1
|
Giacinto O, Pelliccia F, Minati A, De Crescenzo F, Garo ML, Chello M, Lusini M. Cosmic Radiations and the Cardiovascular System: A Narrative Review. Cardiol Rev 2024; 32:433-439. [PMID: 36728769 DOI: 10.1097/crd.0000000000000521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In recent times, space flights receive continued interest. Humankind's next two goals are to return to the Moon and, a few years later, to land on the surface of Mars. Although technology will improve enough to enable long voyages, there are still some unresolved questions about the effects of the space environment on human health, including the effects of such long voyages on organs. Specifically, there is no information on the effects of radiation in space on the human cardiovascular system. To better understand the adaptation of the cardiovascular system to radiation exposure, the physical properties of radiation and the cellular and molecular mechanisms underlying tissue changes are essential. To this end, this article aims to provide an overview of the effects of radiation on the cardiovascular system by analyzing the physical properties of radiation and their relationship to cellular and molecular mechanisms and potential changes. Each type of radiation triggers different responses in the cardiovascular system. Radiation plays a relevant role in altering endothelial function and arterial wall stiffness by inducing vascular changes that accelerate atherosclerosis and affect endothelial adhesiveness. Clinical studies have shown that vascular changes due to radiation depend on the delayed manifestations of early radiation damage. To reduce the effects of radiation in space, some pharmacological treatments that seem to be able to counteract oxidative stress during flight are being used. At the same time, new shielding systems that can reduce or eliminate radiation exposure must be developed. Future studies should aim to replicate flights in the deep space environment to study in more detail the harmful effects of radiation on the whole cardiovascular system.
Collapse
Affiliation(s)
- Omar Giacinto
- From the Università Campus Bio-medico di Roma, UOC di Cardiochirurgia, Rome, Italy
| | | | | | | | - Maria Luisa Garo
- From the Università Campus Bio-medico di Roma, UOC di Cardiochirurgia, Rome, Italy
| | - Massimo Chello
- From the Università Campus Bio-medico di Roma, UOC di Cardiochirurgia, Rome, Italy
| | - Mario Lusini
- From the Università Campus Bio-medico di Roma, UOC di Cardiochirurgia, Rome, Italy
| |
Collapse
|
2
|
Nemec-Bakk AS, Sridharan V, Desai P, Landes RD, Hart B, Allen AR, Boerma M. Effects of Simulated 5-Ion Galactic Cosmic Radiation on Function and Structure of the Mouse Heart. Life (Basel) 2023; 13:life13030795. [PMID: 36983950 PMCID: PMC10057791 DOI: 10.3390/life13030795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Missions into deep space will expose astronauts to the harsh space environment, and the degenerative tissue effects of space radiation are largely unknown. To assess the risks, in this study, male BALB/c mice were exposed to 500 mGy 5-ion simulated GCR (GCRsim) at the NASA Space Radiation Laboratory. In addition, male and female CD1 mice were exposed to GCRsim and administered a diet containing Transforming Growth Factor-beta (TGF-β)RI kinase (ALK5) inhibitor IPW-5371 as a potential countermeasure. An ultrasound was performed to investigate cardiac function. Cardiac tissue was collected to determine collagen deposition, the density of the capillary network, and the expression of the immune mediator toll-like receptor 4 (TLR4) and immune cell markers CD2, CD4, and CD45. In male BALB/c mice, the only significant effects of GCRsim were an increase in the CD2 and TLR4 markers. In male CD1 mice, GCRsim caused a significant increase in total collagens and a decrease in the expression of TLR4, both of which were mitigated by the TGF-β inhibitor diet. In female CD1 mice, GCRsim caused an increase in the number of capillaries per tissue area in the ventricles, which may be explained by the decrease in the left ventricular mass. However, this increase was not mitigated by TGF-β inhibition. In both male and female CD1 mice, the combination of GCRsim and TGF-β inhibition caused changes in left ventricular immune cell markers that were not seen with GCRsim alone. These data suggest that GCRsim results in minor changes to cardiac tissue in both an inbred and outbred mouse strain. While there were few GCRsim effects to be mitigated, results from the combination of GCRsim and the TGF-β inhibitor do point to a role for TGF-β in maintaining markers of immune cells in the heart after exposure to GCR.
Collapse
Affiliation(s)
- Ashley S. Nemec-Bakk
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence:
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Parth Desai
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Reid D. Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Barry Hart
- Innovation Pathways, LLC of Palo Alto, Palo Alto, CA 94301, USA
| | - Antiño R. Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
3
|
Nemec-Bakk AS, Sridharan V, Landes RD, Singh P, Cao M, Dominic P, Seawright JW, Chancellor JC, Boerma M. Effects of low-dose oxygen ions on cardiac function and structure in female C57BL/6J mice. LIFE SCIENCES IN SPACE RESEARCH 2022; 32:105-112. [PMID: 35065756 PMCID: PMC8803400 DOI: 10.1016/j.lssr.2021.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 05/07/2023]
Abstract
PURPOSE Astronauts in space vehicles beyond low-Earth orbit will be exposed to high charge and energy (HZE) ions, and there is concern about potential adverse effects on the cardiovascular system. Thus far, most animal studies that assess cardiac effects of HZE particles have included only males. This study assessed the effects of oxygen ions (16O) as a representative ion of the intravehicular radiation environment on the heart of female mice. MATERIALS AND METHODS Female C57BL/6 J mice at 6 months of age were exposed to 16O (600 MeV/n) at 0.25-0.26 Gy/min to a total dose of 0, 0.1, or 0.25 Gy. Cardiac function and abdominal aorta blood velocity were measured with ultrasonography at 3, 5, 7, and 9 months after irradiation. At 2 weeks, 3 months, and 9 months, cardiac tissue was collected to assess collagen deposition and markers of immune cells. RESULTS Ultrasonography revealed increased left ventricle mass, diastolic volume and diameter but there was no change in the abdominal aorta. There was no indication of cardiac fibrosis however, a 75 kDa peptide of left ventricular collagen type III and α-smooth muscle cell actin were increased suggesting some remodeling had occurred. Left ventricular protein levels of the T-cell marker CD2 was significantly increased at all time points, while the neutrophil marker myeloperoxidase was decreased at 2 weeks and 9 months. CONCLUSIONS These results taken together suggest 16O ion exposure did not result in cardiac fibrosis or cardiac dysfunction in female mice. However, it does appear mild cardiac remodeling occurs in response to HZE radiation.
Collapse
Affiliation(s)
- Ashley S Nemec-Bakk
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Reid D Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Preeti Singh
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Maohua Cao
- College of Dentistry, Texas A&M University, Dallas TX, USA
| | - Paari Dominic
- Department of Medicine and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | - Jeffery C Chancellor
- Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA, USA; Department of Preventative Medicine & Population Health, University of Texas Medical Branch, Galveston, TX, USA; Outer Space Institute, University of British Columbia, Vancouver, CA, Canada
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
4
|
Broxmeyer HE, Liu Y, Kapur R, Orschell CM, Aljoufi A, Ropa JP, Trinh T, Burns S, Capitano ML. Fate of Hematopoiesis During Aging. What Do We Really Know, and What are its Implications? Stem Cell Rev Rep 2020; 16:1020-1048. [PMID: 33145673 PMCID: PMC7609374 DOI: 10.1007/s12015-020-10065-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
There is an ongoing shift in demographics such that older persons will outnumber young persons in the coming years, and with it age-associated tissue attrition and increased diseases and disorders. There has been increased information on the association of the aging process with dysregulation of hematopoietic stem (HSC) and progenitor (HPC) cells, and hematopoiesis. This review provides an extensive up-to date summary on the literature of aged hematopoiesis and HSCs placed in context of potential artifacts of the collection and processing procedure, that may not be totally representative of the status of HSCs in their in vivo bone marrow microenvironment, and what the implications of this are for understanding aged hematopoiesis. This review covers a number of interactive areas, many of which have not been adequately explored. There are still many unknowns and mechanistic insights to be elucidated to better understand effects of aging on the hematopoietic system, efforts that will take multidisciplinary approaches, and that could lead to means to ameliorate at least some of the dysregulation of HSCs and HPCs associated with the aging process. Graphical Abstract.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA.
| | - Yan Liu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reuben Kapur
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christie M Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arafat Aljoufi
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - James P Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - Thao Trinh
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - Sarah Burns
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maegan L Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA.
| |
Collapse
|
5
|
Mitchell A, Pimenta D, Gill J, Ahmad H, Bogle R. Cardiovascular effects of space radiation: implications for future human deep space exploration. Eur J Prev Cardiol 2019; 26:1707-1714. [PMID: 30776915 DOI: 10.1177/2047487319831497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND A manned mission to Mars has been contemplated by the world's largest space agencies for a number of years. The duration of the trip would necessitate a much longer exposure to deep space radiation than any human has ever been exposed to in the past. Concern regarding cancer risk has thus far stalled the progress of deep space exploration; however, the effect of space radiation on the cardiovascular system is significantly less well understood. DISCUSSION Damage by radiation in space is mediated by a number of sources, including X-rays, protons and heavier charged atomic nuclei (HZE ions, the high-energy component of galactic cosmic rays). Previously, only lunar mission astronauts have been exposed to significant deep space radiation, with all other missions being low earth orbits only. The effect of this radiation on the human body has been inconclusively studied, and the long-term damage caused to the vascular endothelium by this radiation due to the effect of high-energy particles is not well known. CONCLUSION Current radiation shielding technology, which would be viable for use in spacecraft, would not eliminate radiation risk. Similar to how a variety of shielding techniques are used every day by radiographers, again without full risk elimination, we need to explore and better understand the effect of deep space radiation in order to ensure the safety of those on future space missions.
Collapse
Affiliation(s)
- Adam Mitchell
- Department of Cardiology, Royal Free London NHS Foundation Trust, London, UK
| | - Dominic Pimenta
- Department of Cardiology, Royal Free London NHS Foundation Trust, London, UK
| | - Jaspal Gill
- Department of Cardiology, Royal Free London NHS Foundation Trust, London, UK
| | - Haris Ahmad
- Department of Cardiology, Royal Free London NHS Foundation Trust, London, UK
| | - Richard Bogle
- Department of Cardiology, Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
6
|
Chatterjee S, Pietrofesa RA, Park K, Tao JQ, Carabe-Fernandez A, Berman AT, Koumenis C, Sielecki T, Christofidou-Solomidou M. LGM2605 Reduces Space Radiation-Induced NLRP3 Inflammasome Activation and Damage in In Vitro Lung Vascular Networks. Int J Mol Sci 2019; 20:ijms20010176. [PMID: 30621290 PMCID: PMC6337675 DOI: 10.3390/ijms20010176] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/24/2018] [Accepted: 12/25/2018] [Indexed: 12/29/2022] Open
Abstract
Updated measurements of charged particle fluxes during the transit from Earth to Mars as well as on site measurements by Curiosity of Martian surface radiation fluxes identified potential health hazards associated with radiation exposure for human space missions. Designing mitigation strategies of radiation risks to astronauts is critical. We investigated radiation-induced endothelial cell damage and its mitigation by LGM2605, a radioprotector with antioxidant and free radical scavenging properties. We used an in vitro model of lung vascular networks (flow-adapted endothelial cells; FAECs), exposed to gamma rays, low/higher linear energy transfer (LET) protons (3⁻4 or 8⁻10 keV/µm, respectively), and mixed field radiation sources (gamma and protons), given at mission-relevant doses (0.25 gray (Gy)⁻1 Gy). We evaluated endothelial inflammatory phenotype, NLRP3 inflammasome activation, and oxidative cell injury. LGM2605 (100 µM) was added 30 min post radiation exposure and gene expression changes evaluated 24 h later. Radiation induced a robust increase in mRNA levels of antioxidant enzymes post 0.25 Gy and 0.5 Gy gamma radiation, which was significantly decreased by LGM2605. Intercellular cell adhesion molecule-1 (ICAM-1) and NOD-like receptor protein 3 (NLRP3) induction by individual or mixed-field exposures were also significantly blunted by LGM2605. We conclude that LGM2605 is a likely candidate to reduce tissue damage from space-relevant radiation exposure.
Collapse
Affiliation(s)
- Shampa Chatterjee
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Ralph A Pietrofesa
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Kyewon Park
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Jian-Qin Tao
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Alejandro Carabe-Fernandez
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Abigail T Berman
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | | | - Melpo Christofidou-Solomidou
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Boerma M, Sridharan V, Mao XW, Nelson GA, Cheema AK, Koturbash I, Singh SP, Tackett AJ, Hauer-Jensen M. Effects of ionizing radiation on the heart. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:319-327. [PMID: 27919338 DOI: 10.1016/j.mrrev.2016.07.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 12/20/2022]
Abstract
This article provides an overview of studies addressing effects of ionizing radiation on the heart. Clinical studies have identified early and late manifestations of radiation-induced heart disease, a side effect of radiation therapy to tumors in the chest when all or part of the heart is situated in the radiation field. Studies in preclinical animal models have contributed to our understanding of the mechanisms by which radiation may injure the heart. More recent observations in human subjects suggest that ionizing radiation may have cardiovascular effects at lower doses than was previously thought. This has led to examinations of low-dose photons and low-dose charged particle irradiation in animal models. Lastly, studies have started to identify non-invasive methods for detection of cardiac radiation injury and interventions that may prevent or mitigate these adverse effects. Altogether, this ongoing research should increase our knowledge of biological mechanisms of cardiovascular radiation injury, identify non-invasive biomarkers for early detection, and potential interventions that may prevent or mitigate these adverse effects.
Collapse
Affiliation(s)
- Marjan Boerma
- University of Arkansas for Medical Sciences, Division of Radiation Health, Little Rock, AR, United States.
| | - Vijayalakshmi Sridharan
- University of Arkansas for Medical Sciences, Division of Radiation Health, Little Rock, AR, United States
| | - Xiao-Wen Mao
- Loma Linda University, Department of Basic Sciences, Loma Linda, CA, United States
| | - Gregory A Nelson
- Loma Linda University, Department of Basic Sciences, Loma Linda, CA, United States
| | - Amrita K Cheema
- Georgetown University Medical Center, Departments of Oncology and Biochemistry, Molecular and Cellular Biology, Washington, DC, United States
| | - Igor Koturbash
- University of Arkansas for Medical Sciences, Department of Environment and Occupational Health, Little Rock, AR, United States
| | - Sharda P Singh
- University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology, Little Rock, AR, United States
| | - Alan J Tackett
- University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR, United States
| | - Martin Hauer-Jensen
- University of Arkansas for Medical Sciences, Division of Radiation Health, Little Rock, AR, United States; Central Arkansas Veterans Healthcare System, Surgical Service, Little Rock, AR, United States
| |
Collapse
|
8
|
Radiation-induced changes in DNA methylation of repetitive elements in the mouse heart. Mutat Res 2016; 787:43-53. [PMID: 26963372 DOI: 10.1016/j.mrfmmm.2016.02.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 02/02/2016] [Accepted: 02/28/2016] [Indexed: 01/04/2023]
Abstract
DNA methylation is a key epigenetic mechanism, needed for proper control over the expression of genetic information and silencing of repetitive elements. Exposure to ionizing radiation, aside from its strong genotoxic potential, may also affect the methylation of DNA, within the repetitive elements, in particular. In this study, we exposed C57BL/6J male mice to low absorbed mean doses of two types of space radiation-proton (0.1 Gy, 150 MeV, dose rate 0.53 ± 0.08 Gy/min), and heavy iron ions ((56)Fe) (0.5 Gy, 600 MeV/n, dose rate 0.38 ± 0.06 Gy/min). Radiation-induced changes in cardiac DNA methylation associated with repetitive elements were detected. Specifically, modest hypomethylation of retrotransposon LINE-1 was observed at day 7 after irradiation with either protons or (56)Fe. This was followed by LINE-1, and other retrotransposons, ERV2 and SINE B1, as well as major satellite DNA hypermethylation at day 90 after irradiation with (56)Fe. These changes in DNA methylation were accompanied by alterations in the expression of DNA methylation machinery and affected the one-carbon metabolism pathway. Furthermore, loss of transposable elements expression was detected in the cardiac tissue at the 90-day time-point, paralleled by substantial accumulation of mRNA transcripts, associated with major satellites. Given that the one-carbon metabolism pathway can be modulated by dietary modifications, these findings suggest a potential strategy for the mitigation and, possibly, prevention of the negative effects exerted by ionizing radiation on the cardiovascular system. Additionally, we show that the methylation status and expression of repetitive elements may serve as early biomarkers of exposure to space radiation.
Collapse
|
9
|
Ramadan SS, Sridharan V, Koturbash I, Miousse IR, Hauer-Jensen M, Nelson GA, Boerma M. A priming dose of protons alters the early cardiac cellular and molecular response to (56)Fe irradiation. LIFE SCIENCES IN SPACE RESEARCH 2016; 8:8-13. [PMID: 26948008 PMCID: PMC4782196 DOI: 10.1016/j.lssr.2015.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/28/2015] [Accepted: 12/08/2015] [Indexed: 05/07/2023]
Abstract
PURPOSE Recent evidence suggests that the heart may be injured by ionizing radiation at lower doses than was previously thought. This raises concerns about the cardiovascular risks from exposure to radiation during space travel. Since space travel is associated with exposure to both protons from solar particle events and heavy ions from galactic cosmic rays, we here examined the effects of a "priming" dose of protons on the cardiac cellular and molecular response to a "challenge" dose of (56)Fe in a mouse model. METHODS Male C57BL/6 mice at 10 weeks of age were exposed to sham-irradiation, 0.1 Gy of protons (150 MeV), 0.5 Gy of (56)Fe (600 MeV/n), or 0.1 Gy of protons 24 hours prior to 0.5 Gy of (56)Fe. Hearts were obtained at 7 days post-irradiation and western-blots were used to determine protein markers of cardiac remodeling, inflammatory infiltration, and cell death. RESULTS Exposure to (56)Fe caused an increase in expression of α-smooth muscle cell actin, collagen type III, the inflammatory cell markers mast cell tryptase, CD2 and CD68, the endothelial glycoprotein thrombomodulin, and cleaved caspase 3. Of all proteins investigated, protons at a dose of 0.1 Gy induced a small increase only in cleaved caspase 3 levels. On the other hand, exposure to protons 24 hours before (56)Fe prevented all of the responses to (56)Fe. CONCLUSIONS This study shows that a low dose of protons may prime the heart to respond differently to a subsequent challenge dose of heavy ions. Further investigation is required to identify responses at additional time points, consequences for cardiac function, threshold dose levels, and mechanisms by which a proton priming dose may alter the response to heavy ions.
Collapse
Affiliation(s)
- Samy S Ramadan
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Vijayalakshmi Sridharan
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Isabelle R Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Gregory A Nelson
- Departments of Basic Sciences and Radiation Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
10
|
Boerma M, Nelson GA, Sridharan V, Mao XW, Koturbash I, Hauer-Jensen M. Space radiation and cardiovascular disease risk. World J Cardiol 2015; 7:882-888. [PMID: 26730293 PMCID: PMC4691814 DOI: 10.4330/wjc.v7.i12.882] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/18/2015] [Accepted: 10/08/2015] [Indexed: 02/06/2023] Open
Abstract
Future long-distance space missions will be associated with significant exposures to ionizing radiation, and the health risks of these radiation exposures during manned missions need to be assessed. Recent Earth-based epidemiological studies in survivors of atomic bombs and after occupational and medical low dose radiation exposures have indicated that the cardiovascular system may be more sensitive to ionizing radiation than was previously thought. This has raised the concern of a cardiovascular disease risk from exposure to space radiation during long-distance space travel. Ground-based studies with animal and cell culture models play an important role in estimating health risks from space radiation exposure. Charged particle space radiation has dense ionization characteristics and may induce unique biological responses, appropriate simulation of the space radiation environment and careful consideration of the choice of the experimental model are critical. Recent studies have addressed cardiovascular effects of space radiation using such models and provided first results that aid in estimating cardiovascular disease risk, and several other studies are ongoing. Moreover, astronauts could potentially be administered pharmacological countermeasures against adverse effects of space radiation, and research is focused on the development of such compounds. Because the cardiovascular response to space radiation has not yet been clearly defined, the identification of potential pharmacological countermeasures against cardiovascular effects is still in its infancy.
Collapse
|