1
|
Liang TL, Chen Y, Zhou NJ, Shu X, Mi JN, Ma GY, Xiao Y, Yang X, Huang C, Li JX, Xie Y, Yan PY, Yao XJ, Liu L, Pan HD, Leung ELH, Li RZ. Taurine and proline promote lung tumour growth by co-regulating Azgp1/mTOR signalling pathway. NPJ Precis Oncol 2025; 9:90. [PMID: 40155495 PMCID: PMC11953302 DOI: 10.1038/s41698-025-00872-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 03/10/2025] [Indexed: 04/01/2025] Open
Abstract
Accurate metabolic biomarkers for lung cancer prognosis remain scarce but crucial. Taurine and proline, two metabolites, are consistently elevated across various cancer stages in previous studies, hinting at their potential role in disease progression. This study is the first to reveal how these metabolites contribute to poor prognosis. Transcriptomic analysis uncovered that taurine and proline downregulated Zinc-α2-glycoprotein (Azgp1), a gene linked to key metabolic pathways. Additionally, Azgp1 could also significantly affect downstream lipid metabolic pathways in lung cancer. Both taurine and proline influenced lipid metabolism via mammalian target of rapamycin (mTOR). When Azgp1 was overexpressed, lung cancer progression slowed significantly, alongside reduced mTOR activity. These findings underscore the pro-cancer role of taurine and proline, highlighting the Azgp1/mTOR axis as a vital, yet overlooked, pathway in lung cancer. This study not only advances our understanding but also identifies new therapeutic avenues.
Collapse
Affiliation(s)
- Tu-Liang Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Chinese Medicine, Guangdong Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, PR China
| | - Ying Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Chinese Medicine, Guangdong Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, PR China
| | - Nan-Jie Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Chinese Medicine, Guangdong Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, PR China
| | - Xiao Shu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Chinese Medicine, Guangdong Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, PR China
| | - Jia-Ning Mi
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Chinese Medicine, Guangdong Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, PR China
| | - Gang-Yuan Ma
- Guangzhou Medical University, Guangzhou, 510182, PR China
- Guangzhou Laboratory, Guangzhou, 510005, PR China
| | - Yao Xiao
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Chinese Medicine, Guangdong Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, PR China
| | - Xi Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (SAR), PR China
| | - Chen Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (SAR), PR China
| | - Jia-Xin Li
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Chinese Medicine, Guangdong Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, PR China
| | - Pei-Yu Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (SAR), PR China
| | - Xiao-Jun Yao
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China
| | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Chinese Medicine, Guangdong Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, PR China
- Guangzhou Laboratory, Guangzhou, 510005, PR China
| | - Hu-Dan Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Chinese Medicine, Guangdong Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, PR China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China.
| | - Run-Ze Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Chinese Medicine, Guangdong Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, PR China.
| |
Collapse
|
2
|
Gregor A, Malleier M, Auñon-Lopez A, Auernigg-Haselmaier S, König J, Pignitter M, Duszka K. Glutathione Contributes to Caloric Restriction-Triggered Shift in Taurine Homeostasis. Nutrients 2025; 17:777. [PMID: 40077647 PMCID: PMC11901847 DOI: 10.3390/nu17050777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/29/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES Previously, we found that caloric restriction (CR) in mice increases taurine levels by stimulating hepatic synthesis, secretion into the intestine and deconjugation of taurine-conjugated bile acids (BA). Subsequently, in the intestine, taurine conjugates various molecules, including glutathione (GSH). The current study explores the mechanisms behind forming taurine-GSH conjugate and its consequences for taurine, other taurine conjugates, and BA in order to improve understanding of their role in CR. METHODS The non-enzymatic conjugation of taurine and GSH was assessed and the uptake of taurine, GSH, and taurine-GSH was verified in five sections of the small intestine. Levels of taurine, gavaged 13C labeled taurine, taurine conjugates, taurine-GSH, and GSH were measured in various tissues of ad libitum and CR mice. Next, the taurine-related CR phenotype was challenged by applying the inhibitors of taurine transporter (SLC6A6) and GSH-S transferases (GST). RESULTS The CR-related increase in taurine in intestinal mucosa was accompanied by the uptake and distribution of taurine towards selected organs. A unique composition of taurine conjugates characterized each tissue. Although taurine-GSH conjugate could be formed in non-enzymatic reactions, GST activity contributed to taurine-related CR outcomes. Upon SLC6A6 and GST inhibition, the taurine-related parameters were affected mainly in the ileum rather than the liver. Meanwhile, BA levels were somewhat affected by GST inhibition in the ileum and in the liver by SLC6A6 inhibitor. CONCLUSIONS The discovered CR phenotype involves a regulatory network that adjusts taurine and BA homeostasis. GSH supports these processes by conjugating taurine, impacting taurine uptake from the intestine and its availability to form other types of conjugates.
Collapse
Affiliation(s)
- András Gregor
- Department of Nutritional Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; (A.G.); (M.M.); (S.A.-H.); (J.K.)
| | - Manuel Malleier
- Department of Nutritional Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; (A.G.); (M.M.); (S.A.-H.); (J.K.)
| | - Arturo Auñon-Lopez
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; (A.A.-L.); (M.P.)
- Vienna Doctoral School in Chemistry (DoSChem), Faculty of Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna, Austria
| | - Sandra Auernigg-Haselmaier
- Department of Nutritional Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; (A.G.); (M.M.); (S.A.-H.); (J.K.)
| | - Jurgen König
- Department of Nutritional Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; (A.G.); (M.M.); (S.A.-H.); (J.K.)
| | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; (A.A.-L.); (M.P.)
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; (A.G.); (M.M.); (S.A.-H.); (J.K.)
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
3
|
Naraki K, Keshavarzi M, Razavi BM, Hosseinzadeh H. The Protective Effects of Taurine, a Non-essential Amino Acid, Against Metals Toxicities: A Review Article. Biol Trace Elem Res 2025; 203:872-890. [PMID: 38735894 DOI: 10.1007/s12011-024-04191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
Taurine is a non-proteinogenic amino acid derived from cysteine. It is involved in several phenomena such as the regulation of growth and differentiation, osmoregulation, neurohormonal modulation, and lipid metabolism. Taurine is important because of its high levels in several tissues such as the central nervous system (CNS), heart, skeletal muscles, retinal membranes, and platelets. In this report, we present the functional properties of taurine indicating that it has potential effects on various metal toxicities. Therefore, a comprehensive literature review was performed using the Scopus, PubMed, and Web of Science databases. According to the search keywords, 61 articles were included in the study. The results indicate that taurine protects tissues against metal toxicity through enhancement of enzymatic and non-enzymatic antioxidant capacity, modulation of oxidative stress, anti-inflammatory and anti-apoptotic effects, involvement in different molecular pathways, and interference with the activity of various enzymes. Taken together, taurine is a natural supplement that presents antitoxic effects against many types of compounds, especially metals, suggesting public consumption of this amino acid as a prophylactic agent against the incidence of metal toxicity.
Collapse
Affiliation(s)
- Karim Naraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Keshavarzi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Keshavarzi M, Naraki K, Razavi BM, Hosseinzadeh H. A narrative review and new insights into the protective effects of taurine against drug side effects. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:203-230. [PMID: 39141023 DOI: 10.1007/s00210-024-03331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Taurine, a non-essential amino acid produced from cysteine, is abundant in body tissues and blood plasma. It plays vital roles in growth, osmosis, lipid metabolism, and neurohormonal modulation. Taurine has antioxidant, anti-apoptotic, and anti-inflammatory properties, and its deficiency can lead to various diseases including cardiovascular, diabetic, renal, and liver disorders. This report provides a comprehensive review of the functional properties of taurine in counteracting pharmaceutical-induced side effects. A search across databases such as Scopus, PubMed, MEDLINE, and Web of Science yielded 109 articles, of which 75 were included in the study. These results suggest that the protective effects of taurine involve mechanisms such as influencing pathways of Nrf2/OH-1, PI3-kinase/AKT and ERK2, boosting antioxidants (SOD, GPx and CAT), and suppression of inflammatory cytokines (TNF-α, IL-1β and IL-6). Overall, supplementation with taurine along with medications with significant side effects may mitigate these effects and enhance their efficacy. Further investigation of the interactions between taurine and other nutrients or compounds may provide insights into synergistic effects and novel therapeutic approaches.
Collapse
Affiliation(s)
- Majid Keshavarzi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Naraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Sarra F, Paocic D, Zöchling A, Gregor A, Auñon-Lopez A, Pignitter M, Duszka K. Gut microbiota, dietary taurine, and fiber shift taurine homeostasis in adipose tissue of calorie-restricted mice to impact fat loss. J Nutr Biochem 2024; 134:109720. [PMID: 39103106 DOI: 10.1016/j.jnutbio.2024.109720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Previously, we demonstrated that caloric restriction (CR) stimulates the synthesis, conjugation, secretion, and deconjugation of taurine and bile acids in the intestine, as well as their reuptake. Given taurine's potent antiobesogenic properties, this study aimed to assess whether the CR-induced shift in taurine homeostasis contributes to adipose tissue loss. To verify that, male C57Bl/6 mice were subjected to 20% CR or ad libitum feeding, with variations in cage bedding and gut microbiota conditions. Additional groups received taurine supplementation or were fed a low-taurine diet (LTD). The results showed that in CR animals, taurine derived from the intestine was preferentially trafficked to epididymal white adipose tissue (eWAT) over other tested organs. Besides increased levels of taurine transporter TauT, gene expression of Cysteine dioxygenase (Cdo) involved in taurine synthesis was upregulated in CR eWAT. Taurine concentration in adipocytes was inversely correlated with fat pad weight of CR mice. Different types of cage bedding did not impact eWAT taurine levels; however, the lack of bedding and consumption of a diet high in soluble fiber did. Depleting gut microbiota with antibiotics or inhibiting bile salt hydrolase (BSH) activity reduced WAT taurine concentration in CR mice. Taurine supplementation increased taurine levels in WAT and brown adipose tissue (BAT), promoting fat loss in CR animals. LTD consumption blunted WAT loss in CR animals, with negligible impact on BAT. This study provides multiple insights into taurine's role in CR-triggered fat loss and describes a novel communication path between the liver, gut, microbiota, and WAT, with taurine acting as a messenger.
Collapse
Affiliation(s)
- Filomena Sarra
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Daniela Paocic
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Andrea Zöchling
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - András Gregor
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Arturo Auñon-Lopez
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria; Faculty of Chemistry, Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
| | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Lamminpää I, Amedei A, Parolini C. Effects of Marine-Derived Components on Cardiovascular Disease Risk Factors and Gut Microbiota Diversity. Mar Drugs 2024; 22:523. [PMID: 39590803 PMCID: PMC11595733 DOI: 10.3390/md22110523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Cardiovascular diseases (CVDs), which comprise coronary heart disease, hypertension, and stroke, collectively represent the number one cause of death globally. Atherosclerosis is the dominant cause of CVDs, and its risk factors are elevated levels of low-density lipoprotein cholesterol and triglycerides, hypertension, cigarette smoking, obesity, and diabetes mellitus. In addition, diverse evidence highlights the role played by inflammation and clonal haematopoiesis, eventually leading to immunity involvement. The human microbiota project and subsequent studies using next-generation sequencing technology have indicated that thousands of different microbial species are present in the human gut. Disturbances in the gut microbiota (GM) composition, i.e., gut dysbiosis, have been associated with diseases ranging from localised gastrointestinal disorders to metabolic and cardiovascular illnesses. Of note, experimental studies suggested that GM, host immune cells, and marine-derived ingredients work together to ensure intestinal wall integrity. This review discusses current evidence concerning the links among GM, marine-derived ingredients, and human inflammatory disease. In detail, we summarise the impact of fish-derived proteins/peptides and algae components on CVD risk factors and gut microbiome. Furthermore, we describe the interplay among these dietary components, probiotics/prebiotics, and CVDs.
Collapse
Affiliation(s)
- Ingrid Lamminpää
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy;
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy;
- SOD of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), 50134 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50134 Florence, Italy
| | - Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, ‘Rodolfo Paoletti’, Via Balzaretti 9, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
7
|
Gregor A, Auñon-Lopez A, Pignitter M, Duszka K. The distinct mechanism regulating taurine homeostasis in mice: Nutrient availability affects taurine levels in the liver and energy restriction influences it in the intestine. Life Sci 2024; 359:123213. [PMID: 39488261 DOI: 10.1016/j.lfs.2024.123213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/18/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
AIMS Our previous findings indicate that caloric restriction (CR) stimulates the production and secretion of taurine-conjugated bile acids in mice. Subsequent processing by gut microbiota leads to increased levels of deconjugated bile acids, taurine, and various taurine conjugates in the intestine. Furthermore, we demonstrated that carbohydrate restriction and protein restriction, to a smaller extent, mirror the impact of CR in terms of hepatic production of bile acids but not their secretion. We hypothesized that modulating dietary macronutrient levels would influence taurine homeostasis in the liver and intestine of ad libitum-fed and CR animals. MATERIALS AND METHODS Ad libitum-fed male mice were allocated to receive either a control, low-protein (LP), low-fat (LF), or low-carbohydrate (LC) diet. Meanwhile, CR groups were given 80 % of their regular voluntary food intake as a control, high-protein (HP), high-fat (HF), or high-carbohydrate (HC) diet. KEY FINDINGS While CR did not affect the taurine levels and its conjugates in the liver, alteration in carbohydrates and protein intake impacted it. Conversely, in the intestine, CR increased the amount of free and conjugated taurine, whereas the various diets did not affect it or disrupt the CR-specific phenotype. Notably, variations in diet composition impacted the expression of the taurine transporter (Slc6a6) and glutathione-S transferases (GST) in the intestine as well as cysteine dioxygenase (Cdo) in the liver. SIGNIFICANCE The liver and the intestine show distinct responses to dietary interventions, with hepatic taurine being affected by the diet composition, while intestinal taurine is governed by energy availability.
Collapse
Affiliation(s)
- András Gregor
- Department of Nutritional Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Arturo Auñon-Lopez
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), Faculty of Chemistry, University of Vienna, Währingerstraße 42, 1090 Vienna, Austria.
| | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
8
|
Ren L, Pushpakumar S, Almarshood H, Das SK, Sen U. Epigenetic DNA Methylation and Protein Homocysteinylation: Key Players in Hypertensive Renovascular Damage. Int J Mol Sci 2024; 25:11599. [PMID: 39519150 PMCID: PMC11546175 DOI: 10.3390/ijms252111599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Hypertension has been a threat to the health of people, the mechanism of which, however, remains poorly understood. It is clinically related to loss of nephron function, glomerular sclerosis, or necrosis, resulting in renal functional declines. The mechanisms underlying hypertension's development and progression to organ damage, including hypertensive renal damage, remain to be fully elucidated. As a developing approach, epigenetics has been postulated to elucidate the phenomena that otherwise cannot be explained by genetic studies. The main epigenetic hallmarks, such as DNA methylation, histone acetylation, deacetylation, noncoding RNAs, and protein N-homocysteinylation have been linked with hypertension. In addition to contributing to endothelial dysfunction and oxidative stress, biologically active gases, including NO, CO, and H2S, are crucial regulators contributing to vascular remodeling since their complex interplay conducts homeostatic functions in the renovascular system. Importantly, epigenetic modifications also directly contribute to the pathogenesis of kidney damage via protein N-homocysteinylation. Hence, epigenetic modulation to intervene in renovascular damage is a potential therapeutic approach to treat renal disease and dysfunction. This review illustrates some of the epigenetic hallmarks and their mediators, which have the ability to diminish the injury triggered by hypertension and renal disease. In the end, we provide potential therapeutic possibilities to treat renovascular diseases in hypertension.
Collapse
Affiliation(s)
- Lu Ren
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (L.R.)
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (L.R.)
| | - Hebah Almarshood
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (L.R.)
| | - Swapan K. Das
- Department of Internal Medicine, Section on Endocrinology and Metabolism, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (L.R.)
| |
Collapse
|
9
|
Liang TL, Pan HD, Yan PY, Mi JN, Liu XC, Bao WQ, Lian LR, Zhang CF, Chen Y, Wang JR, Xie Y, Zhou H, Yao XJ, Graham P, Leung ELH, Liu L, Li RZ. Serum taurine affects lung cancer progression by regulating tumor immune escape mediated by the immune microenvironment. J Adv Res 2024:S2090-1232(24)00389-8. [PMID: 39243941 DOI: 10.1016/j.jare.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
INTRODUCTION Taurine is a naturally occurring sulfonic acid involved in various physiological and pathological processes, such as the regulation of calcium signaling, immune function, inflammatory response, and cellular aging. It has the potential to predict tumor malignant transformation and formation. Our previous work discovered the elevated taurine in lung cancer patients. However, the precise impact and mechanism of elevated serum taurine levels on lung cancer progression and the suitability of taurine or taurine-containing drinks for lung cancer patients remain unclear. OBJECTIVES Our study aimed to systematically investigate the role of taurine in lung cancer, with the ultimate goal of contributing novel strategies for lung cancer treatment. METHODS Lung cancer C57 and nude mice models, RNA sequencing, and stable transfection were applied to explored the effects and mechanisms of taurine on lung cancer. Tissues of 129 non-small cell lung cancer (NSCLC) patients derived from 2014 to 2017 for immunohistochemistry were collected in Taihe Hospital. RESULTS Low doses of taurine, as well as taurine-infused beverages at equivalent doses, significantly enhanced lung tumor growth. Equally intriguing is that the promoting effect of taurine on lung cancer progression wanes as the dosage increases. The Nuclear factor erythroid 2-like 1 (Nfe2l1 or Nrf1)-reactive oxygen species (ROS)-PD-1 axis may be a potential mechanism for dual role of taurine in lung cancer progression. However, taurine's impacts on lung cancer progression and the anti-tumor function of Nfe2l1 were mainly determined by the immune competence. Taurine inhitited lung tumor growth probably by inhibiting NF-κB-mediated inflammatory responses in nude mice rather than by affecting Nfe2l1 function. As patients age increased, Nfe2l1 gene and protein gradually returned to the levels observed in healthy individuals, but lost its anti-lung cancer effects. CONCLUSIONS Taurine emerges as a potential biomarker for lung cancer progression, predicting poor prognosis and unsuitability for specific patients. Lung cancer patients, especially young patients, should be conscious of potential effects of taurine-containing drinks. Conversely, taurine or its drinks may be more suitable for older or immune-deficient patients.
Collapse
Affiliation(s)
- Tu-Liang Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
| | - Hu-Dan Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
| | - Pei-Yu Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macau (S.A.R.), China
| | - Jia-Ning Mi
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
| | - Xiao-Cui Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
| | - Wei-Qian Bao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
| | - Li-Rong Lian
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
| | - Cui-Fen Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
| | - Ying Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
| | - Jing-Rong Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China
| | - Xiao-Jun Yao
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China
| | - Pawlec Graham
- Department of Immunology, University of Tübingen, Germany
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, University of Macau, Macau (SAR), China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China.
| | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China.
| | - Run-Ze Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, China.
| |
Collapse
|
10
|
Li X, Wang C, Yanagita T, Xue C, Zhang T, Wang Y. Trimethylamine N-Oxide in Aquatic Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14498-14520. [PMID: 38885200 DOI: 10.1021/acs.jafc.4c01974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Trimethylamine N-oxide (TMAO), a characteristic nonprotein nitrogen compound, is widely present in seafood, which exhibits osmoregulatory effects for marine organisms in vivo and plays an important role in aquaculture and aquatic product preservation. However, much attention has been focused on the negative effect of TMAO since it has recently emerged as a putative promoter of chronic diseases. To get full knowledge and maximize our ability to balance the positive and negative aspects of TMAO, in this review, we comprehensively discuss the TMAO in aquatic products from the aspects of physiological functions for marine organisms, flavor, quality, the conversion of precursors, the influences on human health, and the seafood ingredients interaction consideration. Though the circulating TMAO level is inevitably enhanced after seafood consumption, dietary seafood still exhibits beneficial health effects and may provide nutraceuticals to balance the possible adverse effects of TMAO.
Collapse
Affiliation(s)
- Xiaoyue Li
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Chengcheng Wang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga 840-8502, Japan
| | - Changhu Xue
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Tiantian Zhang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yuming Wang
- SKL of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Sanya Institute of Oceanography, Ocean University of China, Sanya 572024, China
| |
Collapse
|
11
|
Zhang N, Huang Y, Wang G, Xiang Y, Jing Z, Zeng J, Yu F, Pan X, Zhou W, Zeng X. Metabolomics assisted by transcriptomics analysis to reveal metabolic characteristics and potential biomarkers associated with treatment response of neoadjuvant therapy with TCbHP regimen in HER2 + breast cancer. Breast Cancer Res 2024; 26:64. [PMID: 38610016 PMCID: PMC11010353 DOI: 10.1186/s13058-024-01813-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND This study aimed to explore potential indicators associated with the neoadjuvant efficacy of TCbHP regimen (taxane, carboplatin, trastuzumab, and pertuzumab) in HER2 + breast cancer (BrCa) patients. METHODS A total of 120 plasma samples from 40 patients with HER2 + BrCa were prospectively collected at three treatment times of neoadjuvant therapy (NAT) with TCbHP regimen. Serum metabolites were analyzed based on LC-MS and GC-MS data. Random forest was used to establish predictive models based on pre-therapeutic differentially expressed metabolites. Time series analysis was used to obtain potential monitors for treatment response. Transcriptome analysis was performed in nine available pre‑therapeutic specimens of core needle biopsies. Integrated analyses of metabolomics and transcriptomics were also performed in these nine patients. qRT-PCR was used to detect altered genes in trastuzumab-sensitive and trastuzumab-resistant cell lines. RESULTS Twenty-one patients achieved pCR, and 19 patients achieved non-pCR. There were significant differences in plasma metabolic profiles before and during treatment. A total of 100 differential metabolites were identified between pCR patients and non-pCR patients at baseline; these metabolites were markedly enriched in 40 metabolic pathways. The area under the curve (AUC) values for discriminating the pCR and non-PCR groups from the NAT of the single potential metabolite [sophorose, N-(2-acetamido) iminodiacetic acid, taurine and 6-hydroxy-2-aminohexanoic acid] or combined panel of these metabolites were greater than 0.910. Eighteen metabolites exhibited potential for monitoring efficacy. Several validated genes might be associated with trastuzumab resistance. Thirty-nine altered pathways were found to be abnormally expressed at both the transcriptional and metabolic levels. CONCLUSION Serum-metabolomics could be used as a powerful tool for exploring informative biomarkers for predicting or monitoring treatment efficacy. Metabolomics integrated with transcriptomics analysis could assist in obtaining new insights into biochemical pathophysiology and might facilitate the development of new treatment targets for insensitive patients.
Collapse
Affiliation(s)
- Ningning Zhang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Yuxin Huang
- Department of Breast Cancer Center, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China
| | - Guanwen Wang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Yimei Xiang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Zhouhong Jing
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Junjie Zeng
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Feng Yu
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Xianjun Pan
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Wenqi Zhou
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaohua Zeng
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China.
- Department of Breast Cancer Center, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China.
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
12
|
Domoto T, Kise K, Oyama Y, Furuya K, Kato Y, Nishita Y, Kozakai R, Otsuka R. Association of taurine intake with changes in physical fitness among community-dwelling middle-aged and older Japanese adults: an 8-year longitudinal study. Front Nutr 2024; 11:1337738. [PMID: 38571751 PMCID: PMC10989742 DOI: 10.3389/fnut.2024.1337738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/17/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Taurine has diverse valuable biological functions, including antioxidant activity and regulation of osmotic pressure. Maintaining physical fitness from middle age is important for healthy life expectancy. Although taurine administration improves muscle endurance and strength, its role in maintenance remains unclear. We aimed to clarify the longitudinal taurine intake association with fitness changes. Methods Participants comprised men and women aged ≥40 years who participated in the third (2002-2004; Baseline) and seventh (2010-2012; Follow-up) waves of the National Institute for Longevity Sciences-Longitudinal Study of Aging (NILS-LSA) and completed a 3-day dietary weights recording survey at baseline. A table of taurine content was prepared for 751 foods (including five food groups: Seaweed; Fish and shellfish; Meat; Eggs; and Milk and dairy products) from the Standard Tables of Food Composition in Japan (1,878 foods) 2010. Four physical fitness items (knee extension muscle strength, sit-and-reach, one-leg standing with eyes closed, and maximum walking speed) were measured at baseline and follow-up. We analyzed the association of taurine intake with physical fitness change, employing a general linear model (GLM) and trend tests for baseline taurine intake and follow-up fitness change. Adjustments included baseline variables: sex, age, height, weight, educational level, self-rated health, smoking status, depressive symptoms, and clinical history. Results The estimated average daily taurine intake (standard deviation) was 207.5 (145.6) mg/day at the baseline. When examining the association with the four physical fitness parameters, higher taurine intake positively increased the change in knee extension muscle strength (T1; 0.1, T2; 0.8, T3; 1.1 (kgf) GLM, p < 0.05; p for trend <0.05) and reduced the decline in knee extension muscle strength in the subgroup analysis of participants aged ≥65 years (T1: -1.9, T2: -1.7, T3: -0.4 kgf; GLM p < 0.05, p for trend <0.05). No relationship was found between taurine intake and the remaining three fitness factors. Conclusion Estimation of taurine intake showed that dietary taurine intake potentially contributes to the maintenance of knee extension muscle strength over 8 years among Japanese community-dwelling middle-aged and older individuals. This is the first study to investigate the association of dietary taurine intake with muscle strength.
Collapse
Affiliation(s)
- Takashi Domoto
- Self-Medication Research and Development Headquarters, Taisho Pharmaceutical Co., Ltd., Tokyo, Japan
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kazuyoshi Kise
- Self-Medication Research and Development Headquarters, Taisho Pharmaceutical Co., Ltd., Tokyo, Japan
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yukiko Oyama
- Self-Medication Research and Development Headquarters, Taisho Pharmaceutical Co., Ltd., Tokyo, Japan
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kanae Furuya
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yuki Kato
- Faculty of Health and Medical Sciences, Aichi Shukutoku University, Nagakute, Japan
| | - Yukiko Nishita
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Rumi Kozakai
- School of Lifelong Sport, Hokusho University, Ebetsu, Japan
| | - Rei Otsuka
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
13
|
Ommati MM, Rezaei H, Socorro RM, Tian W, Zhao J, Rouhani A, Sabouri S, Ghaderi F, Niknahad AM, Najibi A, Mazloomi S, Safipour M, Honarpishefard Z, Wang HW, Niknahad H, Heidari R. Pre/postnatal taurine supplementation improves neurodevelopment and brain function in mice offspring: A persistent developmental study from puberty to maturity. Life Sci 2024; 336:122284. [PMID: 38008208 DOI: 10.1016/j.lfs.2023.122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Taurine (TAU) is a sulfur-containing amino acid abundantly found in the human body. Endogenously, TAU is synthesized from cysteine in the liver. However, newborns rely entirely on TAU's dietary supply (milk). There is no investigation on the effect of long-term TAU administration on next-generation neurological development. The current study evaluated the effect of long-term TAU supplementation during the maternal gestational and litter weaning time on several neurological parameters in mice offspring. Moreover, the effects of TAU on mitochondrial function and oxidative stress biomarkers as plausible mechanisms of its action in the whole brain and hippocampus have been evaluated. TAU (0.5 % and 1 % w/v) was dissolved in the drinking water of pregnant mice (Day one of pregnancy), and amino acid supplementation was continued during the weaning time (post-natal day; PND = 21) until litters maturity (PND = 65). It was found that TAU significantly improved cognitive function, memory performance, reflexive motor activity, and emotional behaviors in F1-mice generation. TAU measurement in the brain and hippocampus revealed higher levels of this amino acid. TAU and ATP levels were also significantly higher in the mitochondria isolated from the whole brain and hippocampus. Based on these data, TAU could be suggested as a supplement during pregnancy or in pediatric formula. The effects of TAU on cellular mitochondrial function and energy metabolism might play a fundamental role in the positive effects of this amino acid observed in this investigation.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Heresh Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Retana-Márquez Socorro
- Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City, Mexico
| | - Weishun Tian
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Ayeh Rouhani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sabouri
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China; College of Animal Science and Veterinary, Shanxi agricultural University, Taigu, Shanxi, China
| | - Fatemeh Ghaderi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mohammad Niknahad
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Chemistry and Biochemistry, Miami University, 244 Hughes Laboratories, 651 E. High Street, Oxford, OH 45056, USA
| | - Sahra Mazloomi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moslem Safipour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Honarpishefard
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China.
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City, Mexico.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Ho KM, Lee A, Wu W, Chan MT, Ling L, Lipman J, Roberts J, Litton E, Joynt GM, Wong M. Flattening the biological age curve by improving metabolic health: to taurine or not to taurine, that' s the question. J Geriatr Cardiol 2023; 20:813-823. [PMID: 38098466 PMCID: PMC10716614 DOI: 10.26599/1671-5411.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
The aging population is an important issue around the world especially in developed countries. Although medical advances have substantially extended life span, the same cannot be said for the duration of health span. We are seeing increasing numbers of elderly people who are frail and/or have multiple chronic conditions; all of these can affect the quality of life of the elderly population as well as increase the burden on the healthcare system. Aging is mechanistically related to common medical conditions such as diabetes mellitus, ischemic heart disease, cognitive decline, and frailty. A recently accepted concept termed 'Accelerated Biological Aging' can be diagnosed when a person's biological age-as measured by biomarkers of DNA methylation-is older than their corresponding chronological age. Taurine, a conditionally essential amino acid, has received much attention in the past few years. A substantial number of animal studies have provided a strong scientific foundation suggesting that this amino acid can improve cellular and metabolic health, including blood glucose control, so much that it has been labelled one of the 'longevity amino acids'. In this review article, we propose the rationale that an adequately powered randomized-controlled-trial (RCT) is needed to confirm whether taurine can meaningfully improve metabolic and microbiome health, and biological age. This trial should incorporate certain elements in order to provide the much-needed evidence to guide doctors, and also the community at large, to determine whether this promising and inexpensive amino acid is useful in improving human metabolic health.
Collapse
Affiliation(s)
- Kwok M. Ho
- Department of Intensive Care Medicine, Fiona Stanley Hospital, Perth, Australia
- Medical School, The University of Western Australia, Perth, Australia
- School of Veterinary & Life Sciences, Murdoch University, Perth, Australia
| | - Anna Lee
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - William Wu
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Matthew T.V. Chan
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Lowell Ling
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Jeffrey Lipman
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Jason Roberts
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia
- Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Edward Litton
- Department of Intensive Care Medicine, Fiona Stanley Hospital, Perth, Australia
- Medical School, The University of Western Australia, Perth, Australia
| | - Gavin M. Joynt
- Department of Anaesthesia & Intensive Care, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Martin Wong
- JC School of Public Health and Primary Care, Centre for Health Education and Health Promotion, Chinese University of Hong Kong, Hong Kong, China
- School of Public Health, Peking University, Beijing, China
- School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Toprak G, Alkan Y. Comparison of the Short-Term Effect of Coffee, Energy Drink, and Water on the Eyes in Young Healthy Subjects. Cureus 2023; 15:e48335. [PMID: 38060736 PMCID: PMC10698391 DOI: 10.7759/cureus.48335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2023] [Indexed: 10/16/2024] Open
Abstract
PURPOSE We aim to compare the short-term effects of energy drink (ED), coffee, and water on the eyes of young healthy male subjects. MATERIALS AND METHODS The right eyes of 30 healthy male subjects were included in this study. We measured the intraocular pressure (IOP), mean arterial pressure (MAP), retinal thickness (RT), choroidal thickness (CT), and retinal nerve fiber layer (RNFL) thickness using spectral domain optical coherence tomography (SD OCT). The measurements for RT and CT were taken at the fovea as well as 1,500 µm nasal and temporal to the fovea. The measurements of the subjects were performed on the first day before water consumption and at 30 minutes and 60 minutes following intake of 250 mL of water. Measurements were repeated at the same regime on the second day after drinking 250 mL of coffee containing an equal concentration of caffeine in ED (37.5 mg) and on the third day after drinking 250 mL of ED. Repeated measures one-way analysis of variance test was used for statistical analysis. RESULTS No significant difference was found for ocular perfusion pressure (OPP), MAP, RT, and IOP between the measurements taken on three consecutive days (p>0.05 for all). The CT values for the central, nasal, and temporal segments were significantly reduced in 0-30 and 0-60 minutes following coffee and ED intake (the range of p-value was <0.001-0.027). CONCLUSIONS Both coffee and ED intake caused acute and significant decreases in CT that persisted for one hour in young healthy male subjects. The impact of ED intake on CT was attributed mainly to its caffeine content.
Collapse
Affiliation(s)
- Güvenç Toprak
- Ophthalmology, Abant Izzet Baysal University Hospital, Bolu, TUR
| | - Yunus Alkan
- Ophthalmology, Abant Izzet Baysal University Hospital, Bolu, TUR
| |
Collapse
|
16
|
Cui F, Zhao L, Lu M, Liu R, Lv Q, Lin D, Li K, Zhang Y, Wang Y, Wang Y, Wang L, Tan Z, Tu Y, Zou Y. Functional and structural brain reorganization in patients with ischemic stroke: a multimodality MRI fusion study. Cereb Cortex 2023; 33:10453-10462. [PMID: 37566914 DOI: 10.1093/cercor/bhad295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Understanding how structural and functional reorganization occurs is crucial for stroke diagnosis and prognosis. Previous magnetic resonance imaging (MRI) studies focused on the analyses of a single modality and demonstrated abnormalities in both lesion regions and their associated distal regions. However, the relationships of multimodality alterations and their associations with poststroke motor deficits are still unclear. In this study, 71 hemiplegia patients and 41 matched healthy controls (HCs) were recruited and underwent MRI examination at baseline and at 2-week follow-up sessions. A multimodal fusion approach (multimodal canonical correlation analysis + joint independent component analysis), with amplitude of low-frequency fluctuation (ALFF) and gray matter volume (GMV) as features, was used to extract the co-altered patterns of brain structure and function. Then compared the changes in patients' brain structure and function between baseline and follow-up sessions. Compared with HCs, the brain structure and function of stroke patients decreased synchronously in the local lesions and their associated distal regions. Damage to structure and function in the local lesion regions was associated with motor function. After 2 weeks, ALFF in the local lesion regions was increased, while GMV did not improve. Taken together, the brain structure and function in the local lesions and their associated distal regions were damaged synchronously after ischemic stroke, while during motor recovery, the 2 modalities were changed separately.
Collapse
Affiliation(s)
- Fangyuan Cui
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing 100700, China
| | - Lei Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, No.16 Lincui Road, Chaoyang District, Beijing 100101, China
| | - Mengxin Lu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing 100700, China
- Department of Traditional Chinese Medicine, Beijing Chaoyang Hospital, Capital Medical University, No.8 South Gongti Road, Chaoyang District, Beijing 100020, China
| | - Ruoyi Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing 100700, China
- Department of Traditional Chinese Medicine, Cangzhou Central Hospital, No.16 Xinhua West Road, Cangzhou, Hebei 061000, China
| | - Qiuyi Lv
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing 100700, China
| | - Dan Lin
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing 100700, China
| | - Kuangshi Li
- 5Department of Rehabilitation, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing 100700, China
| | - Yong Zhang
- 5Department of Rehabilitation, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing 100700, China
| | - Yahui Wang
- Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, No.168 Litang Road, Changping District, Beijing 102218, China
| | - Yue Wang
- Department of Protology, China-Japan Friendship Hospital, No.2 East Yinghua Road, Chaoyang District, Beijing 100029, China
| | - Liping Wang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing 100700, China
| | - Zhongjian Tan
- Department of Radiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing 100700, China
| | - Yiheng Tu
- Department of Psychology, University of Chinese Academy of Sciences, No.19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yihuai Zou
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No.5 Haiyuncang, Dongcheng District, Beijing 100700, China
| |
Collapse
|
17
|
Okano M, He F, Ma N, Kobayashi H, Oikawa S, Nishimura K, Tawara I, Murata M. Taurine induces upregulation of p53 and Beclin1 and has antitumor effect in human nasopharyngeal carcinoma cells in vitro and in vivo. Acta Histochem 2023; 125:151978. [PMID: 36470150 DOI: 10.1016/j.acthis.2022.151978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022]
Abstract
Taurine is an amino acid that has several physiological functions. Previously, we reported the apoptosis-inducing effect of taurine in human nasopharyngeal carcinoma (NPC) cells in vitro. However, the effect of taurine on NPC cell growth in vivo has not been elucidated. Autophagy plays an important role in cell metabolism and exhibits antitumor effects under certain conditions. In this study, we investigated the effects of taurine on apoptosis- and autophagy-related molecules in NPC cells in vitro and in vivo. In our in vitro study, NPC cells (HK1-EBV) were treated with taurine, and Western blot and immunocytochemical analyses revealed that taurine co-upregulated Beclin 1 and p53, with autophagy upregulation. In the in vivo study, we used a nude mouse model with subcutaneous xenografts of HK1-EBV cells. Once the tumors reached 2-3 mm in diameter, the mice were provided with distilled water (control group) or taurine dissolved in distilled water (taurine-treated group) ad libitum (day 1) and sacrificed on day 13. The volume and weight of the tumors were significantly lower in the taurine-treated group. Using immunohistochemistry (IHC), we confirmed that taurine treatment reduced the distinct cancer nest areas. IHC analyses also revealed that taurine promoted apoptosis, as evidenced by an increase in cleaved caspase-3, accompanied by upregulation of p53. Additionally, taurine increased LC3B and Beclin 1 expression, which are typical autophagy markers. The present study demonstrated taurine-mediated tumor growth suppression. Therefore, taurine may be a novel preventive strategy for NPC.
Collapse
Affiliation(s)
- Motohiko Okano
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan; Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Feng He
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Komei Nishimura
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, Japan.
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan.
| |
Collapse
|
18
|
Najibi A, Rezaei H, Manthari RK, Niknahad H, Jamshidzadeh A, Farshad O, Yan F, Ma Y, Xu D, Tang Z, Ommati MM, Heidari R. Cellular and mitochondrial taurine depletion in bile duct ligated rats: a justification for taurine supplementation in cholestasis/cirrhosis. Clin Exp Hepatol 2022; 8:195-210. [PMID: 36685263 PMCID: PMC9850306 DOI: 10.5114/ceh.2022.119216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/05/2022] [Indexed: 01/25/2023] Open
Abstract
Taurine (TAU) is a free amino acid abundant in the human body. Various physiological roles have been attributed to TAU. At the subcellular level, mitochondria are the primary targets for TAU function. Meanwhile, it has been found that TAU depletion is associated with severe pathologies. Cholestasis is a severe clinical complication that can progress to liver fibrosis, cirrhosis, and hepatic failure. Bile duct ligation (BDL) is a reliable model for assessing cholestasis/cirrhosis and related complications. The current study was designed to investigate the effects of cholestasis/cirrhosis on tissue and mitochondrial TAU reservoirs. Cholestatic rats were monitored (14 and 42 days after BDL surgery), and TAU levels were assessed in various tissues and isolated mitochondria. There was a significant decrease in TAU in the brain, heart, liver, kidney, skeletal muscle, intestine, lung, testis, and ovary of the BDL animals (14 and 42 days after surgery). Mitochondrial levels of TAU were also significantly depleted in BDL animals. Tissue and mitochondrial TAU levels in cirrhotic animals (42 days after the BDL operation) were substantially lower than those in the cholestatic rats (14 days after BDL surgery). These data indicate an essential role for tissue and mitochondrial TAU in preventing organ injury induced by cholestasis/cirrhosis and could justify TAU supplementation for therapeutic purposes.
Collapse
Affiliation(s)
- Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Heresh Rezaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam, Andhra Pradesh, India
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Feng Yan
- Department of Life Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Yanqin Ma
- Department of Life Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Dongmei Xu
- Department of Life Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Zhongwei Tang
- Department of Life Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | | | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Tao X, Zhang Z, Yang Z, Rao B. The effects of taurine supplementation on diabetes mellitus in humans: A systematic review and meta-analysis. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100106. [PMID: 35769396 PMCID: PMC9235038 DOI: 10.1016/j.fochms.2022.100106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/19/2022] [Indexed: 12/27/2022]
Abstract
The first meta-analysis to comprehensively evaluate the effects of taurine supplementation on diabetic patients. Statistical significance in HbA1C, Fasting Blood Sugar, HOMA-IR after oral supplemental of taurine by diabetic patients than that of placebo. Taurine is expected to be a new option for the management of diabetes. Objective The ameliorative effect of taurine on diabetes has received extensive attention in recent years. Despite promising data from animal studies, the efficacy of taurine supplementation in human studies has been inconsistent. We thus did a meta-analysis of randomized controlled trials to assess the effect of taurine supplement on glycemic indices, serum lipids, blood pressure, body composition in patients with diabetes. Methods We systematically searched PubMed, Embase, Cochrane, Web of Science, FDA.gov, and ClinicalTrials.gov for randomized controlled trials (published from inception to January 15, 2022; no language restrictions) about the effect of taurine supplement on diabetes. Values of Standardized Mean Differences (SMD) were determined for continuous outcomes. Results Of 2206 identified studies, 5 randomized controlled trials were eligible and were included in our analysis (N = 209 participants). Compared with the control group, taurine could significantly reduce HbA1c (SMD −0.41[95% CI: −0.74, −0.09], p = 0.01), Fasting Blood Sugar (SMD − 1.28[95% CI: −2.42, −0.14], p = 0.03) and HOMA-IR (SMD − 0.64[95% CI: −1.22, −0.06], p = 0.03). In addition, taurine also reduced Insulin (SMD −0.48 [95% CI: −0.99, 0.03], p = 0.06) and TG (SMD −0.26 [95% CI: −0.55, 0.02], p = 0.07), but did not reach statistical significance. Conclusions Taurine supplementation is beneficial in reducing glycemic indices, such as HbA1c, Fasting Blood Sugar, HOMA-IR in diabetic patients, but has no significant effect on serum lipids, blood pressure and body composition in diabetic patients. Taurine emerges as a new option for the management of patients with diabetes. Further studies are needed to understand the potential effect of taurine in diabetic patients.
Collapse
Affiliation(s)
- Xiaomei Tao
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Zhanzhi Zhang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Zhenpeng Yang
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| | - Benqiang Rao
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing 100038, China
| |
Collapse
|
20
|
Khalaf HA, Elsamanoudy AZ, Abo-Elkhair SM, Hassan FE, Mohie PM, Ghoneim FM. Endoplasmic reticulum stress and mitochondrial injury are critical molecular drivers of AlCl 3-induced testicular and epididymal distortion and dysfunction: protective role of taurine. Histochem Cell Biol 2022; 158:97-121. [PMID: 35511291 PMCID: PMC9247002 DOI: 10.1007/s00418-022-02111-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
Aluminum, the third most plentiful metal in the Earth's crust, has potential for human exposure and harm. Oxidative stress plays an essential role in producing male infertility by inducing defects in sperm functions. We aimed to investigate the role of endoplasmic reticulum (ER) stress and mitochondrial injury in the pathogenesis of aluminum chloride (AlCl3)-induced testicular and epididymal damage at the histological, biochemical, and molecular levels, and to assess the potential protective role of taurine. Forty-eight adult male albino rats were separated into four groups (12 in each): negative control, positive control, AlCl3, and AlCl3 plus taurine groups. Testes and epididymis were dissected. Histological and immunohistochemical (Bax and vimentin) studies were carried out. Gene expression of vimentin, PCNA, CHOP, Bcl-2, Bax, and XBP1 were investigated via quantitative real-time polymerase chain reaction (qRT-PCR), besides estimation of malondialdehyde (MDA) and total antioxidant capacity (TAC). Light and electron microscopic examinations of the testes and epididymis revealed pathological changes emphasizing both mitochondrial injury and ER stress in the AlCl3 group. Taurine-treated rats showed a noticeable improvement in the testicular and epididymal ultrastructure. Moreover, they exhibited increased gene expression of vimentin, Bcl-2, and PNCA accompanied by decreased CHOP, Bax, and XBP1 gene expression. In conclusion, male reproductive impairment is a significant hazard associated with AlCl3 exposure. Both ER stress and mitochondrial impairment are critical mechanisms of the deterioration in the testes and epididymis induced by AlCl3, but taurine can amend this.
Collapse
Affiliation(s)
- Hanaa A Khalaf
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ayman Z Elsamanoudy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah, 21465, Saudi Arabia
| | - Salwa M Abo-Elkhair
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Fatma E Hassan
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Passant M Mohie
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Fatma M Ghoneim
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
21
|
Roşca AE, Vlădăreanu AM, Mirica R, Anghel-Timaru CM, Mititelu A, Popescu BO, Căruntu C, Voiculescu SE, Gologan Ş, Onisâi M, Iordan I, Zăgrean L. Taurine and Its Derivatives: Analysis of the Inhibitory Effect on Platelet Function and Their Antithrombotic Potential. J Clin Med 2022; 11:jcm11030666. [PMID: 35160118 PMCID: PMC8837186 DOI: 10.3390/jcm11030666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Taurine is a semi-essential, the most abundant free amino acid in the human body, with a six times higher concentration in platelets than any other amino acid. It is highly beneficial for the organism, has many therapeutic actions, and is currently approved for heart failure treatment in Japan. Taurine has been repeatedly reported to elicit an inhibitory action on platelet activation and aggregation, sustained by in vivo, ex vivo, and in vitro animal and human studies. Taurine showed effectiveness in several pathologies involving thrombotic diathesis, such as diabetes, traumatic brain injury, acute ischemic stroke, and others. As human prospective studies on thrombosis outcome are very difficult to carry out, there is an obvious need to validate existing findings, and bring new compelling data about the mechanisms underlying taurine and derivatives antiplatelet action and their antithrombotic potential. Chloramine derivatives of taurine proved a higher stability and pronounced selectivity for platelet receptors, raising the assumption that they could represent future potential antithrombotic agents. Considering that taurine and its analogues display permissible side effects, along with the need of finding new, alternative antithrombotic drugs with minimal side effects and long-term action, the potential clinical relevance of this fascinating nutrient and its derivatives requires further consideration.
Collapse
Affiliation(s)
- Adrian Eugen Roşca
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-M.A.-T.); (C.C.); (S.E.V.); (L.Z.)
- Department of Cardiology, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
- Correspondence: (A.E.R.); (A.-M.V.)
| | - Ana-Maria Vlădăreanu
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (A.M.); (M.O.); (I.I.)
- Correspondence: (A.E.R.); (A.-M.V.)
| | - Radu Mirica
- Department of Surgery, “Carol Davila” University of Medicine and Pharmacy, “Sf. Ioan” Clinical Hospital, 042122 Bucharest, Romania;
| | - Cristina-Mihaela Anghel-Timaru
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-M.A.-T.); (C.C.); (S.E.V.); (L.Z.)
| | - Alina Mititelu
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (A.M.); (M.O.); (I.I.)
| | - Bogdan Ovidiu Popescu
- Department of Neurology, “Carol Davila” University of Medicine and Pharmacy, Colentina Clinical Hospital, 020125 Bucharest, Romania;
| | - Constantin Căruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-M.A.-T.); (C.C.); (S.E.V.); (L.Z.)
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Suzana Elena Voiculescu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-M.A.-T.); (C.C.); (S.E.V.); (L.Z.)
| | - Şerban Gologan
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, Elias Clinical Hospital, 011461 Bucharest, Romania;
| | - Minodora Onisâi
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (A.M.); (M.O.); (I.I.)
| | - Iuliana Iordan
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (A.M.); (M.O.); (I.I.)
- Department of Medical Semiology and Nephrology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Leon Zăgrean
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-M.A.-T.); (C.C.); (S.E.V.); (L.Z.)
| |
Collapse
|
22
|
Frequency-Specific Changes of Amplitude of Low-Frequency Fluctuations in Patients with Acute Basal Ganglia Ischemic Stroke. Neural Plast 2022; 2022:4106131. [PMID: 35111218 PMCID: PMC8803449 DOI: 10.1155/2022/4106131] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/18/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
Objective. The purpose of this study was to investigate the characteristics of different frequency bands in the spontaneous brain activity among patients with acute basal ganglia ischemic stroke (BGIS). Methods. In the present study, thirty-four patients with acute BGIS and forty-four healthy controls were examined by resting-state functional magnetic resonance imaging (rs-fMRI) from May 2019 to December 2020. Two amplitude methods including amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) calculated in three frequency bands (conventional frequency band: 0.01-0.08 Hz; slow-5 frequency band: 0.01-0.027 Hz; and slow-4 frequency band: 0.027-0.073 Hz) were conducted to evaluate the spontaneous brain activity in patients with acute BGIS and healthy controls (HCs). Gaussian Random Field Theory (GRF, voxel
and cluster
) correction was applied. The correlation analyses were performed between clinical scores and altered metrics values. Results. Compared to HCs, patients with acute BGIS showed decreased ALFF in the right supramarginal gyrus (SMG) in the conventional and slow-4 bands, increased fALFF in the right middle frontal gyrus (MFG) in the conventional and slow-4 bands, and increased fALFF in the bilateral caudate in the slow-5 frequency band. The fALFF value of the right caudate in the slow-5 frequency band was negatively correlated with the clinical scores. Conclusion. In conclusion, this study showed the alterations in ALFF and fALFF in three frequency bands between patients with acute BGIS and HCs. The results reflected that the abnormal LFO amplitude might be related with different frequency bands and promoted our understanding of pathophysiological mechanism in acute BGIS.
Collapse
|
23
|
Lisco G, Giagulli VA, De Pergola G, Guastamacchia E, Jirillo E, Triggiani V. The Pathogenic Role of Foam Cells in Atherogenesis: Do They Represent Novel Therapeutic Targets? Endocr Metab Immune Disord Drug Targets 2022; 22:765-777. [PMID: 34994321 DOI: 10.2174/1871530322666220107114313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Foam cells, mainly derived from monocytes-macrophages, contain lipid droplets essentially composed of cholesterol in their cytoplasm. They infiltrate the intima of arteries, contributing to the formation of atherosclerotic plaques. PATHOGENESIS Foam cells damage the arterial cell wall via the release of proinflammatory cytokines, free radicals, and matrix metalloproteinases, enhancing the plaque size up to its rupture. THERAPY A correct dietary regimen seems to be the most appropriate therapeutic approach to minimize obesity, which is associated with the formation of foam cells. At the same time, different types of antioxidants have been evaluated to arrest the formation of foam cells, even if the results are still contradictory. In any case, a combination of antioxidants seems to be more efficient in the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giovanni De Pergola
- Unit of Geriatrics and Internal Medicine, National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Science, Neuroscience and Sensory Organs, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
24
|
Mori M, Sagara M, Mori H, Yamori Y. Grading of Japanese Diet Intakes by 24-Hour Urine Analysis of Taurine and Soy Isoflavones in Relation to Cardiovascular Risks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:173-184. [DOI: 10.1007/978-3-030-93337-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Gregor A, Pignitter M, Fahrngruber C, Bayer S, Somoza V, König J, Duszka K. Caloric restriction increases levels of taurine in the intestine and stimulates taurine uptake by conjugation to glutathione. J Nutr Biochem 2021; 96:108781. [PMID: 34022385 DOI: 10.1016/j.jnutbio.2021.108781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/30/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Our previous study indicated increased levels of taurine-conjugated bile acids (BA) in the intestine content of mice submitted to caloric restriction (CR). In the current project, we found increased levels of free taurine and taurine conjugates, including glutathione (GSH)-taurine, in CR compared to ad libitum fed animals in the mucosa along the intestine but not in the liver. The levels of free GSH were decreased in the intestine of CR compared to ad libitum fed mice. However, the levels of oxidized GSH were not affected and were complemented by the lack of changes in the antioxidative parameters. Glutathione-S transferases (GST) enzymatic activity was increased as was the expression of GST genes along the gastrointestinal tract of CR mice. In the CR intestine, addition of GSH to taurine solution enhanced taurine uptake. Accordingly, the expression of taurine transporter (TauT) was increased in the ileum of CR animals and the levels of free and BA-conjugated taurine were lower in the feces of CR compared to ad libitum fed mice. Fittingly, BA- and GSH-conjugated taurine levels were increased in the plasma of CR mice, however, free taurine remained unaffected. We conclude that CR-triggered production and release of taurine-conjugated BA in the intestine results in increased levels of free taurine what stimulates GST to conjugate and enhance uptake of taurine from the intestine.
Collapse
Affiliation(s)
- András Gregor
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Marc Pignitter
- Department of Physiological Chemistry, University of Vienna, Vienna, Austria
| | | | - Sebastian Bayer
- Department of Physiological Chemistry, University of Vienna, Vienna, Austria
| | - Veronika Somoza
- Department of Physiological Chemistry, University of Vienna, Vienna, Austria; Leibniz-Institut for Food Systems Biology, Technical University of Munich, Freising, Germany
| | - Jürgen König
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
26
|
Madbouly N, Azmy A, Salama A, El-Amir A. The nephroprotective properties of taurine-amikacin treatment in rats are mediated through HSP25 and TLR-4 regulation. J Antibiot (Tokyo) 2021; 74:580-592. [PMID: 34253885 DOI: 10.1038/s41429-021-00441-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Amikacin (AMK) is one of the most effective aminoglycoside antibiotics. However, nephrotoxicity is a major deleterious and dose-limiting side effect associated with its clinical use especially in high dose AMK-treated patients. The present study assessed the ability of taurine (TAU) to alleviate or prevent AMK-induced nephrotoxicity if co-administrated with AMK focusing on inflammation, apoptosis, and fibrosis. Male Sprague Dawley rats were assigned to six equal groups. Group 1: rats received saline (normal control), group 2: normal rats received 50 mg kg-1 TAU intraperitoneally (i.p.). Groups 3 and 4: received AMK (25 or 50 mg kg-1; i.p.). Groups 5 and 6: received TAU (50 mg kg-1; i.p.) concurrently with AMK (25 or 50 mg kg-1; i.p.) for 3 weeks. AMK-induced nephrotoxicity is evidenced by elevated levels of serum creatinine (CRE), blood urea nitrogen (BUN), and uric acid (UA). Histopathological investigations provoked damaging changes in the renal tissues. Heat shock proteins (HSP)25 and Toll-like receptor-4 (TLR-4) elevated levels were involved in the induction of inflammatory reactions and focal fibrosis. The improved activation of TLR-4 may stimulate monocytes to upgrade Interleukin (IL)-18 production rather than IL-10. TAU proved therapeutic effectiveness against AMK-induced renal toxicity through downregulation of HSP25, TLR-4, caspase-3, and IL-18 with up-regulation of IL-10 levels.
Collapse
Affiliation(s)
- Neveen Madbouly
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt.
| | - Ayman Azmy
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Abeer Salama
- Pharmacology Department, National Research Centre, Cairo, Egypt
| | - Azza El-Amir
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
27
|
The Role of Taurine in Mitochondria Health: More Than Just an Antioxidant. Molecules 2021; 26:molecules26164913. [PMID: 34443494 PMCID: PMC8400259 DOI: 10.3390/molecules26164913] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
Taurine is a naturally occurring sulfur-containing amino acid that is found abundantly in excitatory tissues, such as the heart, brain, retina and skeletal muscles. Taurine was first isolated in the 1800s, but not much was known about this molecule until the 1990s. In 1985, taurine was first approved as the treatment among heart failure patients in Japan. Accumulating studies have shown that taurine supplementation also protects against pathologies associated with mitochondrial defects, such as aging, mitochondrial diseases, metabolic syndrome, cancer, cardiovascular diseases and neurological disorders. In this review, we will provide a general overview on the mitochondria biology and the consequence of mitochondrial defects in pathologies. Then, we will discuss the antioxidant action of taurine, particularly in relation to the maintenance of mitochondria function. We will also describe several reported studies on the current use of taurine supplementation in several mitochondria-associated pathologies in humans.
Collapse
|
28
|
Mendivil CO. Fish Consumption: A Review of Its Effects on Metabolic and Hormonal Health. Nutr Metab Insights 2021; 14:11786388211022378. [PMID: 34158802 PMCID: PMC8182174 DOI: 10.1177/11786388211022378] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 05/08/2021] [Indexed: 12/14/2022] Open
Abstract
Dietary habits are a major determinant of the risk of chronic disease, particularly metabolic and endocrine disorders. Fish as a food group are a unique source of nutrients with metabolic and hormonal importance including omega-3 fatty acids, iodine, selenium, vitamin D, taurine and carnitine. Fish are also a source of high quality protein and have in general low caloric density. The impact of these nutrients on cardiovascular risk has been extensively reviewed, but the impact of fish on the broader field of endocrine and metabolic health is sometimes not sufficiently appreciated. This article aimed to summarize the impact the effect of regular fish consumption on conditions like the metabolic syndrome, obesity, diabetes, hypothyroidism, polycystic ovary syndrome and the menopausal transition, which are in and of themselves significant causes of morbidity and mortality worldwide. The review revealed that scientific evidence from food science, translational research, epidemiologic studies and interventional trials shows that regular fish consumption has a positive impact on thyroid homeostasis, facilitates maintenance of a healthy body weight, reduces the magnitude of age-associated increases in blood pressure, improves glucose homeostasis helping prevent diabetes and the metabolic syndrome, and has a positive impact on muscle mass preservation among the elderly. These effects are mediated by multiple mechanisms, only some of which have been identified. For most of these effects it holds true that the potential benefits are more substantial when baseline fish consumption is low.
Collapse
Affiliation(s)
- Carlos O Mendivil
- School of Medicine, Universidad de los
Andes, Bogotá, Colombia
- Section of Endocrinology, Department of
Internal Medicine, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| |
Collapse
|
29
|
Dong Y, Li X, Liu Y, Gao J, Tao J. The molecular targets of taurine confer anti-hyperlipidemic effects. Life Sci 2021; 278:119579. [PMID: 33961852 DOI: 10.1016/j.lfs.2021.119579] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
Hyperlipidemia, an independent risk factor for atherosclerosis, is regarded as a lipid metabolism disorder associated with elevated plasma triglyceride and/or cholesterol. Genetic factors and unhealthy lifestyles, such as excess caloric intake and physical inactivity, can result in hyperlipidemia. Taurine, a sulfur-containing non-essential amino acid, is abundant in marine foods and has been associated with wide-ranging beneficial physiological effects, with special reference to regulating aberrant lipid metabolism. Its anti-hyperlipidemic mechanism is complex, which is related to many enzymes in the process of fat anabolism and catabolism (e.g., HMGCR, CYP7A1, LDLR, FXR, FAS and ACC). Anti-inflammatory and antioxidant molecular targets, lipid autophagy, metabolic reprogramming and gut microbiota will also be reviewed.
Collapse
Affiliation(s)
- Yuanyuan Dong
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, China; Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 LuJiang Road, Hefei 230001, Anhui, China
| | - Xiaoling Li
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, China; Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 LuJiang Road, Hefei 230001, Anhui, China
| | - Yaling Liu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, China; Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 LuJiang Road, Hefei 230001, Anhui, China
| | - Jie Gao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, China; Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 LuJiang Road, Hefei 230001, Anhui, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, China; Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 LuJiang Road, Hefei 230001, Anhui, China.
| |
Collapse
|
30
|
Baliou S, Adamaki M, Ioannou P, Pappa A, Panayiotidis MI, Christodoulou I, Spandidos DA, Kyriakopoulos AM, Zoumpourlis V. Ameliorative effect of taurine against diabetes and renal-associated disorders (Review). MEDICINE INTERNATIONAL 2021; 1:3. [PMID: 36699147 PMCID: PMC9855276 DOI: 10.3892/mi.2021.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/25/2021] [Indexed: 01/28/2023]
Abstract
To develop novel therapeutic methods for both diabetic and renal disorders, scientists had initially focused on elucidating the molecular mechanisms of taurine in established cell lines and mouse models. Although a large amount of data have been revealed, taurine has been confirmed to be the next step of novel promising therapeutic interventions against diabetic disorders. Taurine appears to ameliorate diabetes 1-related complications in various organs through its antioxidant, anti-inflammatory and anti-hormonal actions. In type 2 diabetes, taurine has been positively implicated in glucose homeostasis, exerting potent hypoglycemic, anti-obesity, hypotensive and hypolipidemic effects. Of particular interest is that taurine provides protection against renal dysfunction, including hypertension and proteinuria, specific glomerular and tubular disorders, acute and chronic renal conditions, and diabetic nephropathy. The ameliorative effects of taurine against renal disorders are based on its osmoregulatory properties, its association with signaling pathways and its association with the renin-angiotensin-aldosterone system (RAAS). Further clinical studies are required to ensure the importance of research findings.
Collapse
Affiliation(s)
- Stella Baliou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Adamaki
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Petros Ioannou
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
- Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Ioannis Christodoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71409 Heraklion, Greece
| | | | - Vassilis Zoumpourlis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|
31
|
Yanshin N, Kushnareva A, Lemesheva V, Birkemeyer C, Tarakhovskaya E. Chemical Composition and Potential Practical Application of 15 Red Algal Species from the White Sea Coast (the Arctic Ocean). Molecules 2021; 26:2489. [PMID: 33923301 PMCID: PMC8123152 DOI: 10.3390/molecules26092489] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 02/03/2023] Open
Abstract
Though numerous valuable compounds from red algae already experience high demand in medicine, nutrition, and different branches of industry, these organisms are still recognized as an underexploited resource. This study provides a comprehensive characterization of the chemical composition of 15 Arctic red algal species from the perspective of their practical relevance in medicine and the food industry. We show that several virtually unstudied species may be regarded as promising sources of different valuable metabolites and minerals. Thus, several filamentous ceramialean algae (Ceramium virgatum, Polysiphonia stricta, Savoiea arctica) had total protein content of 20-32% of dry weight, which is comparable to or higher than that of already commercially exploited species (Palmaria palmata, Porphyra sp.). Moreover, ceramialean algae contained high amounts of pigments, macronutrients, and ascorbic acid. Euthora cristata (Gigartinales) accumulated free essential amino acids, taurine, pantothenic acid, and floridoside. Thalli of P. palmata and C. virgatum contained the highest amounts of the nonproteinogenic amino acid β-alanine (9.1 and 3.2 μM g-1 DW, respectively). Several red algae tend to accumulate heavy metals; although this may limit their application in the food industry, it makes them promising candidates for phytoremediation or the use as bioindicators.
Collapse
Affiliation(s)
- Nikolay Yanshin
- Department of Plant Physiology and Biochemistry, Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.Y.); (V.L.)
| | | | - Valeriia Lemesheva
- Department of Plant Physiology and Biochemistry, Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.Y.); (V.L.)
| | - Claudia Birkemeyer
- Faculty of Chemistry and Mineralogy, University of Leipzig, 04103 Leipzig, Germany;
| | - Elena Tarakhovskaya
- Department of Plant Physiology and Biochemistry, Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (N.Y.); (V.L.)
- Vavilov Institute of General Genetics RAS, St. Petersburg Branch, 199034 St. Petersburg, Russia
| |
Collapse
|
32
|
McCarty MF. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int J Mol Sci 2021; 22:ijms22073321. [PMID: 33805039 PMCID: PMC8037104 DOI: 10.3390/ijms22073321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Although well documented drug therapies are available for the management of ventricular hypertrophy (VH) and heart failure (HF), most patients nonetheless experience a downhill course, and further therapeutic measures are needed. Nutraceutical, dietary, and lifestyle measures may have particular merit in this regard, as they are currently available, relatively safe and inexpensive, and can lend themselves to primary prevention as well. A consideration of the pathogenic mechanisms underlying the VH/HF syndrome suggests that measures which control oxidative and endoplasmic reticulum (ER) stress, that support effective nitric oxide and hydrogen sulfide bioactivity, that prevent a reduction in cardiomyocyte pH, and that boost the production of protective hormones, such as fibroblast growth factor 21 (FGF21), while suppressing fibroblast growth factor 23 (FGF23) and marinobufagenin, may have utility for preventing and controlling this syndrome. Agents considered in this essay include phycocyanobilin, N-acetylcysteine, lipoic acid, ferulic acid, zinc, selenium, ubiquinol, astaxanthin, melatonin, tauroursodeoxycholic acid, berberine, citrulline, high-dose folate, cocoa flavanols, hawthorn extract, dietary nitrate, high-dose biotin, soy isoflavones, taurine, carnitine, magnesium orotate, EPA-rich fish oil, glycine, and copper. The potential advantages of whole-food plant-based diets, moderation in salt intake, avoidance of phosphate additives, and regular exercise training and sauna sessions are also discussed. There should be considerable scope for the development of functional foods and supplements which make it more convenient and affordable for patients to consume complementary combinations of the agents discussed here. Research Strategy: Key word searching of PubMed was employed to locate the research papers whose findings are cited in this essay.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, 811 B Nahant Ct., San Diego, CA 92109, USA
| |
Collapse
|
33
|
Fujita KK, Xia Z, Tomy G, Montina T, Wiseman S. 1H NMR based metabolomic profiling of early life stage zebrafish (Danio rerio) exposed to a water-soluble fraction of weathered sediment-bound diluted bitumen. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105766. [PMID: 33578324 DOI: 10.1016/j.aquatox.2021.105766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Spills of diluted bitumen (dilbit) from pipelines pose a risk to the health of aquatic organisms, including fish, and with expected increases in production and transportation of dilbit, these risks could increase. To date, the majority of studies have investigated effects of fresh dilbit on aquatic organisms, but little is known about effects of weathered sediment-bound dilbit, including mechanisms of toxicity. The goal of this study was to use 1H NMR based metabolomics to identify altered metabolites and pathways in early life-stages of zebrafish (Danio rerio) exposed to a sediment derived water-soluble fraction of dilbit (SDWSF) to better understand mechanisms of adverse effects. Zebrafish embryos exposed to the SDWSF until 120 h post-fertilization exhibited increased prevalence of pericardial edema, yolk sac edema, and swim bladder malformations that are typical of exposure to fresh dilbit. Concentrations of nine metabolites (alanine, glutamine, lysine, threonine, tyrosine, betaine, taurine, inosine, and glycerol) were significantly altered in embryos exposed to SDWSF. Pathway topology analysis revealed four potentially impacted pathways: 1) phenylalanine, tyrosine, and tryptophan biosynthesis, 2) taurine and hypotaurine metabolism, 3) alanine, aspartate, and glutamate metabolism, and 4) glycine, serine, and threonine metabolism. Altered metabolites were linked to several biological process, that when perturbed could be key events in mechanisms of developmental effects observed in embryos. Future studies should further investigate the role of perturbations to these metabolites and pathways to determine the specific role they might play in adverse effects of exposure to dilbit.
Collapse
Affiliation(s)
- Kaden K Fujita
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Zhe Xia
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Gregg Tomy
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada; Southern Alberta Genome Sciences Centre, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada; Water Institute for Sustainable Environments, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| |
Collapse
|
34
|
The effects of taurine supplementation on obesity, blood pressure and lipid profile: A meta-analysis of randomized controlled trials. Eur J Pharmacol 2020; 885:173533. [DOI: 10.1016/j.ejphar.2020.173533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
|
35
|
Mousavi K, Niknahad H, Ghalamfarsa A, Mohammadi H, Azarpira N, Ommati MM, Heidari R. Taurine mitigates cirrhosis-associated heart injury through mitochondrial-dependent and antioxidative mechanisms. Clin Exp Hepatol 2020; 6:207-219. [PMID: 33145427 PMCID: PMC7592093 DOI: 10.5114/ceh.2020.99513] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Cirrhosis-induced heart injury and cardiomyopathy is a serious consequence of this disease. It has been shown that bile duct ligated (BDL) animals could serve as an appropriate experimental model to investigate heart tissue injury in cirrhosis. The accumulation of cytotoxic chemicals (e.g., bile acids) could also adversely affect the heart tissue. Oxidative stress and mitochondrial impairment are the most prominent mechanisms of bile acid cytotoxicity. Taurine (Tau) is the most abundant non-protein amino acid in the human body. The cardioprotective effects of this amino acid have repeatedly been investigated. In the current study, it was examined whether mitochondrial dysfunction and oxidative stress are involved in the pathogenesis of cirrhosis-induced heart injury. Rats underwent BDL surgery. BDL animals received Tau (50, 100, and 500 mg/kg, i.p.) for 42 consecutive days. A significant increase in oxidative stress biomarkers was detected in the heart tissue of BDL animals. Moreover, it was found that heart tissue mitochondrial indices of functionality were deteriorated in the BDL group. Tau treatment significantly decreased oxidative stress and improved mitochondrial function in the heart tissue of cirrhotic animals. These data provide clues for the involvement of mitochondrial impairment and oxidative stress in the pathogenesis of heart injury in BDL rats. On the other hand, Tau supplementation could serve as an effective ancillary treatment against BDL-associated heart injury. Mitochondrial regulating and antioxidative properties of Tau might play a fundamental role in its mechanism of protective effects in the heart tissue of BDL animals.
Collapse
Affiliation(s)
- Khadijeh Mousavi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Niknahad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Ghalamfarsa
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamidreza Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
36
|
Chakraborty S, Mandal J, Cheng X, Galla S, Hindupur A, Saha P, Yeoh BS, Mell B, Yeo JY, Vijay-Kumar M, Yang T, Joe B. Diurnal Timing Dependent Alterations in Gut Microbial Composition Are Synchronously Linked to Salt-Sensitive Hypertension and Renal Damage. Hypertension 2020; 76:59-72. [PMID: 32450738 DOI: 10.1161/hypertensionaha.120.14830] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alterations of diurnal rhythms of blood pressure (BP) and reshaping of gut microbiota are both independently associated with hypertension. However, the relationships between biorhythms of BP and gut microbial composition are unknown. We hypothesized that diurnal timing-associated alterations of microbial compositions are synchronous with diurnal rhythmicity, dip in BP, and renal function. To test this hypothesis, Dahl salt-sensitive (S) rats on low- and high-salt diets were examined for time of day effects on gut microbiota, BP, and indicators of renal damage. Major shifts in night and day patterns of specific groups of microbiota were observed between the dark (active) and light (rest) phases, which correlated with diurnal rhythmicity of BP. The diurnal abundance of Firmicutes, Bacteroidetes, and Actinobacteria were independently associated with BP. Discrete bacterial taxa were observed to correlate independently or interactively with one or more of the following 3 factors: (1) BP rhythm, (2) dietary salt, and (3) dip in BP. Phylogenetic Investigation of Communities revealed diurnal timing effects on microbial pathways, characterized by upregulated biosynthetic processes during the active phase of host, and upregulated degradation pathways of metabolites in the resting phase. Additional metagenomics functional pathways with rhythm variations were noted for aromatic amino acid metabolism and taurine metabolism. These diurnal timing dependent changes in microbiota, their functional pathways, and BP dip were associated with concerted effects of the levels of renal lipocalin 2 and kidney injury molecule-1 expression. These data provide evidence for a firm and concerted diurnal timing effects of BP, renal damage, and select microbial communities.
Collapse
Affiliation(s)
- Saroj Chakraborty
- From the Microbiome Consortium, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH; and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH (S.J., J.M., X.C., S.G., A.H., P.S., B.S.Y., B.M., J.-Y.Y., M.V-K., T.Y., B.J.)
| | - Juthika Mandal
- From the Microbiome Consortium, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH; and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH (S.J., J.M., X.C., S.G., A.H., P.S., B.S.Y., B.M., J.-Y.Y., M.V-K., T.Y., B.J.)
| | - Xi Cheng
- From the Microbiome Consortium, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH; and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH (S.J., J.M., X.C., S.G., A.H., P.S., B.S.Y., B.M., J.-Y.Y., M.V-K., T.Y., B.J.)
| | - Sarah Galla
- From the Microbiome Consortium, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH; and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH (S.J., J.M., X.C., S.G., A.H., P.S., B.S.Y., B.M., J.-Y.Y., M.V-K., T.Y., B.J.)
| | - Anay Hindupur
- From the Microbiome Consortium, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH; and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH (S.J., J.M., X.C., S.G., A.H., P.S., B.S.Y., B.M., J.-Y.Y., M.V-K., T.Y., B.J.)
| | - Piu Saha
- From the Microbiome Consortium, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH; and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH (S.J., J.M., X.C., S.G., A.H., P.S., B.S.Y., B.M., J.-Y.Y., M.V-K., T.Y., B.J.)
| | - Beng San Yeoh
- From the Microbiome Consortium, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH; and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH (S.J., J.M., X.C., S.G., A.H., P.S., B.S.Y., B.M., J.-Y.Y., M.V-K., T.Y., B.J.)
| | - Blair Mell
- From the Microbiome Consortium, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH; and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH (S.J., J.M., X.C., S.G., A.H., P.S., B.S.Y., B.M., J.-Y.Y., M.V-K., T.Y., B.J.)
| | - Ji-Youn Yeo
- From the Microbiome Consortium, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH; and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH (S.J., J.M., X.C., S.G., A.H., P.S., B.S.Y., B.M., J.-Y.Y., M.V-K., T.Y., B.J.)
| | - Matam Vijay-Kumar
- From the Microbiome Consortium, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH; and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH (S.J., J.M., X.C., S.G., A.H., P.S., B.S.Y., B.M., J.-Y.Y., M.V-K., T.Y., B.J.)
| | - Tao Yang
- From the Microbiome Consortium, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH; and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH (S.J., J.M., X.C., S.G., A.H., P.S., B.S.Y., B.M., J.-Y.Y., M.V-K., T.Y., B.J.)
| | - Bina Joe
- From the Microbiome Consortium, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH; and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH (S.J., J.M., X.C., S.G., A.H., P.S., B.S.Y., B.M., J.-Y.Y., M.V-K., T.Y., B.J.)
| |
Collapse
|
37
|
Taurine Attenuates Carcinogenicity in Ulcerative Colitis-Colorectal Cancer Mouse Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7935917. [PMID: 32566100 PMCID: PMC7260642 DOI: 10.1155/2020/7935917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/09/2020] [Indexed: 02/07/2023]
Abstract
Taurine (2-aminoethane-sulfonic acid) is a type of amino acids and has numerous physiological and therapeutic functions, including anti-inflammation. However, there are few studies on the anticancer action of taurine. Our previous studies have demonstrated that taurine exhibits an apoptosis-inducing effect on human nasopharyngeal carcinoma cells in vitro. In this study, we have investigated whether taurine has an anticancer effect, using azoxymethane (AOM)/sulfate sodium (DSS)- induced mouse model for colon carcinogenesis. All mice, except those in control group, received a single intraperitoneal injection of AOM and DSS in the drinking water for 7 days twice, with 1-week interval. After the first DSS treatment, mice were given distilled water (model group) or taurine in the drinking water (taurine group) ad libitum. No tumor was observed in the control group. Taurine significantly suppressed AOM+DSS-induced tumor formation. Histopathological examination revealed AOM/DSS treatment induced colon cancer in all mice (8/8, 100%), and taurine significantly inhibited the progression of colon cancer (4/9, 44.4%). Taurine significantly attenuated cell proliferation in cancer tissues detected by Ki-67 staining. Taurine significantly increased the levels of an apoptosis marker cleaved caspase-9 and tumor suppressor protein PTEN. This is the first study that demonstrated that taurine significantly reduced carcinogenicity in vivo using AOM/DSS-induced colon cancer mouse model.
Collapse
|
38
|
Mensegue MF, Burgueño AL, Tellechea ML. Perinatal taurine exerts a hypotensive effect in male spontaneously hypertensive rats and down-regulates endothelial oxide nitric synthase in the aortic arch. Clin Exp Pharmacol Physiol 2020; 47:780-789. [PMID: 31958174 DOI: 10.1111/1440-1681.13260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 12/25/2022]
Abstract
Essential hypertension is considered to be a result of the interaction between genetic and environmental factors, including perinatal factors. Different advantageous perinatal factors proved to have beneficial long-lasting effects against an abnormal genetic background. Taurine is a ubiquitous sulphur-containing amino acid present in foods such as seafood. The antihypertensive effects of taurine have been reported in experimental studies and in human hypertension. We aimed to investigate the effects of perinatal treatment with taurine in spontaneously hypertensive rats (SHR), a known model of genetic hypertension. Female SHR were administered with taurine (3 g/L) during gestation and lactation (SHR-TAU). Untreated SHR and Wistar-Kyoto rats (WKY) were used as controls. Long-lasting effects in offspring were investigated. Addition of taurine to the mother's drinking water reduced blood pressure in adult offspring. No differences were observed in cardiac hypertrophy. Findings on morphometric evaluations suggest that perinatal treatment with taurine would be partially effective in improving structural alterations of the aorta. Modifications in gene expression of Bcl-2 family members and upregulation of endothelial nitric oxide synthase in the aorta of 22-week-old male offspring were found. No differences were observed on relative telomere length in different cardiovascular tissues between SHR and SHR-TAU. Altogether results suggest that taurine programming, albeit sex specific, is associated with gene expression changes which ultimately may lead to improvement of aortic remodelling and enhanced endothelial function because of augmented nitric oxide (NO) production.
Collapse
Affiliation(s)
- Melisa F Mensegue
- Institute of Medical Research A. Lanari, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Department of Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Adriana L Burgueño
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pontificia Universidad Católica Argentina, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariana L Tellechea
- Institute of Medical Research A. Lanari, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Department of Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
39
|
Pateiro M, Munekata PES, Domínguez R, Wang M, Barba FJ, Bermúdez R, Lorenzo JM. Nutritional Profiling and the Value of Processing By-Products from Gilthead Sea Bream ( Sparus aurata). Mar Drugs 2020; 18:E101. [PMID: 32033070 PMCID: PMC7073831 DOI: 10.3390/md18020101] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022] Open
Abstract
Fish processing industries generate a large volume of discards. In order to fulfil with the principles of a sustainable circular economy, it is necessary to maintain aquaculture by-products in the food chain through the production of high-value biomolecules that can be used as novel ingredients. In this study, we try to give value to the gilthead sea bream by-products, evaluating the composition and the nutritional value of the muscle and six discards commonly obtained from the fish processing industry (fishbone, gills, guts, heads, liver, and skin), which represent ≈ 61% of the whole fish. Significant differences were detected among muscle and by-products for fatty acid and amino acid profile, as well as mineral content. The discards studied were rich in protein (10%-25%), showing skin and fishbone to have the highest contents. The amino acid profile reflected the high quality of its protein, with 41%-49% being essential amino acids-lysine, leucine, and arginine were the most abundant amino acids. Guts, liver, and skin were the fattiest by-products (25%-35%). High contents of polyunsaturated fatty acids (PUFAs) (31%-34%), n-3 fatty acids (12%-14%), and eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) (6%-8%) characterized these discards. The head displayed by far the highest ash content (9.14%), which was reflected in the mineral content, especially in calcium and phosphorous. These results revealed that gilthead sea bream by-products can be used as source of value-added products such as protein, oils, and mineral supplements.
Collapse
Affiliation(s)
- Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (P.E.S.M.); (R.D.); (R.B.)
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (P.E.S.M.); (R.D.); (R.B.)
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (P.E.S.M.); (R.D.); (R.B.)
| | - Min Wang
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; (M.W.); (F.J.B.)
| | - Francisco J. Barba
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain; (M.W.); (F.J.B.)
| | - Roberto Bermúdez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (P.E.S.M.); (R.D.); (R.B.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (P.E.S.M.); (R.D.); (R.B.)
| |
Collapse
|
40
|
Ibrahim MA, Eraqi MM, Alfaiz FA. Therapeutic role of taurine as antioxidant in reducing hypertension risks in rats. Heliyon 2020; 6:e03209. [PMID: 31989053 PMCID: PMC6970174 DOI: 10.1016/j.heliyon.2020.e03209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/26/2019] [Accepted: 01/09/2020] [Indexed: 12/18/2022] Open
Abstract
AIM The current investigation focused on the therapeutic role of the administration of taurine on hypertensive rats to reduce or cure the hazard effects of hypertension problems. METHODOLOGY This research included 2 experiments; 1st was done to survey the variations that might occur in blood pressure (BP) of male rats because of the fed 8% NaCl diet for 4 weeks. 2nd experiment, it contains normal control rats', hypertensive rats were served as hypertension recovery group and hypertensive rats were took orally by the help of gastric tube 50 mg taurine/100 g b.wt/day for four weeks and served as taurine group. RESULTS 1st experimental, clarified a significant elevation in BP, body weight, serum cholesterol, triglycerides, LDL, activities of serum cardiac enzymes, endothelin-1, ADMA, MDA and TNF-α in hypertensive rats' group. On contrary, there is a significant reduction in serum level of TNO and antioxidant enzymes level in relation to the control group. A numerical variation but not statistically significant was happened in HDL in hypertensive rats' group as compared to their matching results in control rats' group. 2nd experimental taurine significantly reduced the BP as compared with hypertensive control. Furthermore, a significant improvement occurred in the mean value of most investigation parameters in hypertensive animal group which treated with taurine. CONCLUSION The previous data could be concluded that, there is an obvious amelioration effects of taurine on hypertensive rats by reducing the hazard effects of hypertension problems. The primary mechanisms were discussed according to existing published investigations.
Collapse
Affiliation(s)
- Marwan A. Ibrahim
- Department of Biology, College of Science, Majmaah University, Majmaah, 11952, Saudi Arabia
| | | | | |
Collapse
|
41
|
Han Y, Hao H, Yang L, Chen G, Wen Y, Huang R. Nutritional characteristics of marine fish Sardinella zunasi Bleeker and immunostimulatory activities of its glycoprotein. RSC Adv 2019; 9:30144-30153. [PMID: 35530240 PMCID: PMC9072115 DOI: 10.1039/c9ra04913d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/18/2019] [Indexed: 11/21/2022] Open
Abstract
Sardinella zunasi Bleeker, an edible and medicinal marine fish, is largely distributed in tropical oceans. However, the chemical composition and nutritional properties of this species have not yet been investigated. In the present study, proximate composition, fatty acids, amino acids, taurine, and minerals of S. zunasi Bleeker were characterized, and the immunostimulatory properties of its glycoprotein were evaluated. The results indicated the presence of crude protein (19.66%), crude lipid (6.29%) and carbohydrate (0.74%) in S. zunasi Bleeker; monounsaturated fatty acids and polyunsaturated fatty acids in the fatty acid composition of S. zunasi Bleeker were 25.00% and 31.01%, respectively; S. zunasi Bleeker was rich in taurine (219 mg/100 g) and essential amino acids (5.57 g/100 g). In addition, the glycoprotein of S. zunasi consisted of protein and sugars, with a total content of 34.25% and 16.27%, respectively. The glycoprotein showed significant effects on promoting NO, TNF-α and IL-6 in a dose-dependent manner in RAW264.7 macrophage cells. Thus, these findings provide a scientific basis for the further utilization of glycoprotein from S. zunasi Bleeker.
Collapse
Affiliation(s)
- Yu Han
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86 20 8528 3448
| | - Huili Hao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86 20 8528 3448
| | - Lihong Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86 20 8528 3448
- Shenzhen Shajing People's Hospital, Guangzhou University of Chinese Medicine Shenzhen China
| | - Guolian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86 20 8528 3448
| | - Yucong Wen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86 20 8528 3448
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China +86 20 8528 3448
| |
Collapse
|
42
|
Urinary Taurine Excretion and Risk of Late Graft Failure in Renal Transplant Recipients. Nutrients 2019; 11:nu11092212. [PMID: 31540245 PMCID: PMC6770760 DOI: 10.3390/nu11092212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/07/2019] [Accepted: 09/11/2019] [Indexed: 12/29/2022] Open
Abstract
Taurine is a sulfur containing nutrient that has been shown to protect against oxidative stress, which has been implicated in the pathophysiology leading to late graft failure after renal transplantation. We prospectively investigated whether high urinary taurine excretion, reflecting high taurine intake, is associated with low risk for development of late graft failure in renal transplant recipients (RTR). Urinary taurine excretion was measured in a longitudinal cohort of 678 stable RTR. Prospective associations were assessed using Cox regression analyses. Graft failure was defined as the start of dialysis or re-transplantation. In RTR (58% male, 53 ± 13 years old, estimated glomerular filtration rate (eGFR) 45 ± 19 mL/min/1.73 m2), urinary taurine excretion (533 (210–946) µmol/24 h) was significantly associated with serum free sulfhydryl groups (β = 0.126; P = 0.001). During median follow-up for 5.3 (4.5–6.0) years, 83 (12%) patients developed graft failure. In Cox regression analyses, urinary taurine excretion was inversely associated with graft failure (hazard ratio: 0.74 (0.67–0.82); P < 0.001). This association remained significant independent of potential confounders. High urinary taurine excretion is associated with low risk of late graft failure in RTR. Therefore, increasing taurine intake may potentially support graft survival in RTR. Further studies are warranted to determine the underlying mechanisms and the potential of taurine supplementation.
Collapse
|
43
|
Perinatal Taurine Supplementation Prevents the Adverse Effects of Maternal Dyslipidemia on Growth and Cardiovascular Control in Adult Rat Offspring. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31468419 DOI: 10.1007/978-981-13-8023-5_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Maternal dyslipidemia induces metabolic and cardiovascular disorders in adult offspring. This study tests the hypothesis that perinatal taurine supplementation prevents the adverse effects of maternal dyslipidemia on growth and cardiovascular function in adult rat offspring. Female Wistar rats were fed normal rat chow and water with (Dyslipidemia) or without dyslipidemia induction (Control) by intraperitoneal Triton WR-1339 injection, three times a week for 4 weeks. The female Control and Dyslipidemia rats were supplemented with (Control+T, Dyslipidemia+T) or without 3% taurine in water from conception to weaning. After weaning, male and female offspring were fed normal rat chow and water throughout the experiment. At 16 weeks of age, body weights significantly increased in male but not female Dyslipidemia compared to other groups, while visceral fat content significantly increased in both male and female Dyslipidemia groups. Further, both sexes displayed similar high fasting blood sugar and normal plasma leptin levels among the groups. While plasma total cholesterol and triglycerides significantly increased only in female Dyslipidemia, low-density lipoprotein cholesterol increased in both male and female Dyslipidemia groups. Mean arterial pressures and heart rates significantly increased, while baroreflex sensitivity decreased in male and female Dyslipidemia compared to all other groups. High-density lipoprotein cholesterol did not significantly different among male or female groups. These changes of the male and female Dyslipidemia group were ameliorated by perinatal taurine supplementation. The present study indicates that perinatal taurine supplementation prevents the adverse effects of maternal dyslipidemia on growth and cardiovascular function in both male and female, adult offspring.
Collapse
|
44
|
McCarty MF, O'Keefe JH, DiNicolantonio JJ. A diet rich in taurine, cysteine, folate, B 12 and betaine may lessen risk for Alzheimer's disease by boosting brain synthesis of hydrogen sulfide. Med Hypotheses 2019; 132:109356. [PMID: 31450076 DOI: 10.1016/j.mehy.2019.109356] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
The gaseous physiological modulator hydrogen sulfide (H2S) has recently been shown to exert a variety of neuroprotective effects. In particular, the treatment of transgenic mouse models of Alzheimer's disease (AD) with agents that release H2S aids preservation of cognitive function, suppresses brain production of amyloid beta, and decreases tau phosphorylation. The possible physiological relevance of these findings is suggested by the finding that brain and plasma levels of H2S are markedly lower in AD patients than matched controls. Hence, nutraceutical strategies which boost brain synthesis or levels of H2S may have potential for prevention of AD. The chief enzyme which synthesizes H2S in brain parenchyma, cystathionine beta-synthase (CBS), employs cysteine as its rate-limiting substrate, and is allosterically activated by S-adenosylmethionine (SAM). Supplemental taurine has been shown to boost expression of this enzyme, as well as that of another H2S source, cystathionine gamma-lyase, in vascular tissue, and to enhance plasma H2S levels; in rats subjected to hemorrhagic stroke, co-administration of taurine has been shown to blunt a marked reduction in brain CBS expression. Brain levels of SAM are about half as high in AD patients as in controls, and this is thought to explain the reduction of brain H2S in these patients. These considerations suggest that supplementation with cysteine, taurine, and agents which promote methyl group availability - such as SAM, folate, vitamin B12, and betaine - may have potential for boosting brain synthesis of H2S and thereby aiding AD prevention. Indeed, most of these agents have already demonstrated utility in mouse AD models - albeit the extent to which increased H2S synthesis contributes to this protection remains unclear. Moreover, prospective epidemiology has associated low dietary or plasma levels of folate, B12, and taurine with increased dementia risk. Rodent studies suggest that effective nutraceutical strategies for boosting brain H2S synthesis may in fact have broad neuroprotective utility, possibly aiding prevention and/or control not only of AD but also Parkinson's disease and glaucoma, while diminishing the neuronal damage associated with brain trauma or stroke.
Collapse
Affiliation(s)
| | - James H O'Keefe
- Saint Luke's Mid America Heart Institute, Kansas City, MO, United States
| | | |
Collapse
|
45
|
Schwarz N, Knutti N, Rose M, Neugebauer S, Geiger J, Jahns R, Klopp N, Illig T, Mathay C, Betsou F, Scherag A, Kiehntopf M. Quality Assessment of the Preanalytical Workflow in Liquid Biobanking: Taurine as a Serum-Specific Quality Indicator for Preanalytical Process Variations. Biopreserv Biobank 2019; 17:458-467. [PMID: 31339743 DOI: 10.1089/bio.2019.0004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The scientific impact of translational biomedical research largely depends on the availability of high-quality biomaterials. However, evidence-based and robust quality indicators (QIs) covering the most relevant preanalytical variations are still lacking. The aim of this study was to identify and validate a QI suitable for assessing time-to-centrifugation (TTC) delays in human liquid biospecimens originating from both healthy and diseased individuals. Serum and plasma samples with varying TTCs were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in a pilot cohort of healthy individuals to identify a suitable QI candidate. Taurine (TAU), as a TTC QI candidate, was validated in healthy individuals and patients with rheumatologic and cardiologic diseases, considering the (1) preanalytical handling temperature, (2) platelet count, and (3) postcentrifugation delay. For discrimination of high TTC (TTC >60 minutes) from low TTC serum specimens, a probability calculation tool was developed (Triple-T-cutoff-model). TTC-dependent changes in healthy individuals were observed for amino acids, particularly TAU. Validation of the TAU levels in an independent cohort of healthy individuals revealed a time-dependent increase in serum, but not in plasma, for a TTC delay of 30-240 minutes. TAU increases were dependent on the handling temperature and platelet count and volume. By contrast, no changes in TAU concentrations were observed for additional postcentrifugation delays. Validation of TAU and the Triple-T-cutoff-model, in rheumatologic/cardiologic patient collectives, allowed the discrimination of samples with TTC ≤60 min/>60 min with estimated AUROC (area under the receiver operating characteristic curve) values of 89% [78%-100%]/86% [71%-100%] and 91% [79%-100%]/84% [68%-100%], respectively. Considering the preanalytical handling temperature and platelet count and volume, TAU and the Triple-T-cutoff-model represent reliable QIs for TTC >60 minutes in serum samples from healthy individuals and selected rheumatologic/cardiologic patients. However, further studies in larger patient collectives with various diseases are needed to assess the robustness and potential of the QIs presented in this article as biobanking quality assurance/quality control tools to support high-quality biomedical research.
Collapse
Affiliation(s)
- Nicolle Schwarz
- Institute of Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena (IBBJ), Jena University Hospital, Jena, Germany
| | - Nadine Knutti
- Institute of Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena (IBBJ), Jena University Hospital, Jena, Germany
| | - Michael Rose
- Institute of Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena (IBBJ), Jena University Hospital, Jena, Germany
| | - Sophie Neugebauer
- Institute of Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena (IBBJ), Jena University Hospital, Jena, Germany
| | - Jörg Geiger
- Interdisciplinary Bank of Biomaterials and Data Würzburg (ibdw), Würzburg, Germany
| | - Roland Jahns
- Interdisciplinary Bank of Biomaterials and Data Würzburg (ibdw), Würzburg, Germany
| | - Norman Klopp
- Hannover Unified Biobank (HUB), Hannover, Germany
| | - Thomas Illig
- Hannover Unified Biobank (HUB), Hannover, Germany
| | - Conny Mathay
- Integrated BioBank of Luxembourg (IBBL), Dudelange, Luxembourg
| | - Fay Betsou
- Integrated BioBank of Luxembourg (IBBL), Dudelange, Luxembourg
| | - André Scherag
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany.,Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital, Jena, Germany
| | - Michael Kiehntopf
- Institute of Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena (IBBJ), Jena University Hospital, Jena, Germany
| |
Collapse
|
46
|
Oh WC, Mafrici B, Rigby M, Harvey D, Sharman A, Allen JC, Mahajan R, Gardner DS, Devonald MAJ. Micronutrient and Amino Acid Losses During Renal Replacement Therapy for Acute Kidney Injury. Kidney Int Rep 2019; 4:1094-1108. [PMID: 31440700 PMCID: PMC6698297 DOI: 10.1016/j.ekir.2019.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 12/26/2022] Open
Abstract
Introduction Malnutrition is common in patients with acute kidney injury (AKI), particularly in those requiring renal replacement therapy (RRT). Use of RRT removes metabolic waste products and toxins, but it will inevitably also remove useful molecules such as micronutrients, which might aggravate malnutrition. The RRT modalities vary in mechanism of solute removal; for example, intermittent hemodialysis (IHD) uses diffusion, continuous veno-venous hemofiltration (CVVH) uses convection, and sustained low-efficiency diafiltration (SLEDf) uses a combination of these. Methods We assessed micronutrient and amino acid losses in 3 different RRT modalities in patients with AKI (IHD, n = 27; SLEDf, n = 12; CVVH, n = 21) after correction for dialysis dose and plasma concentrations. Results Total losses were affected by modality; generally CVVH >> SLEDf > IHD (e.g., amino acid loss was 18.69 ± 3.04, 8.21 ± 4.07, and 5.13 ± 3.1 g, respectively; P < 0.001). Loss of specific trace elements (e.g., copper and zinc) during RRT was marked, with considerable heterogeneity between RRT types (e.g., +849 and +2325 μg/l lost during SLEDf vs. IHD, respectively), whereas effluent losses of copper and zinc decreased during CVVH (effect size relative to IHD, -3167 and -1442 μg/l, respectively). B vitamins were undetectable in effluent, but experimental modeling estimated 40% to 60% loss within the first 15 minutes of RRT. Conclusion Micronutrient and amino acid losses are marked during RRT in patients with AKI, with variation between RRT modalities and micronutrients.
Collapse
Affiliation(s)
- Weng C Oh
- Renal and Transplant Unit, Nottingham University Hospitals NHS Trust, Nottingham, UK.,School of Medicine, University of Nottingham, Nottingham, UK
| | - Bruno Mafrici
- Renal and Transplant Unit, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Mark Rigby
- Renal and Transplant Unit, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Daniel Harvey
- Department of Intensive Care Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Andrew Sharman
- Department of Intensive Care Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Jennifer C Allen
- Renal and Transplant Unit, Nottingham University Hospitals NHS Trust, Nottingham, UK.,School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Ravi Mahajan
- School of Medicine, University of Nottingham, Nottingham, UK
| | - David S Gardner
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Mark A J Devonald
- Renal and Transplant Unit, Nottingham University Hospitals NHS Trust, Nottingham, UK.,School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| |
Collapse
|
47
|
Zhang WS, Pan A, Yang L, Cai YY, Liu BL, Li P, Qi LW, Li J, Liu Q. American Ginseng and Asian Ginseng Intervention in Diet-Induced Obese Mice: Metabolomics Reveals Distinct Metabolic Profiles. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:787-801. [PMID: 31091973 DOI: 10.1142/s0192415x19500411] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
American ginseng and Asian ginseng, which occupy prominent positions in the list of best-selling natural products in the West and East, are suitable for different indications in the traditional pharmacological uses. Currently, the effects of American ginseng and Asian ginseng in the protection against metabolic dysfunction and the differences between them are still unknown. Herein, an untargeted metabolomics based on liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) was determined. The serum metabolomics and dynamic feces metabolomics revealed significant metabolic distinction between American ginseng and Asian ginseng in diet-induced obese (DIO) mice. The results show that American ginseng and Asian ginseng alleviate glucose and lipid metabolism disorder in DIO mice. A total of 45 differential metabolites were confirmed between the drug-naïve and American ginseng group, and 32 metabolites were confirmed between the drug-naïve and Asian ginseng group. Metabolic pathways analysis shows that these two ginsengs treatment dynamic rectifies metabolic disorder in DIO mice mainly via regulating linoleic acids metabolism, cysteine and methionine metabolism and biosynthesis of unsaturated fatty acid. Moreover, American ginseng's specific function in monitoring the carnitines and taurine/hypotaurine metabolism might make it more effective in meliorating lipids metabolism disorder than Asian ginseng.
Collapse
Affiliation(s)
- Wen-Song Zhang
- * State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - An Pan
- * State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Liu Yang
- * State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yuan-Yuan Cai
- † School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Bao-Lin Liu
- * State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China.,‡ Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Ping Li
- * State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Lian-Wen Qi
- * State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China.,‡ Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jing Li
- ‡ Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Qun Liu
- * State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
48
|
Nutrition and Risk of Stroke. Nutrients 2019; 11:nu11030647. [PMID: 30884883 PMCID: PMC6470893 DOI: 10.3390/nu11030647] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 12/22/2022] Open
Abstract
Nutrition is far more important in stroke risk than most physcians suppose. Healthy lifestyle choices reduce the risk of stroke by ~80%, and of the factors that increase the risk of stroke, the worst is diet: only ~0.1% of Americans consume a healthy diet, and only 8.3% consume a somewhat healthy diet. The situation is probably not much better in most other countries. A Cretan Mediterranean diet, high in olive oil, whole grains, fruits, vegetables and legumes, and low in cholesterol and saturated fat, can reduce stroke by 40% or more in high-risk patients. The role of the intestinal microbiome in cardiovascular risk is emerging; high levels of toxic metabolites produced by intestinal bacteria from meat (particularly red meat) and egg yolk are renally excreted. Patients with renal impairment, including the elderly, should limit red meat and avoid egg yolk, as should other patients at high risk of stroke. Salt intake should be limited to 2–3 grams per day. Metabolic B12 deficiency is common and usually missed. It has serious neurological consequences, including an increase in the risk of stroke. It now clear that B vitamins to lower homocysteine reduce the risk of stroke, but we should probably be using methylcobalamin instead of cyanocobalamin.
Collapse
|
49
|
Pleiotropic Effects of Taurine on Nematode Model for Down Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:429-442. [DOI: 10.1007/978-981-13-8023-5_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Thaeomor A, Teangphuck P, Chaisakul J, Seanthaweesuk S, Somparn N, Roysommuti S. Perinatal Taurine Supplementation Prevents Metabolic and Cardiovascular Effects of Maternal Diabetes in Adult Rat Offspring. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:295-305. [PMID: 28849464 DOI: 10.1007/978-94-024-1079-2_26] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study tests the hypothesis that perinatal taurine supplementation prevents diabetes mellitus and hypertension in adult offspring of maternal diabetic rats. Female Wistar rats were fed normal rat chow and tap water with (Diabetes group) or without diabetic induction by intraperitoneal streptozotocin injection (Control group) before pregnancy. Then, they were supplemented with 3% taurine in water (Control+T and Diabetes+T groups) or water alone from conception to weaning. After weaning, both male and female offspring were fed normal rat chow and tap water throughout the study. Blood chemistry and cardiovascular parameters were studied in 16-week old rats. Body, heart, and kidney weights were not significantly different among the eight groups. Further, lipid profiles except triglyceride were not significantly different among male and female groups, while male Diabetes displayed increased fasting blood glucose, decreased plasma insulin, and increased plasma triglyceride compared to other groups. Compared to Control, mean arterial pressures significantly increased and baroreflex control of heart rate decreased in both male and female Diabetes, while heart rates significantly decreased in male but increased in female Diabetes group. Although perinatal taurine supplementation did not affect any measured parameters in Control groups, it abolished the adverse effects of maternal diabetes on fasting blood glucose, plasma insulin, lipid profiles, mean arterial pressure, heart rate, and baroreflex sensitivity in adult male and female offspring. The present study indicates that maternal diabetes mellitus induces metabolic and cardiovascular defects more in male than female adult offspring, and these adverse effects can be prevented by perinatal taurine supplementation.
Collapse
Affiliation(s)
- Atcharaporn Thaeomor
- School of Preclinic, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Punyaphat Teangphuck
- School of Preclinic, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Janeyuth Chaisakul
- Department of Pharmacology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Suphaket Seanthaweesuk
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Rangsit Campus, Klong Luang, Pathumthani, 12120, Thailand
| | - Nuntiya Somparn
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Rangsit Campus, Klong Luang, Pathumthani, 12120, Thailand
| | - Sanya Roysommuti
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|