2022
First decision: December 13, 2022
Revised: January 4, 2023
Accepted: March 1, 2023
Article in press: March 1, 2023
Published online: March 26, 2023
Processing time: 115 Days and 10.6 Hours
Atrioventricular block requiring permanent pacemaker (PPM) implantation is an important complication of transcatheter aortic valve replacement (TAVR). Application of machine learning could potentially be used to predict pre-procedural risk for PPM.
To apply machine learning to be used to predict pre-procedural risk for PPM.
A retrospective study of 1200 patients who underwent TAVR (January 2014-December 2017) was performed. 964 patients without prior PPM were included for a 30-d analysis and 657 patients without PPM requirement through 30 d were included for a 1-year analysis. After the exclusion of variables with near-zero variance or ≥ 50% missing data, 167 variables were included in the random forest gradient boosting algorithm (GBM) optimized using 5-fold cross-validations repeated 10 times. The receiver operator curve (ROC) for the GBM model and PPM risk score models were calculated to predict the risk of PPM at 30 d and 1 year.
Of 964 patients included in the 30-d analysis without prior PPM, 19.6% required PPM post-TAVR. The mean age of patients was 80.9 ± 8.7 years. 42.1 % were female. Of 657 patients included in the 1-year analysis, the mean age of the patients was 80.7 ± 8.2. Of those, 42.6% of patients were female and 26.7% required PPM at 1-year post-TAVR. The area under ROC to predict 30-d and 1-year risk of PPM for the GBM model (0.66 and 0.72) was superior to that of the PPM risk score (0.55 and 0.54) with a P value < 0.001.
The GBM model has good discrimination and calibration in identifying patients at high risk of PPM post-TAVR.
Core Tip: Atrioventricular block requiring permanent pacemaker (PPM) implantation is an important complication of transcatheter aortic valve replacement. Application of machine learning could potentially be used to predict pre-procedural risk for PPM. Machine learning was used to predict patients who are at risk of developing conduction abnormalities requiring PPM at 30 d and 1 year. Our random forest machine learning model using machine learning outperforms PPM risk score model in its predictive value. Brachiocephalic to annulus distance to height ratio is the highest weighted predictor of PPM implantation at both 30-d and 1-year, which has not been previously described in the literature.