1
|
Jiang C, Chen T, Xiang J, Pang Y. Association between physical activity levels and stroke risk among Chinese adults aged 45 and over based on CHARLS. Sci Rep 2024; 14:31739. [PMID: 39738310 DOI: 10.1038/s41598-024-81919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
Stroke is one of the leading causes of death in developing countries, and China bears the largest global burden of stroke. This study aims to investigate the relationship between different dimensions of physical activity levels and stroke risk using a nationally representative database. We performed a cross-sectional analysis using data from the China Health and Retirement Longitudinal Study (CHARLS) 2020. Binary logistic regression models were used to analyze the associations between different dimensions of physical activity levels (intensity, frequency, duration, and total physical activity (TPA)) and stroke risk in Chinese middle-aged and older adults. Subgroups were analyzed according to participants' age, sex, residency, hypertension, dyslipidemia, and diabetes stratification. The results showed that after adjusting for all covariates, almost all frequencies and durations of moderate physical activity (MPA), and high-frequency and long-duration vigorous physical activity (VPA) were associated with lower stroke risk. No significant relationship was observed between light physical activity (LPA) and stroke risk. TPA was categorized into quartiles (Q1, Q2, Q3, Q4). Compared with the first quartile, the third and fourth quartiles were significantly associated with lower stroke risk, with risk reductions of 35% (OR 0.65, 95% CI 0.50-0.84) and 42% (OR 0.58, 95% CI 0.44-0.76), respectively. Subgroup analysis revealed differences in the association between TPA and stroke risk in different populations, and the interaction test indicated no significant interactions between these variables and TPA. Our findings suggested that appropriate participation in physical activity is effective in preventing stroke in middle-aged and older adults. Both MPA and high-frequency or long-duration VPA were significantly associated with lower stroke risk, and keeping TPA at a high level was significantly associated with lower stroke risk.
Collapse
Affiliation(s)
- Changjun Jiang
- School of Physical Education, Southwest Petroleum University, Chengdu, 610500, China
- Sichuan Students' Physical Health Big Data Research and Joint Application Technology Center, Chengdu, 610000, China
| | - Tianhong Chen
- School of Physical Education, Southwest Petroleum University, Chengdu, 610500, China
| | - Jianfeng Xiang
- School of Physical Education, Southwest Petroleum University, Chengdu, 610500, China.
| | - Yiqun Pang
- School of Physical Education, Southwest Petroleum University, Chengdu, 610500, China.
- Sichuan Students' Physical Health Big Data Research and Joint Application Technology Center, Chengdu, 610000, China.
| |
Collapse
|
2
|
Takase B, Ikeda T, Shimizu W, Abe H, Aiba T, Chinushi M, Koba S, Kusano K, Niwano S, Takahashi N, Takatsuki S, Tanno K, Watanabe E, Yoshioka K, Amino M, Fujino T, Iwasaki YK, Kohno R, Kinoshita T, Kurita Y, Masaki N, Murata H, Shinohara T, Yada H, Yodogawa K, Kimura T, Kurita T, Nogami A, Sumitomo N. JCS/JHRS 2022 Guideline on Diagnosis and Risk Assessment of Arrhythmia. Circ J 2024; 88:1509-1595. [PMID: 37690816 DOI: 10.1253/circj.cj-22-0827] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Affiliation(s)
| | - Takanori Ikeda
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Haruhiko Abe
- Department of Heart Rhythm Management, University of Occupational and Environmental Health, Japan
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center
| | - Masaomi Chinushi
- School of Health Sciences, Niigata University School of Medicine
| | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Shinichi Niwano
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Seiji Takatsuki
- Department of Cardiology, Keio University School of Medicine
| | - Kaoru Tanno
- Cardiology Division, Cardiovascular Center, Showa University Koto-Toyosu Hospital
| | - Eiichi Watanabe
- Division of Cardiology, Department of Internal Medicine, Fujita Health University Bantane Hospital
| | | | - Mari Amino
- Department of Cardiology, Tokai University School of Medicine
| | - Tadashi Fujino
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine
| | - Yu-Ki Iwasaki
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Ritsuko Kohno
- Department of Heart Rhythm Management, University of Occupational and Environmental Health, Japan
| | - Toshio Kinoshita
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine
| | - Yasuo Kurita
- Cardiovascular Center, International University of Health and Welfare, Mita Hospital
| | - Nobuyuki Masaki
- Department of Intensive Care Medicine, National Defense Medical College
| | | | - Tetsuji Shinohara
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Hirotaka Yada
- Department of Cardiology, International University of Health and Welfare, Mita Hospital
| | - Kenji Yodogawa
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Takeshi Kimura
- Cardiovascular Medicine, Kyoto University Graduate School of Medicine
| | | | - Akihiko Nogami
- Department of Cardiology, Faculty of Medicine, University of Tsukuba
| | - Naokata Sumitomo
- Department of Pediatric Cardiology, Saitama Medical University International Medical Center
| |
Collapse
|
3
|
Takase B, Ikeda T, Shimizu W, Abe H, Aiba T, Chinushi M, Koba S, Kusano K, Niwano S, Takahashi N, Takatsuki S, Tanno K, Watanabe E, Yoshioka K, Amino M, Fujino T, Iwasaki Y, Kohno R, Kinoshita T, Kurita Y, Masaki N, Murata H, Shinohara T, Yada H, Yodogawa K, Kimura T, Kurita T, Nogami A, Sumitomo N. JCS/JHRS 2022 Guideline on Diagnosis and Risk Assessment of Arrhythmia. J Arrhythm 2024; 40:655-752. [PMID: 39139890 PMCID: PMC11317726 DOI: 10.1002/joa3.13052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 08/15/2024] Open
Affiliation(s)
| | - Takanori Ikeda
- Department of Cardiovascular MedicineToho University Faculty of Medicine
| | - Wataru Shimizu
- Department of Cardiovascular MedicineNippon Medical School
| | - Haruhiko Abe
- Department of Heart Rhythm ManagementUniversity of Occupational and Environmental HealthJapan
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and GeneticsNational Cerebral and Cardiovascular Center
| | | | - Shinji Koba
- Division of Cardiology, Department of MedicineShowa University School of Medicine
| | - Kengo Kusano
- Department of Cardiovascular MedicineNational Cerebral and Cardiovascular Center
| | - Shinichi Niwano
- Department of Cardiovascular MedicineKitasato University School of Medicine
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Faculty of MedicineOita University
| | | | - Kaoru Tanno
- Cardiovascular Center, Cardiology DivisionShowa University Koto‐Toyosu Hospital
| | - Eiichi Watanabe
- Division of Cardiology, Department of Internal MedicineFujita Health University Bantane Hospital
| | | | - Mari Amino
- Department of CardiologyTokai University School of Medicine
| | - Tadashi Fujino
- Department of Cardiovascular MedicineToho University Faculty of Medicine
| | - Yu‐ki Iwasaki
- Department of Cardiovascular MedicineNippon Medical School
| | - Ritsuko Kohno
- Department of Heart Rhythm ManagementUniversity of Occupational and Environmental HealthJapan
| | - Toshio Kinoshita
- Department of Cardiovascular MedicineToho University Faculty of Medicine
| | - Yasuo Kurita
- Cardiovascular Center, Mita HospitalInternational University of Health and Welfare
| | - Nobuyuki Masaki
- Department of Intensive Care MedicineNational Defense Medical College
| | | | - Tetsuji Shinohara
- Department of Cardiology and Clinical Examination, Faculty of MedicineOita University
| | - Hirotaka Yada
- Department of CardiologyInternational University of Health and Welfare Mita Hospital
| | - Kenji Yodogawa
- Department of Cardiovascular MedicineNippon Medical School
| | - Takeshi Kimura
- Cardiovascular MedicineKyoto University Graduate School of Medicine
| | | | - Akihiko Nogami
- Department of Cardiology, Faculty of MedicineUniversity of Tsukuba
| | - Naokata Sumitomo
- Department of Pediatric CardiologySaitama Medical University International Medical Center
| | | |
Collapse
|
4
|
Manolis AA, Manolis TA, Manolis AS. Managing chronic coronary syndrome: how do we achieve optimal patient outcomes? Expert Rev Cardiovasc Ther 2024; 22:243-263. [PMID: 38757743 DOI: 10.1080/14779072.2024.2357344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Chronic coronary syndrome (CCS) remains the leading cause of death worldwide with high admission/re-admission rates. Medical databases were searched on CCS & its management. AREAS COVERED This review discusses phenotypes per stress-echocardiography, noninvasive/invasive testing (coronary computed-tomography angiography-CCTA; coronary artery calcium - CAC score; echocardiography assessing wall-motion, LV function, valvular disease; biomarkers), multidisciplinary management (risk factors/anti-inflammatory/anti-ischemic/antithrombotic therapies and revascularization), newer treatments (colchicine/ivabradine/ranolazine/melatonin), cardiac rehabilitation/exercise improving physical activity and quality-of-life, use of the implantable-defibrillator, and treatment with extracorporeal shockwave-revascularization for refractory symptoms. EXPERT OPINION CCS is age-dependent, leading cause of death worldwide with high hospitalization rates. Stress-echocardiography defines phenotypes and guides prophylaxis and management. CAC is a surrogate for atherosclerosis burden, best for patients of intermediate/borderline risk. Higher CAC-scores indicate more severe coronary abnormalities. CCTA is preferred for noninvasive detection of CAC and atherosclerosis burden, determining stenosis' functional significance, and guiding management. Combining CAC score with CCTA improves diagnostic yield and assists prognosis. Echocardiography assesses LV wall-motion and function and valvular disease. Biomarkers guide diagnosis/prognosis. CCS management is multidisciplinary: risk-factor management, anti-inflammatory/anti-ischemic/antithrombotic therapies, and revascularization. Newer therapies comprise colchicine, ivabradine, ranolazine, melatonin, glucagon-like peptide-1-receptor antagonists. Cardiac rehabilitation/exercise improves physical activity and quality-of-life. An ICD protects from sudden death. Extracorporeal shockwave-revascularization treats refractory symptoms.
Collapse
Affiliation(s)
| | - Theodora A Manolis
- Department of Psychiatry, Aiginiteio University Hospital, Athens, Greece
| | - Antonis S Manolis
- First Department of Cardiology, Ippokrateio University Hospital, Athens, Greece
| |
Collapse
|
5
|
Wang Z, Sim HJ, Liu W, Kim JC, Lee JC, Kook SH, Kim SH. Differential Effects of Endurance Exercise on Musculoskeletal and Hematopoietic Modulation in Old Mice. Aging Dis 2024; 15:755-766. [PMID: 37548936 PMCID: PMC10917547 DOI: 10.14336/ad.2023.0713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023] Open
Abstract
One of the most important strategies for successful aging is exercise. However, the effect of exercise can differ among individuals, even with exercise of the same type and intensity. Therefore, this study aims to confirm whether endurance training (ETR) has the same health-promoting effects on the musculoskeletal and hematopoietic systems regardless of age. Ten weeks of ETR improved endurance exercise capacity, with increased skeletal muscle mitochondrial enzymes in both young and old mice. In addition, age-related deterioration of muscle fiber size and bone microstructure was improved. The expression levels of myostatin, muscle RING-finger protein-1, and muscle atrophy F-box in skeletal muscle and peroxisome proliferator-activated receptor-γ in the femur increased with age but decreased after ETR. ETR differentially modulated hematopoietic stem cells (HSCs) depending on age; ETR induced HSC quiescence in young mice but caused HSC senescence in old mice. ETR has differential effects on modulation of the musculoskeletal and hematopoietic systems in old mice. In other words, endurance exercise is a double-edged sword for successful aging, and great effort is required to establish exercise strategies for healthy aging.
Collapse
Affiliation(s)
- Zilin Wang
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea.
| | - Hyun-Jaung Sim
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea.
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju 54896, Korea.
| | - Wenduo Liu
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea.
| | - Jae Cheol Kim
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea.
| | - Jeong-Chae Lee
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea.
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju 54896, Korea.
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea.
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju 54896, Korea.
| | - Sang Hyun Kim
- Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea.
| |
Collapse
|
6
|
Manolis TA, Manolis AA, Melita H, Manolis AS. Neuropsychiatric disorders in patients with heart failure: not to be ignored. Heart Fail Rev 2022:10.1007/s10741-022-10290-2. [DOI: 10.1007/s10741-022-10290-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
|
7
|
Bonilla DA, Moreno Y, Petro JL, Forero DA, Vargas-Molina S, Odriozola-Martínez A, Orozco CA, Stout JR, Rawson ES, Kreider RB. A Bioinformatics-Assisted Review on Iron Metabolism and Immune System to Identify Potential Biomarkers of Exercise Stress-Induced Immunosuppression. Biomedicines 2022; 10:724. [PMID: 35327526 PMCID: PMC8945881 DOI: 10.3390/biomedicines10030724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
The immune function is closely related to iron (Fe) homeostasis and allostasis. The aim of this bioinformatics-assisted review was twofold; (i) to update the current knowledge of Fe metabolism and its relationship to the immune system, and (ii) to perform a prediction analysis of regulatory network hubs that might serve as potential biomarkers during stress-induced immunosuppression. Several literature and bioinformatics databases/repositories were utilized to review Fe metabolism and complement the molecular description of prioritized proteins. The Search Tool for the Retrieval of Interacting Genes (STRING) was used to build a protein-protein interactions network for subsequent network topology analysis. Importantly, Fe is a sensitive double-edged sword where two extremes of its nutritional status may have harmful effects on innate and adaptive immunity. We identified clearly connected important hubs that belong to two clusters: (i) presentation of peptide antigens to the immune system with the involvement of redox reactions of Fe, heme, and Fe trafficking/transport; and (ii) ubiquitination, endocytosis, and degradation processes of proteins related to Fe metabolism in immune cells (e.g., macrophages). The identified potential biomarkers were in agreement with the current experimental evidence, are included in several immunological/biomarkers databases, and/or are emerging genetic markers for different stressful conditions. Although further validation is warranted, this hybrid method (human-machine collaboration) to extract meaningful biological applications using available data in literature and bioinformatics tools should be highlighted.
Collapse
Affiliation(s)
- Diego A. Bonilla
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogota 110311, Colombia; (Y.M.); (J.L.P.)
- Research Group in Biochemistry and Molecular Biology, Faculty of Science and Education, Universidad Distrital Francisco José de Caldas, Bogota 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
| | - Yurany Moreno
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogota 110311, Colombia; (Y.M.); (J.L.P.)
- Research Group in Biochemistry and Molecular Biology, Faculty of Science and Education, Universidad Distrital Francisco José de Caldas, Bogota 110311, Colombia
| | - Jorge L. Petro
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogota 110311, Colombia; (Y.M.); (J.L.P.)
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
| | - Diego A. Forero
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia; (D.A.F.); (C.A.O.)
| | - Salvador Vargas-Molina
- Faculty of Sport Sciences, EADE-University of Wales Trinity Saint David, 29018 Málaga, Spain;
| | - Adrián Odriozola-Martínez
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia, Spain
| | - Carlos A. Orozco
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia; (D.A.F.); (C.A.O.)
| | - Jeffrey R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL 32816, USA;
| | - Eric S. Rawson
- Department of Health, Nutrition and Exercise Science, Messiah University, Mechanicsburg, PA 17055, USA;
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
8
|
Palermi S, Serio A, Vecchiato M, Sirico F, Gambardella F, Ricci F, Iodice F, Radmilovic J, Russo V, D'Andrea A. Potential role of an athlete-focused echocardiogram in sports eligibility. World J Cardiol 2021; 13:271-297. [PMID: 34589165 PMCID: PMC8436685 DOI: 10.4330/wjc.v13.i8.271] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Sudden cardiac death (SCD) of an athlete is a rare but tragic event and sport activity might play a trigger role in athletes with underlying structural or electrical heart diseases. Preparticipation screenings (PPs) have been conceived for the potential to prevent SCD in young athletes by early identification of cardiac diseases. The European Society of Cardiology protocol for PPs includes history collection, physical examination and baseline electrocardiogram, while further examinations are reserved to individuals with abnormalities at first-line evaluation. Nevertheless, transthoracic echocardiography has been hypothesized to have a primary role in the PPs. This review aims to describe how to approach an athlete-focused echocardiogram, highlighting what is crucial to focus on for the different diseases (cardiomyopathies, valvulopathies, congenital heart disease, myocarditis and pericarditis) and when is needed to pay attention to overlap diagnostic zone ("grey zone") with the athlete's heart. Once properly tested, focused echocardiography by sports medicine physicians may become standard practice in larger screening practices, potentially available during first-line evaluation.
Collapse
Affiliation(s)
- Stefano Palermi
- Public Health Department, University of Naples Federico II, Naples 80131, Italy
| | - Alessandro Serio
- Public Health Department, University of Naples Federico II, Naples 80131, Italy
| | - Marco Vecchiato
- Sport and Exercise Medicine Division, Department of Medicine, University Hospital of Padova, Padova 35128, Italy
| | - Felice Sirico
- Public Health Department, University of Naples Federico II, Naples 80131, Italy
| | | | - Fabrizio Ricci
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti 66100, Italy
| | - Franco Iodice
- Unit of Cardiology, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples 80131, Italy
| | - Juri Radmilovic
- Unit of Cardiology and Intensive Coronary Care, "Umberto I" Hospital, Nocera Inferiore 84014, Italy
| | - Vincenzo Russo
- Unit of Cardiology, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples 80131, Italy
| | - Antonello D'Andrea
- Unit of Cardiology, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Monaldi Hospital, Naples 80131, Italy.
| |
Collapse
|
9
|
Manolis TA, Manolis AA, Apostolopoulos EJ, Melita H, Manolis AS. Cardiovascular Complications of Sleep Disorders: A Better Night's Sleep for a Healthier Heart / From Bench to Bedside. Curr Vasc Pharmacol 2021; 19:210-232. [PMID: 32209044 DOI: 10.2174/1570161118666200325102411] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/27/2022]
Abstract
Sleep is essential to and an integral part of life and when lacking or disrupted, a multitude of mental and physical pathologies ensue, including cardiovascular (CV) disease, which increases health care costs. Several prospective studies and meta-analyses show that insomnia, short (<7h) or long (>9h) sleep and other sleep disorders are associated with an increased risk of hypertension, metabolic syndrome, myocardial infarction, heart failure, arrhythmias, CV disease risk and/or mortality. The mechanisms by which insomnia and other sleep disorders lead to increased CV risk may encompass inflammatory, immunological, neuro-autonomic, endocrinological, genetic and microbiome perturbations. Guidelines are emerging that recommend a target of >7 h of sleep for all adults >18 years for optimal CV health. Treatment of sleep disorders includes cognitive-behavioral therapy considered the mainstay of non-pharmacologic management of chronic insomnia, and drug treatment with benzodiazepine receptor agonists binding to gamma aminobutyric acid type A (benzodiazepine and non-benzodiazepine agents) and some antidepressants. However, observational studies and meta-analyses indicate an increased mortality risk of anxiolytics and hypnotics, although bias may be involved due to confounding and high heterogeneity in these studies. Nevertheless, it seems that the risk incurred by the non-benzodiazepine hypnotic agents (Z drugs) may be relatively less than the risk of anxiolytics, with evidence indicating that at least one of these agents, zolpidem, may even confer a lower risk of mortality in adjusted models. All these issues are herein reviewed.
Collapse
|
10
|
Manolis AS, Manolis AA, Manolis TA, Apostolaki NE, Apostolopoulos EJ, Melita H, Katsiki N. Mitochondrial dysfunction in cardiovascular disease: Current status of translational research/clinical and therapeutic implications. Med Res Rev 2020; 41:275-313. [PMID: 32959403 DOI: 10.1002/med.21732] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Mitochondria provide energy to the cell during aerobic respiration by supplying ~95% of the adenosine triphosphate (ATP) molecules via oxidative phosphorylation. These organelles have various other functions, all carried out by numerous proteins, with the majority of them being encoded by nuclear DNA (nDNA). Mitochondria occupy ~1/3 of the volume of myocardial cells in adults, and function at levels of high-efficiency to promptly meet the energy requirements of the myocardial contractile units. Mitochondria have their own DNA (mtDNA), which contains 37 genes and is maternally inherited. Over the last several years, a variety of functions of these organelles have been discovered and this has led to a growing interest in their involvement in various diseases, including cardiovascular (CV) diseases. Mitochondrial dysfunction relates to the status where mitochondria cannot meet the demands of a cell for ATP and there is an enhanced formation of reactive-oxygen species. This dysfunction may occur as a result of mtDNA and/or nDNA mutations, but also as a response to aging and various disease and environmental stresses, leading to the development of cardiomyopathies and other CV diseases. Designing mitochondria-targeted therapeutic strategies aiming to maintain or restore mitochondrial function has been a great challenge as a result of variable responses according to the etiology of the disorder. There have been several preclinical data on such therapies, but clinical studies are scarce. A major challenge relates to the techniques needed to eclectically deliver the therapeutic agents to cardiac tissues and to damaged mitochondria for successful clinical outcomes. All these issues and progress made over the last several years are herein reviewed.
Collapse
Affiliation(s)
- Antonis S Manolis
- First Department of Cardiology, Athens University School of Medicine, Athens, Greece
| | | | | | | | | | | | - Niki Katsiki
- First Department of Internal Medicine, Division of Endocrinology and Metabolism, Diabetes Center, Medical School, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
11
|
Manolis AA, Manolis TA, Apostolopoulos EJ, Apostolaki NE, Melita H, Manolis AS. The role of the autonomic nervous system in cardiac arrhythmias: The neuro-cardiac axis, more foe than friend? Trends Cardiovasc Med 2020; 31:290-302. [PMID: 32434043 DOI: 10.1016/j.tcm.2020.04.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
The autonomic nervous system (ANS) with its two limbs, the sympathetic (SNS) and parasympathetic nervous system (PSNS), plays a critical role in the modulation of cardiac arrhythmogenesis. It can be both pro- and/or anti-arrhythmic at both the atrial and ventricular level of the myocardium. Intricate mechanisms, different for specific cardiac arrhythmias, are involved in this modulatory process. More data are available for the arrhythmogenic effects of the SNS, which, when overactive, can trigger atrial and/or ventricular "adrenergic" arrhythmias in susceptible individuals (e.g. in patients with paroxysmal atrial fibrillation-PAF, ventricular pre-excitation, specific channelopathies, ischemic heart disease or cardiomyopathies), while it can also negate the protective anti-arrhythmic drug effects. However, there is also evidence that PSNS overactivity may be responsible for triggering "vagotonic" arrhythmias (e.g. PAF, Brugada syndrome, idiopathic ventricular fibrillation). Thus, a fine balance is necessary to attain in these two limbs of the ANS in order to maintain eurhythmia, which is a difficult task to accomplish. Over the years, in addition to classical drug therapies, where beta-blockers prevail, several ANS-modulating interventions have been developed aiming at prevention and management of arrhythmias. Among them, techniques of cardiac sympathetic denervation, renal denervation, vagal stimulation, ganglionated plexi ablation and the newer experimental method of optogenetics have been employed. However, in many arrhythmogenic diseases, ANS modulation is still an investigative tool. Initial data are encouraging; however, further studies are needed to explore the efficacy of such interventions. These issues are herein reviewed and old and recent literature data are discussed, tabulated and pictorially illustrated.
Collapse
|
12
|
Manolis AS, Manolis SA, Manolis AA, Manolis TA, Apostolaki N, Melita H. Winter Swimming. Curr Sports Med Rep 2019; 18:401-415. [DOI: 10.1249/jsr.0000000000000653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Hegyi B, Chen-Izu Y, Izu LT, Bányász T. Altered K + current profiles underlie cardiac action potential shortening in hyperkalemia and β-adrenergic stimulation. Can J Physiol Pharmacol 2019; 97:773-780. [PMID: 31091413 DOI: 10.1139/cjpp-2019-0056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hyperkalemia is known to develop in various conditions including vigorous physical exercise. In the heart, hyperkalemia is associated with action potential (AP) shortening that was attributed to altered gating of K+ channels. However, it remains unknown how hyperkalemia changes the profiles of each K+ current under a cardiac AP. Therefore, we recorded the major K+ currents (inward rectifier K+ current, IK1; rapid and slow delayed rectifier K+ currents, IKr and IKs, respectively) using AP-clamp in rabbit ventricular myocytes. As K+ may accumulate at rapid heart rates during sympathetic stimulation, we also examined the effect of isoproterenol on these K+ currents. We found that IK1 was significantly increased in hyperkalemia, whereas the reduction of driving force for K+ efflux dominated over the altered channel gating in case of IKr and IKs. Overall, the markedly increased IK1 in hyperkalemia overcame the relative decreases of IKr and IKs during AP, resulting in an increased net repolarizing current during AP phase 3. β-Adrenergic stimulation of IKs also provided further repolarizing power during sympathetic activation, although hyperkalemia limited IKs upregulation. These results indicate that facilitation of IK1 in hyperkalemia and β-adrenergic stimulation of IKs represent important compensatory mechanisms against AP prolongation and arrhythmia susceptibility.
Collapse
Affiliation(s)
- Bence Hegyi
- a Department of Pharmacology, University of California, Davis, CA 95616, USA
| | - Ye Chen-Izu
- a Department of Pharmacology, University of California, Davis, CA 95616, USA.,b Department of Biomedical Engineering, University of California, Davis, CA 95616, USA.,c Department of Internal Medicine/Cardiology, University of California, Davis, CA 95616, USA
| | - Leighton T Izu
- a Department of Pharmacology, University of California, Davis, CA 95616, USA
| | - Tamás Bányász
- a Department of Pharmacology, University of California, Davis, CA 95616, USA.,d Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
14
|
Dasso NA. How is exercise different from physical activity? A concept analysis. Nurs Forum 2018; 54:45-52. [PMID: 30332516 DOI: 10.1111/nuf.12296] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/05/2018] [Accepted: 08/26/2018] [Indexed: 12/14/2022]
Abstract
The aim of this study is to clarify the concept of exercise using Walker and Avant concept analysis method. The author offers a definition of exercise, including its distinction from physical activity and how the two terms are not the same and should not be used interchangeably. In the traditional concept analysis format will be used. Exercise is a subcategory of physical activity that is planned, structured, repetitive, and purposefully focused on improvement or maintenance of one or more components of physical fitness. Physical activity is any bodily movement produced by skeletal muscles that require energy expenditure. Sample cases are provided. A clear definition of exercise allows health care providers to speak to patients about improving their physical activity, particularly given that physical inactivity is a leading but very modifiable risk factor for a wide range of diseases. One of the urgent goals of nursing should be getting people to become more active. This means communicating in clear terms with patients. Sometimes that will mean exercise, and sometimes that will mean simply moving more daily. Researchers of behavior change need to be precise in their definitions and the methods need to be provided in detail to be useful and reproducible.
Collapse
Affiliation(s)
- Nancy A Dasso
- School of Nursing, University of Texas at Tyler, Tyler, Texas
| |
Collapse
|
15
|
Zhang XE, Cheng B, Wang Q, Wan JJ. Association of gender-specific risk factors in metabolic and cardiovascular diseases: an NHANES-based cross-sectional study. J Investig Med 2017; 66:22-31. [DOI: 10.1136/jim-2017-000434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2017] [Indexed: 01/01/2023]
|