1
|
Hashemolhosseini S, Gessler L. Crosstalk among canonical Wnt and Hippo pathway members in skeletal muscle and at the neuromuscular junction. Neural Regen Res 2025; 20:2464-2479. [PMID: 39248171 PMCID: PMC11801303 DOI: 10.4103/nrr.nrr-d-24-00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/04/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Skeletal muscles are essential for locomotion, posture, and metabolic regulation. To understand physiological processes, exercise adaptation, and muscle-related disorders, it is critical to understand the molecular pathways that underlie skeletal muscle function. The process of muscle contraction, orchestrated by a complex interplay of molecular events, is at the core of skeletal muscle function. Muscle contraction is initiated by an action potential and neuromuscular transmission requiring a neuromuscular junction. Within muscle fibers, calcium ions play a critical role in mediating the interaction between actin and myosin filaments that generate force. Regulation of calcium release from the sarcoplasmic reticulum plays a key role in excitation-contraction coupling. The development and growth of skeletal muscle are regulated by a network of molecular pathways collectively known as myogenesis. Myogenic regulators coordinate the differentiation of myoblasts into mature muscle fibers. Signaling pathways regulate muscle protein synthesis and hypertrophy in response to mechanical stimuli and nutrient availability. Several muscle-related diseases, including congenital myasthenic disorders, sarcopenia, muscular dystrophies, and metabolic myopathies, are underpinned by dysregulated molecular pathways in skeletal muscle. Therapeutic interventions aimed at preserving muscle mass and function, enhancing regeneration, and improving metabolic health hold promise by targeting specific molecular pathways. Other molecular signaling pathways in skeletal muscle include the canonical Wnt signaling pathway, a critical regulator of myogenesis, muscle regeneration, and metabolic function, and the Hippo signaling pathway. In recent years, more details have been uncovered about the role of these two pathways during myogenesis and in developing and adult skeletal muscle fibers, and at the neuromuscular junction. In fact, research in the last few years now suggests that these two signaling pathways are interconnected and that they jointly control physiological and pathophysiological processes in muscle fibers. In this review, we will summarize and discuss the data on these two pathways, focusing on their concerted action next to their contribution to skeletal muscle biology. However, an in-depth discussion of the non-canonical Wnt pathway, the fibro/adipogenic precursors, or the mechanosensory aspects of these pathways is not the focus of this review.
Collapse
Affiliation(s)
- Said Hashemolhosseini
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lea Gessler
- Institute of Biochemistry, Medical Faculty, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Dash P, Yadav V, Das B, Satapathy SR. Experimental toolkit to study the oncogenic role of WNT signaling in colorectal cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189354. [PMID: 40414319 DOI: 10.1016/j.bbcan.2025.189354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 05/19/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Colorectal cancer (CRC) is linked to the WNT/β-catenin signaling as its primary driver. Aberrant activation of WNT/β-catenin signaling is closely correlated with increased incidence, malignancy, poorer prognosis, and even higher cancer-related death. Research over the years has postulated various experimental models that have facilitated an understanding of the complex mechanisms underlying WNT signaling in CRC. In the present review, we have comprehensively summarized the in vitro, in vivo, patient-derived, and computational models used to study the role of WNT signaling in CRC. We discuss the use of CRC cell lines and organoids in capturing the molecular intricacies of WNT signaling and implementing xenograft and genetically engineered mouse models to mimic the tumor microenvironment. Patient-derived models, including xenografts and organoids, provide valuable insights into personalized medicine approaches. Additionally, we elaborated on the role of computational models in simulating WNT signaling dynamics and predicting therapeutic outcomes. By evaluating the advantages and limitations of each model, this review highlights the critical contributions of these systems to our understanding of WNT signaling in CRC. We emphasize the need to integrate diverse model systems to enhance translational research and clinical applications, which is the primary goal of this review.
Collapse
Affiliation(s)
- Pujarini Dash
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Vikas Yadav
- Cell and Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Biswajit Das
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, USA
| | - Shakti Ranjan Satapathy
- Cell and Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
3
|
Vosough M, Shokouhian B, Sharbaf MA, Solhi R, Heidari Z, Seydi H, Hassan M, Devaraj E, Najimi M. Role of mitogens in normal and pathological liver regeneration. Hepatol Commun 2025; 9:e0692. [PMID: 40304568 PMCID: PMC12045551 DOI: 10.1097/hc9.0000000000000692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/31/2025] [Indexed: 05/02/2025] Open
Abstract
The liver has a unique ability to regenerate to meet the body's metabolic needs, even following acute or chronic injuries. The cellular and molecular mechanisms underlying normal liver regeneration have been well investigated to improve organ transplantation outcomes. Once liver regeneration is impaired, pathological regeneration occurs, and the underlying cellular and molecular mechanisms require further investigations. Nevertheless, a plethora of cytokines and growth factor-mediated pathways have been reported to modulate physiological and pathological liver regeneration. Regenerative mitogens play an essential role in hepatocyte proliferation. Accelerator mitogens in synergism with regenerative ones promote liver regeneration following hepatectomy. Finally, terminator mitogens restore the proliferating status of hepatocytes to a differentiated and quiescent state upon completion of regeneration. Chronic loss of hepatocytes, which can manifest in chronic liver disorders of any etiology, often has undesired structural consequences, including fibrosis, cirrhosis, and liver neoplasia due to the unregulated proliferation of remaining hepatocytes. In fact, any impairment in the physiological function of the terminator mitogens results in the progression of pathological liver regeneration. In the current review, we intend to highlight the updated cellular and molecular mechanisms involved in liver regeneration and discuss the impairments in central regulating mechanisms responsible for pathological liver regeneration.
Collapse
Affiliation(s)
- Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bahare Shokouhian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Amin Sharbaf
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Roya Solhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Heidari
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Homeyra Seydi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ezhilarasan Devaraj
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| |
Collapse
|
4
|
Meinhardt G, Waldhäusl H, Lackner AI, Wächter J, Maxian T, Höbler AL, Vondra S, Kunihs V, Saleh L, Haslinger P, Kiraly P, Szilagyi A, Than NG, Pollheimer J, Haider S, Knöfler M. The multifaceted roles of the transcriptional coactivator TAZ in extravillous trophoblast development of the human placenta. Proc Natl Acad Sci U S A 2025; 122:e2426385122. [PMID: 40228123 PMCID: PMC12037006 DOI: 10.1073/pnas.2426385122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/07/2025] [Indexed: 04/16/2025] Open
Abstract
Insights into the molecular processes that drive early development of the human placenta is crucial for our understanding of pregnancy complications such as preeclampsia and fetal growth restriction, since defects in maturation of its epithelial cell, the trophoblast, have been detected in the severe forms of these diseases. However, key regulators specifying the differentiated trophoblast subtypes of the placenta are only slowly emerging. By using diverse trophoblast cell models, we herein show that the transcriptional coactivator of HIPPO signaling, TAZ, plays a pivotal role in the development of invasive extravillous trophoblasts (EVTs), cells that are essential for decidual vessel remodeling and adaption of maternal blood flow to the placenta. Ribonucleic acid sequencing (RNA-seq) or protein analyses upon TAZ gene silencing or CRISPR-Cas9-mediated knockout in differentiating trophoblast stem cells, organoids, primary EVTs, choriocarcinoma cells, or villous explant cultures unraveled that the coactivator promoted expression of genes associated with EVT identity, motility, and survival. Accordingly, depletion or chemical inhibition of TAZ, interacting with TEA domain family member 1 (TEAD1), impaired EVT differentiation, invasion, and migration and triggered apoptosis in the different trophoblast models. Notably, the coactivator also suppressed cell cycle genes and regulators of trophoblast self-renewal and prevented EVTs from cell fusion in organoids and primary cultures. Moreover, TAZ promoted human leukocyte antigen G (HLA-G) surface expression and increased NUAK1 kinase in EVTs thereby maintaining its own expression. In summary, the transcriptional coactivator TAZ plays a multifaceted role in the development of the EVT cell lineage by controlling different biological processes that initiate and preserve differentiation.
Collapse
Affiliation(s)
- Gudrun Meinhardt
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Hanna Waldhäusl
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Andreas I. Lackner
- Maternal-Fetal Immunology Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Jasmin Wächter
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Theresa Maxian
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Anna-Lena Höbler
- Maternal-Fetal Immunology Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Sigrid Vondra
- Maternal-Fetal Immunology Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Victoria Kunihs
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Leila Saleh
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Peter Haslinger
- Maternal-Fetal Immunology Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Peter Kiraly
- Systems Biology of Reproduction Lendulet Group, Institute of Molecular Life Sciences, Hungarian Research Network (HUN-REN) Research Centre for Natural Sciences, Budapest1117, Hungary
| | - Andras Szilagyi
- Systems Biology of Reproduction Lendulet Group, Institute of Molecular Life Sciences, Hungarian Research Network (HUN-REN) Research Centre for Natural Sciences, Budapest1117, Hungary
| | - Nandor G. Than
- Systems Biology of Reproduction Lendulet Group, Institute of Molecular Life Sciences, Hungarian Research Network (HUN-REN) Research Centre for Natural Sciences, Budapest1117, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest1126, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest1088, Hungary
| | - Jürgen Pollheimer
- Maternal-Fetal Immunology Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Sandra Haider
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| | - Martin Knöfler
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, ViennaA-1090, Austria
| |
Collapse
|
5
|
Thomas M. Contact and communication: ZO-2 and the Hippo pathway. FEBS J 2025; 292:1584-1586. [PMID: 39910408 PMCID: PMC11970711 DOI: 10.1111/febs.17417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 02/07/2025]
Abstract
The PDZ domain-containing protein ZO-2 is defined as a tight junction (TJ) protein, but is also known to have a role in the maintenance of cellular apicobasal polarity and to function as a signalling molecule in several pathways, including the Hippo pathway. In this issue, Liu OX et al. [(2024) FEBS J, https://doi.org/10.1111/febs.17304] report how the multiple protein binding sites of ZO2 protein allow it to act as a scaffold to facilitate its signalling functions.
Collapse
|
6
|
Yang JL, Ma JJ, Qu TY, Dai Q, Leng J, Fang L, Wu J, Li YJ, Yu HF. Glycolysis-related lncRNA FTX upregulates YAP1 to facilitate colorectal cancer progression via sponging miR-215-3p. Sci Rep 2025; 15:9929. [PMID: 40121300 PMCID: PMC11929783 DOI: 10.1038/s41598-025-94638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
Increased evidence reveals that glycolysis is one of the key metabolic hallmarks of cancer cells. However, the roles of lncRNA FTX in energy metabolism and cancer progression remain unclear. In this study we aim to show that lncRNA FTX was significantly upregulated in cancer tissues and serum of CRC patients and CRC cell lines. Function study indicated that it could promote aerobic glycolysis, cell proliferation, migration and invasion in colorectal cancer cells. Further mechanistic studies showed, lncRNA FTX was found to function as a sponge for miR-215-3p, which reduced the ability of miR-215-3p to repress the YAP1 oncoprotein. Additionally, a negative correlation was observed between lncRNA FTX and miR-215-3p expression, and the knockdown of lncRNA FTX or miR-215-3p overexpression yielded opposite effects. In conclusion, this study demonstrates that FTX could directly combine with miR-215-3p as a competitive endogenous RNA, thus promoting the aerobic glycolysis and progression of CRC in vitro and in vivo.
Collapse
Affiliation(s)
- Jin-Lan Yang
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China
| | - Jing-Jing Ma
- Department of Clinical Laboratory, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
| | - Tian-Yin Qu
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China
| | - Qing Dai
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China
| | - Jing Leng
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China
| | - Lin Fang
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China
| | - Jie Wu
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Ya-Jun Li
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
| | - Huang-Fei Yu
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China.
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China.
| |
Collapse
|
7
|
Haddad A, Golan-Lev T, Benvenisty N, Goldberg M. Genome-wide screening in human embryonic stem cells identifies genes and pathways involved in the p53 pathway. Mol Med 2025; 31:97. [PMID: 40082762 PMCID: PMC11907909 DOI: 10.1186/s10020-025-01141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND The tumor suppressor protein, p53, which is mutated in half of human tumors, plays a critical role in cellular responses to DNA damage and maintenance of genome stability. Therefore, increasing our understanding of the p53 pathway is essential for improving cancer treatment and diagnosis. METHODS This study, which aimed to identify genes and pathways that mediate resistance to p53 upregulation, used genome-wide CRISPR-Cas9 loss-of-function screening done with Nutlin-3a, which inhibits p53-MDM2 interaction, resulting in p53 accumulation and apoptotic cell death. We used bioinformatics analysis for the identification of genes and pathways that are involved in the p53 pathway and cell survival assays to validate specific genes. In addition, we used RNA-seq to identify differentially expressed p53 target genes in gene knockout (KO) cell lines. RESULTS Our screen revealed three significantly enriched pathways: The heparan sulfate glycosaminoglycan biosynthesis, diphthamide biosynthesis and Hippo pathway. Notably, TRIP12 was significantly enriched in our screen. We found that TRIP12 is required for the p53-dependent transcription of several pro-apoptotic genes. CONCLUSION Our study has identified two novel pathways that play a role in p53-mediated growth restriction. Moreover, we have highlighted the interaction between the Hippo and the p53 pathways. Interestingly, we have shown that TRIP12 plays an important function in the p53 pathway by selectively affecting its role as a transcription factor.
Collapse
Affiliation(s)
- Amir Haddad
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- The Azrieli Center for Stem Cells and Genetic Research, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Tamar Golan-Lev
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- The Azrieli Center for Stem Cells and Genetic Research, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Nissim Benvenisty
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- The Azrieli Center for Stem Cells and Genetic Research, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Michal Goldberg
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| |
Collapse
|
8
|
Du L, Gao R, Chen Z. 5-Methylcytosine Methylation-Linked Hippo Pathway Molecular Interactions Regulate Lipid Metabolism. Int J Mol Sci 2025; 26:2560. [PMID: 40141201 PMCID: PMC11942534 DOI: 10.3390/ijms26062560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
5-methylcytosine (5mC) is a common form of DNA methylation, essentially acting as an epigenetic modification that regulates gene expression by affecting the binding of transcription factors to DNA or by recruiting proteins that make it difficult to recognize and transcribe genes. 5mC methylation is present in eukaryotes in a variety of places, such as in CpG islands, within gene bodies, and in regions of repetitive sequences, whereas in prokaryotic organisms, it is mainly present in genomic DNA. The Hippo pathway is a highly conserved signal transduction pathway, which is extremely important in cell proliferation and death, controlling the size of tissues and organs and regulating cell differentiation, in addition to its important regulatory roles in lipid synthesis, transport, and catabolism. Lipid metabolism is an important part of various metabolic pathways in the human body, and problems in lipid metabolism are related to abnormalities in key enzymes, related proteins, epigenetic inheritance, and certain specific amino acids, which are the key factors affecting its proper regulation. In this article, we will introduce the molecular mechanisms of 5mC methylation and the Hippo signaling pathway, and the possibility of their co-regulation of lipid metabolism, with the aim of providing new ideas for further research and novel therapeutic modalities for lipid metabolism and a reference for the development and exploration of related research.
Collapse
Affiliation(s)
- Lichen Du
- Agricultural College, Yangzhou University, Yangzhou 225009, China;
| | - Rui Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Ciuba K, Piotrowska A, Chaudhury D, Dehingia B, Duński E, Behr R, Soroczyńska K, Czystowska-Kuźmicz M, Abbas M, Bulanda E, Gawlik-Zawiślak S, Pietrzak S, Figiel I, Włodarczyk J, Verkhratsky A, Niedbała M, Kaspera W, Wypych T, Wilczyński B, Pękowska A. Molecular signature of primate astrocytes reveals pathways and regulatory changes contributing to human brain evolution. Cell Stem Cell 2025; 32:426-444.e14. [PMID: 39909043 DOI: 10.1016/j.stem.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/08/2024] [Accepted: 12/23/2024] [Indexed: 02/07/2025]
Abstract
Astrocytes contribute to the development and regulation of the higher-level functions of the brain, the critical targets of evolution. However, how astrocytes evolve in primates is unsettled. Here, we obtain human, chimpanzee, and macaque induced pluripotent stem-cell-derived astrocytes (iAstrocytes). Human iAstrocytes are bigger and more complex than the non-human primate iAstrocytes. We identify new loci contributing to the increased human astrocyte. We show that genes and pathways implicated in long-range intercellular signaling are activated in the human iAstrocytes and partake in controlling iAstrocyte complexity. Genes downregulated in human iAstrocytes frequently relate to neurological disorders and were decreased in adult brain samples. Through regulome analysis and machine learning, we uncover that functional activation of enhancers coincides with a previously unappreciated, pervasive gain of "stripe" transcription factor binding sites. Altogether, we reveal the transcriptomic signature of primate astrocyte evolution and a mechanism driving the acquisition of the regulatory potential of enhancers.
Collapse
Affiliation(s)
- Katarzyna Ciuba
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Aleksandra Piotrowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Debadeep Chaudhury
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Bondita Dehingia
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Eryk Duński
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Rüdiger Behr
- German Primate Center-Leibniz Institute for Primate Research, Platform Stem Cell Biology and Regeneration, Kellnerweg 4, 37077 Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Lower Saxony, 37077 Göttingen, Germany
| | - Karolina Soroczyńska
- Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | | | - Misbah Abbas
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Edyta Bulanda
- Laboratory of Host-Microbiota Interactions, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Sylwia Gawlik-Zawiślak
- Department of Genetics Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| | - Sylwia Pietrzak
- Department of Genetics Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| | - Izabela Figiel
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Department of Neurosciences, University of the Basque Country, CIBERNED 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
| | - Marcin Niedbała
- Department of Neurosurgery, Medical University of Silesia, Regional Hospital, Plac Medyków 141-200 Sosnowiec, Poland
| | - Wojciech Kaspera
- Department of Neurosurgery, Medical University of Silesia, Regional Hospital, Plac Medyków 141-200 Sosnowiec, Poland
| | - Tomasz Wypych
- Laboratory of Host-Microbiota Interactions, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Bartosz Wilczyński
- Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
10
|
Wu A, Ma G, Chen Y, Gui H, Sun B, Zhang B, Liu Y, Zhang S, Lian G, Song D, Zhang D. Improved Black Phosphorus Nanocomposite Hydrogel for Bone Defect Repairing: Mechanisms for Advancing Osteogenesis. Adv Healthc Mater 2025; 14:e2404934. [PMID: 39846309 DOI: 10.1002/adhm.202404934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Bone defects caused by fractures and diseases often do not heal spontaneously. They require external agents for repair and regeneration. Bone tissue engineering is emerging as a promising alternative to traditional therapies like autografts and allografts. Nanobiomaterials enhance osteoblast resistance to harsh environments by promoting cell differentiation. Black phosphorus (BP), a novel 2D material in biomedicine, displays unique osteogenic and antimicrobial properties. However, BP nanosheets still face clinical limitations like rapid degradation and high-dose cytotoxicity. To address these, the introduction of amino-silicon phthalocyanine (SiPc-NH2) is investigated to see if it can enhance BP dispersion, reduce BP oxidation, and improve stability and safety for better osteogenesis and antibacterial effects through noncovalent interactions (van der Waals, π-π stacking and electrostatic interactions). Here, the self-healing hydrogel is successfully designed using a step-by-step co-assembly of BP and SiPc-NH2. SiPc-NH2 as a "structural stabilizer" of BP nanosheets reconstructed well-dispersed BP-SiPc-NH2 nanosheets, which improves the biocompatibility of BP, reduces oxidation and enhances photothermal conversion, guaranteeing osteogenic and antimicrobial properties. Furthermore, findings show BP-SiPc-NH2-induced mitochondrial changes support osteogenesis by regulating the crosstalk between Hippo and Wnt signaling pathways-mediated mitochondrial homeostasis, and boosting cellular bioenergetics. Overall, this mitochondrial morphology-based BP-SiPc-NH2 strategy holds great promise for bone repair applications.
Collapse
Affiliation(s)
- Ailin Wu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| | - Gaoqiang Ma
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| | - Yanhua Chen
- Jinan Stomatological hospital, Jinan, Shandong, 250001, China
| | - Houda Gui
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| | - Baiyu Sun
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| | - Bing Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| | - Yingxue Liu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| | - Sen Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Guixue Lian
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Dawei Song
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- Department of Stomatology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| |
Collapse
|
11
|
Chen X, Ji X, Lao Z, Pan B, Qian Y, Yang W. Role of YAP/TAZ in bone diseases: A transductor from mechanics to biology. J Orthop Translat 2025; 51:13-23. [PMID: 39902099 PMCID: PMC11787699 DOI: 10.1016/j.jot.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/24/2024] [Accepted: 12/09/2024] [Indexed: 02/05/2025] Open
Abstract
Wolff's Law and the Mechanostat Theory elucidate how bone tissues detect and convert mechanical stimuli into biological signals, crucial for maintaining bone equilibrium. Abnormal mechanics can lead to diseases such as osteoporosis, osteoarthritis, and nonunion fractures. However, the detailed molecular mechanisms by which mechanical cues are transformed into biological responses in bone remain underexplored. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), key regulators of bone homeostasis, are instrumental in this process. Emerging research highlights bone cells' ability to sense various mechanical stimuli and relay these signals intracellularly. YAP/TAZ are central in receiving these mechanical cues and converting them into signals that influence bone cell behavior. Abnormal YAP/TAZ activity is linked to several bone pathologies, positioning these proteins as promising targets for new treatments. Thus, this review aims to provide an in-depth examination of YAP/TAZ's critical role in the interpretation of mechanical stimuli to biological signals, with a special emphasis on their involvement in bone cell mechanosensing, mechanotransduction, and mechanoresponse. The translational potential of this article: Clinically, appropriate stress stimulation promotes fracture healing, while bed rest can lead to disuse osteoporosis and excessive stress can cause osteoarthritis or bone spurs. Recent advancements in the understanding of YAP/TAZ-mediated mechanobiological signal transduction in bone diseases have been significant, yet many aspects remain unknown. This systematic review summarizes current research progress, identifies unaddressed areas, and highlights potential future research directions. Advancements in this field facilitate a deeper understanding of the molecular mechanisms underlying bone mechanics regulation and underscore the potential of YAP/TAZ as therapeutic targets for bone diseases such as fractures, osteoporosis, and osteoarthritis.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| | - Xing Ji
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Zhaobai Lao
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| | - Bin Pan
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| | - Yu Qian
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| | - Wanlei Yang
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| |
Collapse
|
12
|
Quan T, Shao Y, Purohit T, Jiang Y, Qin Z, Fisher GJ, Lents NH, Baldassare JJ. CCN2 functions as a modulator of cell cycle regulation in human dermal fibroblasts. J Cell Commun Signal 2025; 19:e70003. [PMID: 39898007 PMCID: PMC11786592 DOI: 10.1002/ccs3.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/31/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025] Open
Abstract
CCN2 is widely regarded as a profibrotic factor involved in fibrotic disorders by regulating extracellular matrix (ECM). We report here that CCN2 functions as a critical cell cycle regulator in primary human dermal fibroblasts (HDFs). siRNA-mediated knockdown of CCN2 halted proliferation of primary HDFs, which was rescued by a siRNA-resistant CCN2 expression vector. Furthermore, CCN2 knockdown caused a significant accumulation of cells in G1/G0 phase and blocked entry into S-phase. Mechanistically, CCN2 knockdown blocked cyclin E and CDK4/cyclin D nuclear translocation, and abrogated CDK2 activity. Markedly, CCN2 translocated to the nucleus and co-localized with cyclin D1 upon cell cycle stimulation. Finally, we show that CCN2, a bona fide YAP/TAZ target gene, partially mediates YAP/TAZ-dependent proliferation of primary HDFs. These data provide evidence of a novel CCN2 function as a cell cycle regulator in primary HDFs proliferation, in addition to its known role in ECM regulation.
Collapse
Affiliation(s)
- Taihao Quan
- Department of DermatologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Yuan Shao
- Department of DermatologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Trupta Purohit
- Department of DermatologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Yiou Jiang
- Department of DermatologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Zhaoping Qin
- Department of DermatologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Gary J. Fisher
- Department of DermatologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Nathan H. Lents
- Department of Pharmacological Sciences at Saint Louis UniversitySt. LouisMissouriUSA
| | - Joseph J. Baldassare
- Department of Pharmacological Sciences at Saint Louis UniversitySt. LouisMissouriUSA
| |
Collapse
|
13
|
Liu Y, Zuo M, Wu A, Wang Z, Wang S, Bai Y, Zhou J, Wang H. UFMylation maintains YAP stability to promote vascular endothelial cell senescence. iScience 2025; 28:111854. [PMID: 39991547 PMCID: PMC11847039 DOI: 10.1016/j.isci.2025.111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/30/2024] [Accepted: 01/17/2025] [Indexed: 02/25/2025] Open
Abstract
Endothelial cell (EC) senescence is an accomplice for vascular aging, which leads to cardiovascular diseases (CVDs). Evidences showed that Hippo-Yes-associated protein (YAP) signaling pathway plays an essential role in aging-associated CVDs. Here, we reported that YAP was elevated in senescent human umbilical vein endothelial cells (HUVECs) and inhibition of YAP could attenuate HUVECs senescence. Besides, our findings revealed that the activity of UFMylation and the level of YAP were both elevated in senescent cells. Furthermore, UFM1-modified YAP was upregulated in senescent ECs, and increased the stability of YAP. Importantly, we found that compound 8.5, an inhibitor of E1 of UFMylation, can alleviate vascular aging in aged mice. Together, our finding provides molecular mechanism by which UFMylation maintains YAP stability and exerts an important role in promoting cell senescence, and identified that a previously unrecognized UFMylation is a potential therapeutic target for anti-aging.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Geriatric Medicine, Center of Coronary Circulation, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, School of Basic Medicine Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Min Zuo
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, School of Basic Medicine Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Aiwei Wu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, School of Basic Medicine Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhaoxiang Wang
- School of Basic Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Siting Wang
- Department of Geriatric Medicine, Center of Coronary Circulation, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yongping Bai
- Department of Geriatric Medicine, Center of Coronary Circulation, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Junzhi Zhou
- School of Basic Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Hu Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, School of Basic Medicine Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
14
|
Guo Y, Zhou Y, Wang R, Lin Y, Lan H, Li Y, Wang DY, Dong J, Li K, Yan Y, Qiao Y. YAP as a potential therapeutic target for myofibroblast formation in asthma. Respir Res 2025; 26:51. [PMID: 39939959 PMCID: PMC11823061 DOI: 10.1186/s12931-025-03115-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/13/2025] [Indexed: 02/14/2025] Open
Abstract
Myofibroblasts accumulation contributes to airway remodeling, with the mechanisms being poorly understood. It is steroid-insensitive and has not been therapeutically targeted in asthma. In this study, we explored the potential of yes-associated protein (YAP) as a therapeutic target for myofibroblasts formation in asthma, by revealing the novel role and mechanisms by which YAP activation in type II alveolar epithelial (ATII) cells promotes the fibroblast-to-myofibroblast transition in vitro and in vivo. By performing immunofluorescence staining, we showed that myofibroblasts were increased in the bronchial walls and alveolar parenchyma in clinical asthmatic and house dust mite (HDM)-induced mouse lung samples. This was accompanied by YAP overexpression and nuclear translocation in ATII cells, and connective tissue growth factor (CTGF) upregulation. In vitro, HDM or combination of rhIL-1β with rhTNF-α upregulated and activated YAP in human primary ATII cells and A549 cells, but not in the bronchial epithelial cells, BEAS-2B. This effect was mediated by F-actin polymerization and could be suppressed by pretreatment with latrunculin A but not budesonide. Inhibition of YAP/transcriptional coactivator with PDZ-binding motif (TAZ) in A549 cells by pretreatment with YAP/TAZ siRNA or verteporfin, but not budesonide, impaired the fibroblast-to-myofibroblast transition in vitro. In vivo, verteporfin partly or completely prevented HDM-induced bronchial or alveolar myofibroblast accumulation, and significantly suppressed CTGF expression and collagen deposition in mouse lungs, without profoundly affecting airway inflammation. Our results provide novel mechanistic insights into airway remodeling, and holds promise for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yanrong Guo
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Yuran Zhou
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Rui Wang
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Yujing Lin
- Department of Pathology, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Huimin Lan
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Yang Li
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, 119228, Singapore
| | - Jinrui Dong
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Kefeng Li
- Faculty of Applied Sciences, Macao Polytechnic University, Macau, 999078, SAR, China
| | - Yan Yan
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, China.
| | - Yongkang Qiao
- Centre for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519000, China.
| |
Collapse
|
15
|
Bhavnagari HM, Shah FD. Decoding gene expression profiles of Hippo signaling pathway components in breast cancer. Mol Biol Rep 2025; 52:216. [PMID: 39928181 DOI: 10.1007/s11033-025-10299-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/23/2025] [Indexed: 02/11/2025]
Abstract
INTRODUCTION The Hippo signaling pathway is an evolutionarily conserved, tumor suppressor, stem cell pathway. This is the very less explored pathway in Breast Cancer. It is a crucial regulator of several biological processes, such as organ size, differentiation, tissue homeostasis, cellular proliferation, and stemness. Interestingly, deregulation of this pathway leads to tumorigenesis. Hence, the present study aims to identify the role of the Hippo signaling pathway in Breast Cancer. MATERIALS AND METHODS The mRNA expression of the Hippo signaling pathway molecules was evaluated in 120 pre-therapeutic patients by quantitative real-time PCR. Statistical analysis was carried out using SPSS 23. The association between the gene expression and clinicopathological parameters was analyzed by the paired sample t-test, and Pearson chi-square test. ROC curve analysis was carried out using Med Cal. A p-value of ≤ 0.05 was considered statistically significant. RESULTS The hippo signaling pathway contains 10 core components i.e.SAV1, MOB1A, MOB1B, MST1, MST2, LATS1, LATS2, YAP, TAZ, and TEAD1 which were downregulated in malignant tissues as compared to adjacent normal tissue in breast cancer. In the correlation of hippo signaling pathway molecules with clinico pathological parameters, only LATS1, MST1, and SAV1 were found to be significantly negatively associated with stages of Breast Cancer. MOB1B was found to be significantly positively correlated with stages of Breast Cancer. ROC curve analysis of YAP, TAZ, LATS2, and TEAD showed significant discrimination between adjacent normal and malignant tissue. CONCLUSION In the current study, all the molecules of the hippo signaling pathway i.e. YAP, TAZ, LATS1, LATS2, MST1, MST2, SAV1, MOB1, MOB1B, TEAD1 were downregulated in BC suggesting the activation of hippo pathway which played a significant role in tumor suppression.
Collapse
Affiliation(s)
- Hunayna M Bhavnagari
- Life Science Department, Gujarat University, Ahmedabad, Gujarat, India
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Franky D Shah
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India.
| |
Collapse
|
16
|
Wen M, Li J, Qiu W, Zhang J, Long K, Lu L, Jin L, Sun J, Ge L, Li X, Li M, Ma J. Identification and Functional Analysis of Key microRNAs in the Early Extrauterine Environmental Adaptation of Piglets. Int J Mol Sci 2025; 26:1316. [PMID: 39941084 PMCID: PMC11818927 DOI: 10.3390/ijms26031316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Neonatal mammals must rapidly adapt to significant physiological changes during the transition from the intrauterine to extrauterine environments. This adaptation, particularly in the metabolic and respiratory systems, is essential for survival. MicroRNAs (miRNAs) are small noncoding RNAs that regulate various physiological and pathological processes by binding to the 3' untranslated regions of mRNAs. This study aimed to identify miRNAs involved in the early extrauterine adaptation of neonatal piglets and explore their functions. We performed small RNA sequencing on six tissues (heart, liver, spleen, lung, multifidus muscle, and duodenum) from piglets 24 h before birth (day 113 of gestation) and 6 h after birth. A total of 971 miRNA precursors and 1511 mature miRNAs were identified. Tissue-specific expression analysis revealed 881 tissue-specific miRNAs and 164 differentially expressed miRNAs (DE miRNAs) across the tissues. Functional enrichment analysis showed that these DE miRNAs are significantly enriched in pathways related to early extrauterine adaptation, such as the NFκB, PI3K/AKT, and Hippo pathways. Specifically, miR-22-3p was significantly upregulated in the liver post-birth and may regulate the PI3K/AKT pathway by targeting AKT3, promoting gluconeogenesis, and maintaining glucose homeostasis. Dual-luciferase reporter assays and HepG2 cell experiments confirmed AKT3 as a target of miR-22-3p, which activates the AKT/FoxO1 pathway, enhancing gluconeogenesis and glucose production. Furthermore, changes in blood glucose and liver glycogen levels in newborn piglets further support the role of miR-22-3p in glucose homeostasis. This study highlights the importance of miRNAs, particularly miR-22-3p, in the early extrauterine adaptation of neonatal piglets, offering new insights into the physiological adaptation of neonatal mammals.
Collapse
Affiliation(s)
- Mingxing Wen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.W.); (J.L.); (W.Q.); (K.L.); (L.L.); (L.J.); (X.L.); (M.L.)
| | - Jing Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.W.); (J.L.); (W.Q.); (K.L.); (L.L.); (L.J.); (X.L.); (M.L.)
| | - Wanling Qiu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.W.); (J.L.); (W.Q.); (K.L.); (L.L.); (L.J.); (X.L.); (M.L.)
| | - Jinwei Zhang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (J.Z.); (J.S.); (L.G.)
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.W.); (J.L.); (W.Q.); (K.L.); (L.L.); (L.J.); (X.L.); (M.L.)
| | - Lu Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.W.); (J.L.); (W.Q.); (K.L.); (L.L.); (L.J.); (X.L.); (M.L.)
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.W.); (J.L.); (W.Q.); (K.L.); (L.L.); (L.J.); (X.L.); (M.L.)
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (J.Z.); (J.S.); (L.G.)
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (J.Z.); (J.S.); (L.G.)
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China
| | - Xuewei Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.W.); (J.L.); (W.Q.); (K.L.); (L.L.); (L.J.); (X.L.); (M.L.)
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.W.); (J.L.); (W.Q.); (K.L.); (L.L.); (L.J.); (X.L.); (M.L.)
| | - Jideng Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.W.); (J.L.); (W.Q.); (K.L.); (L.L.); (L.J.); (X.L.); (M.L.)
| |
Collapse
|
17
|
Jia Q, Wang H, Bi B, Han X, Jia Y, Zhang L, Fang L, Thakur A, Cheng JC. Amphiregulin Downregulates E-cadherin Expression by Activating YAP/Egr-1/Slug Signaling in SKOV3 Human Ovarian Cancer Cells. Reprod Sci 2025; 32:404-416. [PMID: 39138796 DOI: 10.1007/s43032-024-01673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
Amphiregulin (AREG) stimulates human epithelial ovarian cancer (EOC) cell invasion by downregulating E-cadherin expression. YAP is a transcriptional cofactor that has been shown to regulate tumorigenesis. This study aimed to examine whether AREG activates YAP in EOC cells and explore the roles of YAP in AREG-induced downregulation of E-cadherin and cell invasion. Analysis of the Cancer Genome Atlas (TCGA) showed that upregulation of AREG and EGFR were associated with poor survival in human EOC. Treatment of SKOV3 human EOC cells with AREG induced the activation of YAP. In addition, AREG downregulated E-cadherin, upregulated Egr-1 and Slug, and stimulated cell invasion. Using gain- and loss-of-function approaches, we showed that YAP was required for the AREG-upregulated Egr-1 and Slug expression. Furthermore, YAP was also involved in AREG-induced downregulation of E-cadherin and cell invasion. This study provides evidence that AREG stimulates human EOC cell invasion by downregulating E-cadherin expression through the YAP/Egr-1/Slug signaling.
Collapse
Affiliation(s)
- Qiongqiong Jia
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hailong Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Beibei Bi
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Han
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Jia
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lingling Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Avinash Thakur
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
18
|
Wang J, Shen D, Jiang J, Hu L, Fang K, Xie C, Shen N, Zhou Y, Wang Y, Du S, Meng S. Dietary Palmitic Acid Drives a Palmitoyltransferase ZDHHC15-YAP Feedback Loop Promoting Tumor Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409883. [PMID: 39686664 PMCID: PMC11809420 DOI: 10.1002/advs.202409883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Indexed: 12/18/2024]
Abstract
Elevated uptake of saturated fatty acid palmitic acid (PA) is associated with tumor metastasis; however, the precise mechanisms remain partially understood, hindering the development of therapy for PA-driven tumor metastasis. The Hippo-Yes-associated protein (Hippo/YAP) pathway is implicated in cancer progression. Here it is shown that a high-palm oil diet potentiates tumor metastasis in murine xenografts in part through YAP. It is found that the palmitoyltransferase ZDHHC15 is a YAP-regulated gene that forms a feedback loop with YAP. Notably, PA drives the ZDHHC15-YAP feedback loop, thus enforces YAP signaling, and hence promotes tumor metastasis in murine xenografts. In addition, it is shown that ZDHHC15 associates with Kidney and brain protein (KIBRA, also known as WW- and C2 domain-containing protein 1, WWC1), an upstream component of Hippo signaling, and mediates its palmitoylation. KIBRA palmitoylation leads to its degradation and regulates its subcellular localization and activity toward the Hippo/YAP pathway. Moreover, PA enhances KIBRA palmitoylation and degradation. It is further shown that combinatorial targeting of YAP and fatty acid synthesis exhibits augmented effects against metastasis formation in mice fed with a Palm diet. Collectively, these findings uncover a ZDHHC15-YAP feedback loop as a previously unrecognized mechanism underlying PA-promoted tumor metastasis and support targeting YAP and fatty acid synthesis as potential therapeutic targets in PA-driven tumor metastasis.
Collapse
Affiliation(s)
- Jianxin Wang
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Dachuan Shen
- Department of OncologyAffiliated Zhongshan Hospital of Dalian UniversityDalian116001China
| | - Jian Jiang
- Central Hospital of Dalian University of TechnologyDepartment of Spine SurgeryDalian116033China
| | - Lulu Hu
- Department of Laboratory MedicineQingdao Central HospitalUniversity of Health and Rehabilitation Sciences NO.369Dengyun Road, Qingdao National High‐tech Industrial Development ZoneQingdaoChina
| | - Kun Fang
- Central LaboratoryCancer Hospital of China Medical UniversityCancer Hospital of Dalian University of TechnologyLiaoning Cancer Hospital & InstituteShenyang110042China
| | - Chunrui Xie
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Ning Shen
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Yuzhao Zhou
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Yifei Wang
- Department of Obstetrics and GynecologyAffiliated Zhongshan Hospital of Dalian UniversityDalian116001China
| | - Sha Du
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| | - Songshu Meng
- Institute of Cancer Stem CellDalian Medical University Cancer CenterDalian116044China
| |
Collapse
|
19
|
Ho AD, Tanaka M. Novel techniques to quantitatively assess age-dependent alterations in biophysical properties of HSPCs and bone marrow niche. Exp Hematol 2025; 142:104686. [PMID: 39613289 DOI: 10.1016/j.exphem.2024.104686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 12/01/2024]
Abstract
The present knowledge on hematopoietic stem and progenitor cell (HSPC) biology and aging is based largely on studies in mouse models. Although mouse models are invaluable, they are not without limitations for defining how physical properties of HSPCs and their niche change with age. The bone marrow (BM) niche is a complex, interactive environment with multiple cell types. The structure and organization of the BM niche, especially the extracellular matrix (ECM), change with age. Provided with recent advances in quantitative analytical techniques and in vitro niche models, we have developed novel tools to quantitatively assess the impact of specific biochemical and physical cues on homing, adhesion, and migration of HSPCs. Recent developments in in vitro niche models have also provided new insights into the interactions between HSPCs and their niche, particularly the role of matrix stiffness. Further research is needed to integrate physical biomarkers into comprehensive mathematical models of age-dependent HSPC-niche interactions. The key is to use mouse models in conjunction with direct analyses in in vitro niche models to achieve a more comprehensive understanding of age-dependent alterations in niche function and regulation.
Collapse
Affiliation(s)
- Anthony D Ho
- Department of Medicine V, Medical Center, Heidelberg University, Heidelberg, Germany; Center for Integrative Medicine and Physics, Institute for Advances Study, Kyoto University, Kyoto, Japan.
| | - Motomu Tanaka
- Center for Integrative Medicine and Physics, Institute for Advances Study, Kyoto University, Kyoto, Japan; Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
20
|
Park SY, Ju S, Lee J, Kim HR, Sub Y, Park DJ, Park S, Kwon D, Kang HG, Shin JE, Kim DH, Paik JE, Cho SC, Shim H, Kim YJ, Guan KL, Chun KH, Choi J, Ha SJ, Gee HY, Roe JS, Lee HW, Park SY, Park HW. Noncanonical role of Golgi-associated macrophage TAZ in chronic inflammation and tumorigenesis. SCIENCE ADVANCES 2025; 11:eadq2395. [PMID: 39841821 PMCID: PMC11753377 DOI: 10.1126/sciadv.adq2395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Until now, Hippo pathway-mediated nucleocytoplasmic translocation has been considered the primary mechanism by which yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) transcriptional coactivators regulate cell proliferation and differentiation via transcriptional enhanced associate domain (TEAD)-mediated target gene expression. In this study, however, we found that TAZ, but not YAP, is associated with the Golgi apparatus in macrophages activated via Toll-like receptor ligands during the resolution phase of inflammation. Golgi-associated TAZ enhanced vesicle trafficking and secretion of proinflammatory cytokines in M1 macrophage independent of the Hippo pathway. Depletion of TAZ in tumor-associated macrophages promoted tumor growth by suppressing the recruitment of tumor-infiltrating lymphocytes. Moreover, in a diet-induced metabolic dysfunction-associated steatohepatitis model, macrophage-specific deletion of TAZ ameliorated liver inflammation and hepatic fibrosis. Thus, targeted therapies being developed against YAP/TAZ-TEAD are ineffective in macrophages. Together, our results introduce Golgi-associated TAZ as a potential molecular target for therapeutic intervention to treat tumor progression and chronic inflammatory diseases.
Collapse
Affiliation(s)
- So Yeon Park
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jaehoon Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
- Gemcro Inc., Seoul 03722, Republic of Korea
| | - Hwa-Ryeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Yujin Sub
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Dong Jin Park
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Seyeon Park
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Doru Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Hyeok Gu Kang
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Eun Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Dong Hyeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji Eun Paik
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Seok Chan Cho
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyeran Shim
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Joon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Kun-Liang Guan
- School of Life Sciences, Westlake University, Hangzhou 310030, China
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junjeong Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
- Gemcro Inc., Seoul 03722, Republic of Korea
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
21
|
Rashidi N, Harasymowicz NS, Savadipour A, Steward N, Tang R, Oswald S, Guilak F. PIEZO1-mediated mechanotransduction regulates collagen synthesis on nanostructured 2D and 3D models of fibrosis. Acta Biomater 2025; 193:242-254. [PMID: 39675497 DOI: 10.1016/j.actbio.2024.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Progressive fibrosis can lead to tissue malfunction and organ failure due to the pathologic accumulation of a collagen-rich extracellular matrix. In vitro models provide useful tools for deconstructing the roles of specific biomechanical or biological mechanisms, such as substrate micro- and nanoscale architecture, in these processes for identifying potential therapeutic targets. Here, we investigated how the mechanosensitive ion channel PIEZO1 influences fibrotic gene and protein expression in adipose-derived stem cells (hASCs). Specifically, we examined the role of PIEZO1 and the mechanosensitive transcription factors YAP/TAZ in sensing aligned or non-aligned substrate architecture to regulate collagen formation. We utilized both 2D microphotopatterned substrates and 3D electrospun polycaprolactone (PCL) substrates to study the role of culture dimensionality. We found that PIEZO1 regulates collagen synthesis in hASCs in a manner that is sensitive to substrate architecture. Activation of PIEZO1 induced significant morphological changes in hASCs, particularly when cultured on aligned substrates, leading to a 30-40 % reduction in cell spreading area and increased cell elongation, in 3D-aligned cultures. Picrosirius Red staining and immunoblotting revealed that PIEZO1 activation reduced collagen accumulation in 3D culture. While YAP translocated to the cytoplasm following PIEZO1 activation, depleting YAP and TAZ did not change collagen expression significantly downstream of PIEZO1 activation, implying that YAP/TAZ translocation from the nucleus and decreased collagen synthesis may be independent consequences of PIEZO1 activation. Our studies demonstrate a role for PIEZO1 in cellular mechanosensing of substrate architecture and provide targetable pathways for treating fibrosis and for enhancing tissue-engineered and regenerative approaches for fibrous tissue repair. STATEMENT OF SIGNIFICANCE: This study examines how cells sense and respond to their physical environment via PIEZO1 mechanotransduction. We discovered that cells use PIEZO1 to detect the alignment of surrounding structures, influencing the production of collagen - a key component in fibrosis. Our study used both 2D and 3D models to mimic different tissue environments, providing new insights into how cellular responses change in more complex settings. Importantly, we found that activating PIEZO1 alters cell shape and collagen production, especially on aligned surfaces. Interestingly, while PIEZO1 activation caused YAP translocation to the cytoplasm, this translocation did not directly affect collagen production. This work advances our understanding of fibrosis development and identifies PIEZO1 as a potential target for new therapies.
Collapse
Affiliation(s)
- Neda Rashidi
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Mechanical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Natalia S Harasymowicz
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alireza Savadipour
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Mechanical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Nancy Steward
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ruhang Tang
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sara Oswald
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Mechanical Engineering, Washington University, St. Louis, MO 63130, USA; Cytex Therapeutics, Inc., Durham, NC 27704, USA.
| |
Collapse
|
22
|
Pirri C. Exploring the Revolutionary Impact of YAP Pathways on Physical and Rehabilitation Medicine. Biomolecules 2025; 15:96. [PMID: 39858490 PMCID: PMC11764055 DOI: 10.3390/biom15010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Cellular behavior is strongly influenced by mechanical signals in the surrounding microenvironment, along with external factors such as temperature fluctuations, changes in blood flow, and muscle activity, etc. These factors are key in shaping cellular states and can contribute to the development of various diseases. In the realm of rehabilitation physical therapies, therapeutic exercise and manual treatments, etc., are frequently employed, not just for pain relief but also to support recovery from diverse health conditions. However, the detailed molecular pathways through which these therapies interact with tissues and influence gene expression are not yet fully understood. The identification of YAP has been instrumental in closing this knowledge gap. YAP is known for its capacity to perceive and translate mechanical signals into specific transcriptional programs within cells. This insight has opened up new perspectives on how physical and rehabilitation medicine may exert its beneficial effects. The review investigates the involvement of the Hippo/YAP signaling pathway in various diseases and considers how different rehabilitation techniques leverage this pathway to aid in healing. Additionally, it examines the therapeutic potential of modulating the Hippo/YAP pathway within the context of rehabilitation, while also addressing the challenges and controversies that surround its use in physical and rehabilitation medicine.
Collapse
Affiliation(s)
- Carmelo Pirri
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, 35121 Padova, Italy
| |
Collapse
|
23
|
Rubí-Sans G, Nyga A, Mateos-Timoneda MA, Engel E. Substrate stiffness-dependent activation of Hippo pathway in cancer associated fibroblasts. BIOMATERIALS ADVANCES 2025; 166:214061. [PMID: 39406156 DOI: 10.1016/j.bioadv.2024.214061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/20/2024] [Accepted: 10/06/2024] [Indexed: 11/13/2024]
Abstract
The tumor microenvironment (TME) comprises a heterogenous cell population within a complex three-dimensional (3D) extracellular matrix (ECM). Stromal cells within this TME are altered by signaling cues from cancer cells to support uncontrolled tumor growth and invasion events. Moreover, the ECM also plays a fundamental role in tumor development through pathological remodeling, stiffening and interaction with TME cells. In healthy tissues, Hippo signaling pathway actively contributes to tissue growth, cell proliferation and apoptosis. However, in cancer, the Hippo signaling pathway is highly dysregulated, leading to nuclear translocation of the YAP/TAZ complex, which directly contributes to uncontrolled cell proliferation and tissue growth, and ECM remodeling and stiffening processes. Here, we compare the effect of increasing cell culture substrate stiffness, derived from tumor progression, upon the dysregulation of the Hippo signaling pathway in colorectal cancer-associated fibroblasts (CAFs) and normal colorectal fibroblasts (NFs). We correlate the dysregulation of Hippo pathway with the magnitude of the traction forces exerted by healthy and malignant stromal cells. We found that ECM stiffening is crucial in Hippo pathway dysregulation in CAFs, but not in normal fibroblasts.
Collapse
Affiliation(s)
- Gerard Rubí-Sans
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Agata Nyga
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.
| | - Miguel A Mateos-Timoneda
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain; IMEM-BRT group, Department of Materials Science, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain.
| |
Collapse
|
24
|
Fried S, Har-Zahav A, Hamudi Y, Mahameed S, Mansur R, Dotan M, Cozacov T, Shamir R, Wells RG, Waisbourd-Zinman O. Biliary atresia: insights into mechanisms using a toxic model of the disease including Wnt and Hippo signaling pathways and microtubules. Pediatr Res 2025; 97:184-194. [PMID: 38914763 PMCID: PMC11798875 DOI: 10.1038/s41390-024-03335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Mechanisms underlying bile duct injury in biliary atresia (BA) remain unclear and mechanisms of bile duct repair are unknown. This study aimed to explore the roles of microtubule instability and Wnt and Hippo signaling pathways in a biliatresone-induced BA model. METHODS Using primary murine neonatal cholangiocytes in both 2D and 3D cultures, and ex-vivo extra hepatic bile ducts (EHBD) which also has peri-cholangiocyte area, we analyzed injury and recovery processes. Injury was induced by the toxin biliatresone and recovery was induced by toxin wash-out. RESULTS Microtubule stabilizer paclitaxel prevented biliatresone-induced injury, both to cholangiocytes as well as reduced periductal αSMA stain, this process is mediated by decreased glutathione levels. RhoU and Wnt11 (Wnt signaling) and Pard6g and Amotl1 (Hippo signaling) are involved in both injury and recovery processes, with the latter acting upstream to Wnt signaling. CONCLUSIONS Early stages of biliatresone-induced EHBD injury in cholangiocytes and periductal structures are reversible. Wnt and Hippo signaling pathways play crucial roles in injury and recovery, providing insights into BA injury mechanisms and potential recovery avenues. IMPACT Microtubule stabilization prevents cholangiocyte injury and lumen obstruction in a toxic model of biliary atresia (biliatresone induced). Early stages of biliatresone-induced injury, affecting both cholangiocytes and periductal structures, are reversible. Both Wnt and Hippo signaling pathways play a crucial role in bile duct injury and recovery, with a noted interplay between the two. Understanding mechanisms of cholangiocyte recovery is imperative to unveil potential therapeutic avenues.
Collapse
Affiliation(s)
- Sophia Fried
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine and Health Sciences, Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Adi Har-Zahav
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine and Health Sciences, Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Yara Hamudi
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine and Health Sciences, Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Sarah Mahameed
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine and Health Sciences, Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Rasha Mansur
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine and Health Sciences, Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Miri Dotan
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine and Health Sciences, Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Tal Cozacov
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine and Health Sciences, Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Raanan Shamir
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medicine and Health Sciences, Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Rebecca G Wells
- Division of Gastroenterology and Hepatology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Orith Waisbourd-Zinman
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
- Faculty of Medicine and Health Sciences, Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel.
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Hu C, Francisco J, Del Re DP, Sadoshima J. Decoding the Impact of the Hippo Pathway on Different Cell Types in Heart Failure. Circ J 2024; 89:6-15. [PMID: 38644191 DOI: 10.1253/circj.cj-24-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The evolutionarily conserved Hippo pathway plays a pivotal role in governing a variety of biological processes. Heart failure (HF) is a major global health problem with a significant risk of mortality. This review provides a contemporary understanding of the Hippo pathway in regulating different cell types during HF. Through a systematic analysis of each component's regulatory mechanisms within the Hippo pathway, we elucidate their specific effects on cardiomyocytes, fibroblasts, endothelial cells, and macrophages in response to various cardiac injuries. Insights gleaned from both in vitro and in vivo studies highlight the therapeutic promise of targeting the Hippo pathway to address cardiovascular diseases, particularly HF.
Collapse
Affiliation(s)
- Chengchen Hu
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Jamie Francisco
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| |
Collapse
|
26
|
Xue X, Zhu X, Zhou L, Sun X, Gu M, Liang Y, Tan M, Hou Q, Wang S, Dai C. The Hippo Coactivator TAZ Exacerbates Cisplatin-Induced Acute Renal Injury. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:421-435. [PMID: 39664333 PMCID: PMC11631110 DOI: 10.1159/000540973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/12/2024] [Indexed: 12/13/2024]
Abstract
Introduction Transcriptional coactivator with PDZ-binding motif (TAZ), a Hippo signaling pathway effector, maintains the balance of cell proliferation, differentiation, and death. However, the role of TAZ in tubular cell survival and acute kidney injury (AKI) remains largely unknown. Methods We used the RNA-seq database, Western blot, and immunohistochemistry to examine TAZ expression in kidneys from cisplatin-induced AKI. We generated tubular-specific TAZ knockout mice to assess the role of TAZ in cisplatin-induced renal toxicity. Immunoprecipitation-mass spectrometry followed standard procedures. Results TAZ was activated in tubular cells in kidneys injected with cisplatin. Conditional deletion of TAZ in tubular cells confers ferroptosis resistance and protects kidneys from cisplatin-induced AKI, whereas overexpression of TAZ(S89A) exacerbates cisplatin-induced ferroptosis. Inhibition of ferroptosis with ferrostatin-1 potently preserves renal function and alleviates morphological injury and tubular cell ferroptosis induced by cisplatin. Mechanistically, in a PPARδ-dependent manner, but not TEAD, TAZ reduces the expression of glutathione peroxidase 4 (GPX4), thus exacerbating cisplatin-induced ferroptosis. Conclusions Our findings show that cisplatin-induced AKI and tubular cell ferroptosis are mediated by TAZ-PPARδ interaction through regulation of GPX4, highlighting TAZ as a potential therapeutic candidate for AKI.
Collapse
Affiliation(s)
- Xian Xue
- Center for Kidney Disease, The 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xingwen Zhu
- Department of Clinical Genetics, The 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lu Zhou
- Department of Clinical Genetics, The 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoli Sun
- Center for Kidney Disease, The 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mengru Gu
- Department of Clinical Genetics, The 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Liang
- Department of Clinical Genetics, The 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mengzhu Tan
- Department of Clinical Genetics, The 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qing Hou
- Department of Clinical Genetics, The 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Sudan Wang
- Department of Clinical Genetics, The 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chunsun Dai
- Center for Kidney Disease, The 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Department of Clinical Genetics, The 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Yang H, Yang J, Zheng X, Chen T, Zhang R, Chen R, Cao T, Zeng F, Liu Q. The Hippo Pathway in Breast Cancer: The Extracellular Matrix and Hypoxia. Int J Mol Sci 2024; 25:12868. [PMID: 39684583 DOI: 10.3390/ijms252312868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
As one of the most prevalent malignant neoplasms among women globally, the optimization of therapeutic strategies for breast cancer has perpetually been a research hotspot. The tumor microenvironment (TME) is of paramount importance in the progression of breast cancer, among which the extracellular matrix (ECM) and hypoxia are two crucial factors. The alterations of these two factors are predominantly regulated by the Hippo signaling pathway, which promotes tumor invasiveness, metastasis, therapeutic resistance, and susceptibility. Hence, this review focuses on the Hippo pathway in breast cancer, specifically, how the ECM and hypoxia impact the biological traits and therapeutic responses of breast cancer. Moreover, the role of miRNAs in modulating ECM constituents was investigated, and hsa-miR-33b-3p was identified as a potential therapeutic target for breast cancer. The review provides theoretical foundations and potential therapeutic direction for clinical treatment strategies in breast cancer, with the aspiration of attaining more precise and effective treatment alternatives in the future.
Collapse
Affiliation(s)
- Hanyu Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Jiaxin Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiang Zheng
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Tianshun Chen
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Ranqi Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Rui Chen
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Tingting Cao
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
28
|
Liu X, Min Q, Cheng X, Zhang W, Wu Q, Chen X, Lv M, Liu S, Zhao H, Yang D, Tai Y, Lei X, Wang Y, Zhan Q. Quiescent cancer cells induced by high-density cultivation reveals cholesterol-mediated survival and lung metastatic traits. Br J Cancer 2024; 131:1591-1604. [PMID: 39390252 PMCID: PMC11555385 DOI: 10.1038/s41416-024-02861-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND The metastatic cascade, a multifaceted and highly aggressive process, is the primary cause of mortality. The survival of quiescent cancer cells in circulatory system during metastasis is crucial, yet our comprehension is constrained by the absence of universally accepted quiescent cancer models. METHOD We developed a quiescent cancer cell model using high-density cultivation. Based on the scRNA-seq analysis, IP-MS, metabolomics, mouse lung metastasis models, cholesterol assay, PLA and other molecular experiments, we explored the molecular mechanism. Immunofluorescence, atomic force microscope, FluidFM, and shear stress stimulation were used to analyze the cytoskeleton and membrane properties contributing to mechanical force resistance. RESULT We established a quiescent cancer cell model induced by high-density cultivation. Single-cell RNA sequencing (scRNA-seq) analysis reveals that CDC25A plays a crucial role in the transition to quiescence, with its expression significantly elevated in the quiescent state. Depletion of CDC25A leads to an increased proliferative capacity, and reduced metastasis under high-density conditions. Mechanistically, upregulated CDC25A in quiescent cells enhances cholesterol metabolism via endosome pathways, leading to cell cycle arrest. This increase in cholesterol reinforces the cytoskeleton, alters membrane properties, and improves resistance to mechanical forces in circulatory system. CONCLUSION CDC25A significantly increased the cholesterol metabolism through endosome pathway in quiescent cancer cells, leading to the significant changes in cytoskeleton and membrane properties so as to enhance the resistance of mechanical force in circulatory system, facilitating lung metastasis. In high-density cultivation, quiescent cancer cells, up-regulate cholesterol metabolism by CDC25A through endosome pathway, enhancing the resistance to mechanical force in circulatory system, facilitating lung metastasis.
Collapse
Affiliation(s)
- Xingyang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Qinjie Min
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Xinxin Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Qingnan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xu Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Mengzhu Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Siqi Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Huihui Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Di Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Yidi Tai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Xiao Lei
- Peking University International Cancer Institute, 100191, Beijing, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, 100142, Beijing, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Peking University International Cancer Institute, 100191, Beijing, China.
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, 100730, Beijing, China.
- Soochow University Cancer Institute, Suzhou, 215000, China.
| |
Collapse
|
29
|
Umegaki T, Moriizumi H, Ogushi F, Takekawa M, Suzuki T. Molecular dynamics simulations of a multicellular model with cell-cell interactions and Hippo signaling pathway. PLoS Comput Biol 2024; 20:e1012536. [PMID: 39527559 PMCID: PMC11554158 DOI: 10.1371/journal.pcbi.1012536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
The transcriptional coactivator Yes-associated protein (YAP)/transcriptional co-activator with PDZ binding motif (TAZ) induces cell proliferation through nuclear localization at low cell density. Conversely, at extremely high cell density, the Hippo pathway, which regulates YAP/TAZ, is activated. This activation leads to the translocation of YAP/TAZ into the cytoplasm, resulting in cell cycle arrest. Various cancer cells have several times more YAP/TAZ than normal cells. However, it is not entirely clear whether this several-fold increase in YAP/TAZ alone is sufficient to overcome proliferation inhibition (contact inhibition) under high-density conditions, thereby allowing continuous proliferation. In this study, we construct a three-dimensional (3D) mathematical model of cell proliferation incorporating the Hippo-YAP/TAZ pathway. Herein, a significant innovation in our approach is the introduction of a novel modeling component that inputs cell density, which reflects cell dynamics, into the Hippo pathway and enables the simulation of cell proliferation as the output response. We assume such 3D model with cell-cell interactions by solving reaction and molecular dynamics (MD) equations by applying adhesion and repulsive forces that act between cells and frictional forces acting on each cell. We assume Lennard-Jones (12-6) potential with a softcore character so that each cell secures its exclusive domain. We set cell cycles composed of mitotic and cell growth phases in which cells divide and grow under the influence of cell kinetics. We perform mathematical simulations at various YAP/TAZ levels to investigate the extent of YAP/TAZ increase required for sustained proliferation at high density. The results show that a twofold increase in YAP/TAZ levels of cancer cells was sufficient to evade cell cycle arrest compared to normal cells, enabling cells to continue proliferating even under high-density conditions. Finally, this mathematical model, which incorporates cell-cell interactions and the Hippo-YAP/TAZ pathway, may be applicable for evaluating cancer malignancy based on YAP/TAZ levels, developing drugs to suppress the abnormal proliferation of cancer cells, and determining appropriate drug dosages. The source codes are freely available.
Collapse
Affiliation(s)
- Toshihito Umegaki
- The Center for Mathematical Modeling and Data Science, Osaka University, Osaka, Japan
| | - Hisashi Moriizumi
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Fumiko Ogushi
- Faculty of Mathematical Informatics, Meiji Gakuin University, Tokyo, Japan
| | | | - Takashi Suzuki
- The Center for Mathematical Modeling and Data Science, Osaka University, Osaka, Japan
| |
Collapse
|
30
|
Bejar N, Xiao S, Iyer D, Muili A, Adeleye A, McConnell BK, Schwartz RJ. STEMIN and YAP5SA, the future of heart repair? Exp Biol Med (Maywood) 2024; 249:10246. [PMID: 39544432 PMCID: PMC11560420 DOI: 10.3389/ebm.2024.10246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/30/2024] [Indexed: 11/17/2024] Open
Abstract
This review outlines some of the many approaches taken over a decade or more to repair damaged hearts. We showcase the recent breakthroughs in organ regeneration elicited by reprogramming factors OCT3/4, SOX2, KLF4, and C-MYC (OKSM). Transient OKSM transgene expression rejuvenated senescent organs in mice. OKSM transgenes also caused murine heart cell regeneration. A triplet alanine mutation of the N-terminus of Serum Response Factor's MADS box SRF153(A3), termed STEMIN, and the YAP mutant, YAP5SA synergized and activated OKSM and NANOG in adult rat cardiac myocytes; thus, causing rapid nuclear proliferation and blocked myocyte differentiation. In addition, ATAC seq showed induced expression of growth factor genes FGFs, BMPs, Notchs, IGFs, JAK, STATs and non-canonical Wnts. Injected STEMIN and YAP5SA synthetic modifying mRNA (mmRNA) into infarcted adult mouse hearts, brought damaged hearts back to near normal contractility without severe fibrosis. Thus, STEMIN and YAP5SA mmRNA may exert additional regenerative potential than OKSM alone for treating heart diseases.
Collapse
Affiliation(s)
- Nada Bejar
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Siyu Xiao
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Dinakar Iyer
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Azeez Muili
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Adeniyi Adeleye
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Bradley K. McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Robert J. Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
31
|
Li H, Wang J, Zhang B, Guo Y. Preliminary exploration of the anti-ovarian cancer activity of peptides derived from bovine bone collagen hydrolysate and its related mechanisms. Int J Biol Macromol 2024; 277:134198. [PMID: 39084419 DOI: 10.1016/j.ijbiomac.2024.134198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Ovarian cancer, a malignant tumor that poses a significant threat to women's health, has seen a rise in incidence, prompting the urgent need for more effective treatment. This study primarily aimed to explore the potential of bovine collagen peptides in inhibiting ovarian cancer. The investigation in this study began with the identification of 268 peptide sequences through LC-MS/MS, followed by a screening process using molecular docking techniques to identify potential peptides capable of binding to EGFR. Subsequently, a series of experiments were performed, demonstrating the inhibitory effects of the peptide GPAGADGDRGEAGPAGPAGPAGPR on the proliferation of ovarian cancer cells. Transcriptomic analysis further revealed that this peptide can regulate cholesterol metabolism in ovarian cancer cells. Finally, a combination of time-resolved fluorescence resonance energy transfer, isothermal titration calorimetry, molecular docking, and molecular dynamics simulations were utilized to validate the ability of this peptide to bind to the epidermal growth factor receptor (EGFR) and impede the binding of epidermal growth factor (EGF) and EGFR.
Collapse
Affiliation(s)
- Hanfeng Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China.
| | - Jianing Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Bing Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China.
| |
Collapse
|
32
|
Feng S, Yu Z, Yang Y, Xiong Q, Yan X, Bi Y. Mechanosensitive Piezo1 channels promote neurogenic bladder fibrosis via regulating TGF-β1/smad and Hippo/YAP1 pathways. Exp Cell Res 2024; 442:114218. [PMID: 39178981 DOI: 10.1016/j.yexcr.2024.114218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/03/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Bladder fibrosis is the final common pathway of neurogenic bladder (NB), and its underlying mechanisms are not fully understood. The current study aims to evaluate the involvement of Piezo1, a mechanosensitive channel, in bladder fibrosis. A full-thickness bladder specimen was taken during ileocystoplasty or ureteral reimplantation from the surgical cut's edge. By chopping off the bilateral lumbar 6 (L6) and sacral 1 (S1) spinal nerves, NB rat models were produced. Utilizing both pharmacological inhibition and Piezo1 deletion, the function of Piezo1 in the TGF-β1-induced fibrosis model of SV-HUC-1 cells was delineated. RNA-seq, immunofluorescence, immunohistochemistry (IHC), and Western blotting were used to evaluate the degrees of fibrosis and biochemical signaling pathways. Piezo1 protein expression was noticeably elevated in the human NB bladder. The abundance of Piezo1 protein in bladder of NB rats was significantly increased. RNA-seq analysis revealed that the ECM-receptor interaction signaling pathway and collagen-containing ECM were increased in spinal cord injury (SCI)-induced bladder fibrosis. Moreover, the bladder of the NB rat model showed activation of YAP1 and TGF-β1/Smad. In SV-HUC-1 cells, siRNA suppression of Piezo1 led to profibrotic responses and activation of the TGF-β1/Smad pathway. However, Yoda1, a Piezo1-specific agonist, significantly reduced these effects. TGF-β1 increased Piezo1 activation and profibrotic responses in SV-HUC-1 cells. In the TGF-β1-induced fibrosis model of SV-HUC-1 cells, the TGF-β1/Smad pathway was activated, whereas the Hippo/YAP1 signal pathway was blocked. Inhibition of Piezo1 further prevented this process. Piezo1 is involved in the progression of NB bladder fibrosis and profibrotic alterations in SV-HUC-1 cells, likely through regulating the TGF-β1/Smad and Hippo/YAP1 pathways.
Collapse
Affiliation(s)
- Shaoguang Feng
- Department of Pediatric Surgery, Hangzhou Children's Hospital, Hangzhou, Zhejiang, China; Department of Urology, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, China
| | - Zhechen Yu
- Department of Urology, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, China
| | - Yicheng Yang
- Department of Urology, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, China
| | - Qianwei Xiong
- Department of Urology, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, China
| | - Xiangming Yan
- Department of Urology, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, China
| | - Yunli Bi
- Department of Pediatric Urology, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215025, China.
| |
Collapse
|
33
|
Tona R, Inagaki S, Ishibashi Y, Faridi R, Yousaf R, Roux I, Wilson E, Fenollar-Ferrer C, Chien WW, Belyantseva IA, Friedman TB. Interaction between the TBC1D24 TLDc domain and the KIBRA C2 domain is disrupted by two epilepsy-associated TBC1D24 missense variants. J Biol Chem 2024; 300:107725. [PMID: 39214300 PMCID: PMC11465063 DOI: 10.1016/j.jbc.2024.107725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Mutations of human TBC1D24 are associated with deafness, epilepsy, or DOORS syndrome (deafness, onychodystrophy, osteodystrophy, cognitive disability, and seizures). The causal relationships between TBC1D24 variants and the different clinical phenotypes are not understood. Our hypothesis is that phenotypic heterogeneity of missense mutations of TBC1D24 results, in part, from perturbed binding of different protein partners. To discover novel protein partners of TBC1D24, we conducted yeast two-hybrid (Y2H) screen using mouse full-length TBC1D24 as bait. Kidney and brain protein (KIBRA), a scaffold protein encoded by Wwc1, was identified as a partner of TBC1D24. KIBRA functions in the Hippo signaling pathway and is important for human cognition and memory. The TBC1D24 TLDc domain binds to KIBRA full-length and to its C2 domain, confirmed by Y2H assays. No interaction was detected with Y2H assays between the KIBRA C2 domain and TLDc domains of NCOA7, MEAK7, and OXR1. Moreover, the C2 domains of other WWC family proteins do not interact with the TLDc domain of TBC1D24, demonstrating specificity. The mRNAs encoding TBC1D24 and KIBRA proteins in mouse are coexpressed at least in a subset of hippocampal cells indicating availability to interact in vivo. As two epilepsy-associated recessive variants (Gly511Arg and Ala515Val) in the TLDc domain of human TBC1D24 disrupt the interaction with the human KIBRA C2 domain, this study reveals a pathogenic mechanism of TBC1D24-associated epilepsy, linking the TBC1D24 and KIBRA pathways. The interaction of TBC1D24-KIBRA is physiologically meaningful and necessary to reduce the risk of epilepsy.
Collapse
Affiliation(s)
- Risa Tona
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Sayaka Inagaki
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA.
| | - Yasuko Ishibashi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA; Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Rabia Faridi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Rizwan Yousaf
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Isabelle Roux
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA; Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Elizabeth Wilson
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA; Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Wade W Chien
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA; Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins School of Medicine, Maryland, USA
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA.
| |
Collapse
|
34
|
Choi SH, Kim DY. Regulation of Tumor Microenvironment through YAP/TAZ under Tumor Hypoxia. Cancers (Basel) 2024; 16:3030. [PMID: 39272887 PMCID: PMC11394240 DOI: 10.3390/cancers16173030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
In solid tumors such as hepatocellular carcinoma (HCC), hypoxia is one of the important mechanisms of cancer development that closely influences cancer development, survival, and metastasis. The development of treatments for cancer was temporarily revolutionized by immunotherapy but continues to be constrained by limited response rates and the resistance and high costs required for the development of new and innovative strategies. In particular, solid tumors, including HCC, a multi-vascular tumor type, are sensitive to hypoxia and generate many blood vessels for metastasis and development, making it difficult to treat HCC, not only with immunotherapy but also with drugs targeting blood vessels. Therefore, in order to develop a treatment strategy for hypoxic tumors, various mechanisms must be explored and analyzed to treat these impregnable solid tumors. To date, tumor growth mechanisms linked to hypoxia are known to be complex and coexist with various signal pathways, but recently, mechanisms related to the Hippo signal pathway are emerging. Interestingly, Hippo YAP/TAZ, which appear during early tumor and normal tumor growth, and YAP/TAZ, which appear during hypoxia, help tumor growth and proliferation in different directions. Peculiarly, YAP/TAZ, which have different phosphorylation directions in the hypoxic environment of tumors, are involved in cancer proliferation and metastasis in various carcinomas, including HCC. Analyzing the mechanisms that regulate the function and expression of YAP in addition to HIF in the complex hypoxic environment of tumors may lead to a variety of anti-cancer strategies and combining HIF and YAP/TAZ may develop the potential to change the landscape of cancer treatment.
Collapse
Affiliation(s)
- Sung Hoon Choi
- Institute of Health & Environment, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- KoBioLabs Inc., Seoul 08826, Republic of Korea
| | - Do Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Yonsei Liver Cancer Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea
| |
Collapse
|
35
|
Sun X, Zhou D, Sun Y, Zhao Y, Deng Y, Pang X, Liu Q, Zhou Z. Oxidative stress reprograms the transcriptional coactivator Yki to suppress cell proliferation. Cell Rep 2024; 43:114584. [PMID: 39106181 DOI: 10.1016/j.celrep.2024.114584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/09/2024] Open
Abstract
The transcriptional coactivator Yorkie (Yki) regulates organ size by promoting cell proliferation. It is unclear how cells control Yki activity when exposed to harmful stimuli such as oxidative stress. In this study, we show that oxidative stress inhibits the binding of Yki to Scalloped (Sd) but promotes the interaction of Yki with another transcription factor, forkhead box O (Foxo), ultimately leading to a halt in cell proliferation. Mechanistically, Foxo normally exhibits a low binding affinity for Yki, allowing Yki to form a complex with Sd and activate proliferative genes. Under oxidative stress, Usp7 deubiquitinates Foxo to promote its interaction with Yki, thereby activating the expression of proliferation suppressors. Finally, we show that Yki is essential for Drosophila survival under oxidative stress. In summary, these findings suggest that oxidative stress reprograms Yki from a proliferation-promoting factor to a proliferation suppressor, forming a self-protective mechanism.
Collapse
Affiliation(s)
- Xiaohan Sun
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Dafa Zhou
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yuanfei Sun
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yunhe Zhao
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yanran Deng
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Xiaolin Pang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Qingxin Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Zizhang Zhou
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
36
|
Wu J, Zhang Q, Yang Z, Xu Y, Liu X, Wang X, Peng J, Xiao J, Wang Y, Shang Z, Wang N, Li L, Zhang R, Zhang W, Zhang J, Zeng Z, Wu J. CD248-expressing cancer-associated fibroblasts induce non-small cell lung cancer metastasis via Hippo pathway-mediated extracellular matrix stiffness. J Cell Mol Med 2024; 28:e70025. [PMID: 39164826 PMCID: PMC11335579 DOI: 10.1111/jcmm.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
Metastasis is a crucial stage in tumour progression, and cancer-associated fibroblasts (CAFs) support metastasis through their participation in extracellular matrix (ECM) stiffness. CD248 is a possible biomarker for non-small cell lung cancer (NSCLC)-derived CAFs, but its role in mediating ECM stiffness to promote NSCLC metastasis is unknown. We investigated the significance of CD248+ CAFs in activating the Hippo axis and promoting connective tissue growth factor (CTGF) expression, which affects the stromal collagen I environment and improves ECM stiffness, thereby facilitating NSCLC metastasis. In this study, we found that higher levels of CD248 in CAFs induced the formation of collagen I, which in turn increased extracellular matrix stiffness, thereby enabling NSCLC cell infiltration and migration. Hippo axis activation by CD248+ CAFs induces CTGF expression, which facilitates the formation of the collagen I milieu in the stromal matrix. In a tumour lung metastasis model utilizing fibroblast-specific CD248 gene knockout mice, CD248 gene knockout mice showed a significantly reduced ability to develop tumour lung metastasis compared to that of WT mice. Our findings demonstrate that CD248+ CAFs activate the Hippo pathway, thereby inducing CTGF expression, which in turn facilitates the collagen I milieu of the stromal matrix, which promotes NSCLC metastasis.
Collapse
Affiliation(s)
- Jiangwei Wu
- Department of ImmunologyGuizhou Medical UniversityGuiyangChina
| | - Qiaoling Zhang
- Department of ImmunologyGuizhou Medical UniversityGuiyangChina
| | - Zeyang Yang
- Department of ImmunologyGuizhou Medical UniversityGuiyangChina
| | - Yujun Xu
- Department of BiologyGuizhou Medical UniversityGuiyangChina
| | - Xinlei Liu
- Guizhou Prenatal Diagnsis CenterThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Xuanying Wang
- Department of ImmunologyGuizhou Medical UniversityGuiyangChina
| | - Jiangying Peng
- Department of Pharmaceutical AnalysisZunyi Medical UniversityZunyiChina
| | - Jing Xiao
- Department of ImmunologyGuizhou Medical UniversityGuiyangChina
| | - Yun Wang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical EngineeringGuizhou Medical UniversityGuiyangChina
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical SciencesGuizhou Medical UniversityGuiyangChina
| | - Zhenling Shang
- Department of ImmunologyGuizhou Medical UniversityGuiyangChina
| | - Nianxue Wang
- Department of ImmunologyGuizhou Medical UniversityGuiyangChina
| | - Long Li
- Department of ImmunologyGuizhou Medical UniversityGuiyangChina
- Department of Thoracic SurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Rui Zhang
- Department of ImmunologyGuizhou Medical UniversityGuiyangChina
- Department of Biochemistry and Molecular Biology, The State Key Laboratory of Cancer BiologyThe Fourth Military Medical UniversityXi'anChina
| | - Wei Zhang
- Department of Biochemistry and Molecular BiologyJilin Medical UniversityJilinChina
| | - Jian Zhang
- Department of Thoracic SurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Zhu Zeng
- Department of ImmunologyGuizhou Medical UniversityGuiyangChina
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical EngineeringGuizhou Medical UniversityGuiyangChina
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical SciencesGuizhou Medical UniversityGuiyangChina
| | - Jieheng Wu
- Department of ImmunologyGuizhou Medical UniversityGuiyangChina
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical EngineeringGuizhou Medical UniversityGuiyangChina
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical SciencesGuizhou Medical UniversityGuiyangChina
- Department of Biochemistry and Molecular Biology, The State Key Laboratory of Cancer BiologyThe Fourth Military Medical UniversityXi'anChina
- Tumor Immunotherapy Technology Engineering Research CenterGuizhou Medical UniversityGuiyangChina
| |
Collapse
|
37
|
Wei Y, Tang W, Mao P, Mao J, Ni Z, Hou K, Valencak TG, Liu D, Ji J, Wang H. Sexually Dimorphic Response to Hepatic Injury in Newborn Suffering from Intrauterine Growth Restriction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403095. [PMID: 38867614 PMCID: PMC11321654 DOI: 10.1002/advs.202403095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/22/2024] [Indexed: 06/14/2024]
Abstract
Intrauterine growth restriction (IUGR), when a fetus does not grow as expected, is associated with a reduction in hepatic functionality and a higher risk for chronic liver disease in adulthood. Utilizing early developmental plasticity to reverse the outcome of poor fetal programming remains an unexplored area. Focusing on the biochemical profiles of neonates and previous transcriptome findings, piglets from the same fetus are selected as models for studying IUGR. The cellular landscape of the liver is created by scRNA-seq to reveal sex-dependent patterns in IUGR-induced hepatic injury. One week after birth, IUGR piglets experience hypoxic stress. IUGR females exhibit fibroblast-driven T cell conversion into an immune-adapted phenotype, which effectively alleviates inflammation and fosters hepatic regeneration. In contrast, males experience even more severe hepatic injury. Prolonged inflammation due to disrupted lipid metabolism hinders intercellular communication among non-immune cells, which ultimately impairs liver regeneration even into adulthood. Additionally, Apolipoprotein A4 (APOA4) is explored as a novel biomarker by reducing hepatic triglyceride deposition as a protective response against hypoxia in IUGR males. PPARα activation can mitigate hepatic damage and meanwhile restore over-expressed APOA4 to normal in IUGR males. The pioneering study offers valuable insights into the sexually dimorphic responses to hepatic injury during IUGR.
Collapse
Affiliation(s)
- Yu‐Sen Wei
- College of Animal ScienceZhejiang UniversityThe Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhou310000China
| | - Wen‐Jie Tang
- College of Animal ScienceZhejiang UniversityThe Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhou310000China
| | - Pei‐Yu Mao
- Department of Gynecology and ObstetricsThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hangzhou310006China
| | - Jiang‐Di Mao
- College of Animal ScienceZhejiang UniversityThe Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhou310000China
| | - Zhi‐Xiang Ni
- College of Animal ScienceZhejiang UniversityThe Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhou310000China
| | - Kang‐Wei Hou
- College of Animal ScienceZhejiang UniversityThe Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhou310000China
| | - Teresa G. Valencak
- College of Animal ScienceZhejiang UniversityThe Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhou310000China
| | - Da‐Ren Liu
- The Second Affiliated Hospital of Zhejiang UniversityHangzhou310009China
| | - Jun‐Fang Ji
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Hai‐Feng Wang
- College of Animal ScienceZhejiang UniversityThe Key Laboratory of Molecular Animal NutritionMinistry of EducationHangzhou310000China
| |
Collapse
|
38
|
Ren Y, Zhou L, Li X, Zhu X, Zhang Z, Sun X, Xue X, Dai C. Taz/Tead1 Promotes Alternative Macrophage Activation and Kidney Fibrosis via Transcriptional Upregulation of Smad3. J Immunol Res 2024; 2024:9512251. [PMID: 39108258 PMCID: PMC11303051 DOI: 10.1155/2024/9512251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 09/17/2024] Open
Abstract
Macrophage alternative activation is involved in kidney fibrosis. Previous researches have documented that the transcriptional regulators Yes-associated protein (Yap)/transcriptional coactivator with PDZ-binding motif (Taz) are linked to organ fibrosis. However, limited knowledge exists regarding the function and mechanisms of their downstream molecules in regulating macrophage activation and kidney fibrosis. In this paper, we observed that the Hippo pathway was suppressed in macrophages derived from fibrotic kidneys in mice. Knockout of Taz or Tead1 in macrophages inhibited the alternative activation of macrophages and reduced kidney fibrosis. Additionally, by using bone marrow-derived macrophages (BMDMs), we investigated that knockout of Taz or Tead1 in macrophages impeded both cell proliferation and migration. Moreover, deletion of Tead1 reduces p-Smad3 and Smad3 abundance in macrophages. And chromatin immunoprecipitation (ChIP) assays showed that Tead1 could directly bind to the promoter region of Smad3. Collectively, these results indicate that Tead1 knockout in macrophages could reduce TGFβ1-induced phosphorylation Smad3 via transcriptional downregulation of Smad3, thus suppressing macrophage alternative activation and IRI-induced kidney fibrosis.
Collapse
Affiliation(s)
- Yizhi Ren
- Department of Clinical GeneticsThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Lu Zhou
- Center for kidney diseasesThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Xinyuan Li
- Center for kidney diseasesThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Xingwen Zhu
- Center for kidney diseasesThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Zhiheng Zhang
- School of StomatologyXuzhou Medical University, No. 209 Tongshan Road, Xuzhou 221000, Jiangsu, China
| | - Xiaoli Sun
- Department of Clinical GeneticsThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Xian Xue
- Department of Clinical GeneticsThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Chunsun Dai
- Department of Clinical GeneticsThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
- Center for kidney diseasesThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| |
Collapse
|
39
|
Snanoudj S, Derambure C, Zhang C, Hai Yen NT, Lesueur C, Coutant S, Abily-Donval L, Marret S, Yang H, Mardinoglu A, Bekri S, Tebani A. Genome-wide expression analysis in a Fabry disease human podocyte cell line. Heliyon 2024; 10:e34357. [PMID: 39100494 PMCID: PMC11295972 DOI: 10.1016/j.heliyon.2024.e34357] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Fabry disease (FD) is an X-linked lysosomal disease caused by an enzyme deficiency of alpha-galactosidase A (α-gal A). This deficiency leads to the accumulation of glycosphingolipids in lysosomes, resulting in a range of clinical symptoms. The complex pathogenesis of FD involves lysosomal dysfunction, altered autophagy, and mitochondrial abnormalities. Omics sciences, particularly transcriptomic analysis, comprehensively understand molecular mechanisms underlying diseases. This study focuses on genome-wide expression analysis in an FD human podocyte model to gain insights into the underlying mechanisms of podocyte dysfunction. Human control and GLA-edited podocytes were used. Gene expression data was generated using RNA-seq analysis, and differentially expressed genes were identified using DESeq2. Principal component analysis and Spearman correlation have explored gene expression trends. Functional enrichment and Reporter metabolite analyses were conducted to identify significantly affected metabolites and metabolic pathways. Differential expression analysis revealed 247 genes with altered expression levels in GLA-edited podocytes compared to control podocytes. Among these genes, 136 were underexpressed, and 111 were overexpressed in GLA-edited cells. Functional analysis of differentially expressed genes showed their involvement in various pathways related to oxidative stress, inflammation, fatty acid metabolism, collagen and extracellular matrix homeostasis, kidney injury, apoptosis, autophagy, and cellular stress response. The study provides insights into molecular mechanisms underlying Fabry podocyte dysfunction. Integrating transcriptomics data with genome-scale metabolic modeling further unveiled metabolic alterations in GLA-edited podocytes. This comprehensive approach contributes to a better understanding of Fabry disease and may lead to identifying new biomarkers and therapeutic targets for this rare lysosomal disorder.
Collapse
Affiliation(s)
- Sarah Snanoudj
- Normandie Univ, UNIROUEN, INSERM, U1245, CHU Rouen, Department of Metabolic Biochemistry, Referral Center for Lysosomal Diseases, Filière G2M, 76000, Rouen, France
| | - Céline Derambure
- Normandie Univ, UNIROUEN, INSERM U1245 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Nguyen Thi Hai Yen
- Normandie Univ, UNIROUEN, INSERM, U1245, CHU Rouen, Department of Metabolic Biochemistry, Referral Center for Lysosomal Diseases, Filière G2M, 76000, Rouen, France
| | - Céline Lesueur
- Normandie Univ, UNIROUEN, INSERM, U1245, CHU Rouen, Department of Metabolic Biochemistry, Referral Center for Lysosomal Diseases, Filière G2M, 76000, Rouen, France
| | - Sophie Coutant
- Normandie Univ, UNIROUEN, INSERM U1245 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Lénaïg Abily-Donval
- Normandie Univ, UNIROUEN, INSERM, U1245, CHU Rouen, Department of Neonatal Pediatrics, Intensive Care, and Neuropediatrics, 76000, Rouen, France
| | - Stéphane Marret
- Normandie Univ, UNIROUEN, INSERM, U1245, CHU Rouen, Department of Neonatal Pediatrics, Intensive Care, and Neuropediatrics, 76000, Rouen, France
| | - Hong Yang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| | - Soumeya Bekri
- Normandie Univ, UNIROUEN, INSERM, U1245, CHU Rouen, Department of Metabolic Biochemistry, Referral Center for Lysosomal Diseases, Filière G2M, 76000, Rouen, France
| | - Abdellah Tebani
- Normandie Univ, UNIROUEN, INSERM, U1245, CHU Rouen, Department of Metabolic Biochemistry, Referral Center for Lysosomal Diseases, Filière G2M, 76000, Rouen, France
| |
Collapse
|
40
|
Pinelli M, Makdissi S, Scur M, Parsons BD, Baker K, Otley A, MacIntyre B, Nguyen HD, Kim PK, Stadnyk AW, Di Cara F. Peroxisomal cholesterol metabolism regulates yap-signaling, which maintains intestinal epithelial barrier function and is altered in Crohn's disease. Cell Death Dis 2024; 15:536. [PMID: 39069546 DOI: 10.1038/s41419-024-06925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Intestinal epithelial cells line the luminal surface to establish the intestinal barrier, where the cells play essential roles in the digestion of food, absorption of nutrients and water, protection from microbial infections, and maintaining symbiotic interactions with the commensal microbial populations. Maintaining and coordinating all these functions requires tight regulatory signaling, which is essential for intestinal homeostasis and organismal health. Dysfunction of intestinal epithelial cells, indeed, is linked to gastrointestinal disorders such as irritable bowel syndrome, inflammatory bowel disease, and gluten-related enteropathies. Emerging evidence suggests that peroxisome metabolic functions are crucial in maintaining intestinal epithelial cell functions and intestinal epithelium regeneration and, therefore, homeostasis. Here, we investigated the molecular mechanisms by which peroxisome metabolism impacts enteric health using the fruit fly Drosophila melanogaster and murine model organisms and clinical samples. We show that peroxisomes control cellular cholesterol, which in turn regulates the conserved yes-associated protein-signaling and contributes to intestinal epithelial structure and epithelial barrier function. Moreover, analysis of intestinal organoid cultures derived from biopsies of patients affected by Crohn's Disease revealed that the dysregulation of peroxisome number, excessive cellular cholesterol, and inhibition of Yap-signaling are markers of disease and could be novel diagnostic and/or therapeutic targets for treating Crohn's Disease. Our studies provided mechanistic insights on peroxisomal signaling in intestinal epithelial cell functions and identified cholesterol as a novel metabolic regulator of yes-associated protein-signaling in tissue homeostasis.
Collapse
Affiliation(s)
- Marinella Pinelli
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Stephanie Makdissi
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Michal Scur
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Brendon D Parsons
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Kristi Baker
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Anthony Otley
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Brad MacIntyre
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Huong D Nguyen
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Peter K Kim
- The Hospital for Sick Children, Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Andrew W Stadnyk
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Francesca Di Cara
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada.
| |
Collapse
|
41
|
Wang D, Ma S, Yan M, Dong M, Zhang M, Zhang T, Zhang T, Zhang X, Xu L, Huang X. DNA methylation patterns in the peripheral blood of Xinjiang brown cattle with variable somatic cell counts. Front Genet 2024; 15:1405478. [PMID: 39045327 PMCID: PMC11263093 DOI: 10.3389/fgene.2024.1405478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/10/2024] [Indexed: 07/25/2024] Open
Abstract
The use of wide-ranging dairy herd improvement (DHI) measurements has resulted in the investigation of somatic cell count (SCC) and the identification of many genes associated with mastitis resistance. In this study, blood samples of Xinjiang brown cattle with different SCCs were collected, and genome-wide DNA methylation was analyzed by MeDIP-seq. The results showed that peaks were mostly in intergenic regions, followed by introns, exons, and promoters. A total of 1,934 differentially expressed genes (DEGs) associated with mastitis resistance in Xinjiang brown cattle were identified. The enrichment of differentially methylated CpG islands of the TRAPPC9 and CD4 genes was analyzed by bisulfate genome sequencing. The methylation rate of differentially methylated CpGs was higher in the TRAPPC9 gene of cattle with clinical mastitis (mastitis group) compared with healthy cattle (control group), while methylation of differentially methylated CpGs was significantly lower in CD4 of the mastitis group compared with the control group. RT-qRCR analysis showed that the mastitis group had significantly reduced expression of CD4 and TRAPPC9 genes compared to the control group (p < 0.05). Furthermore, Mac-T cells treated with lipopolysaccharide and lipoteichoic acid showed significant downregulation of the TRAPPC9 gene in the mastitis group compared with the control group. The identified epigenetic biomarkers provide theoretical reference for treating cow mastitis, breeding management, and the genetic improvement of mastitis resistance in Xinjiang brown cattle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
42
|
Li Z, Su P, Yu M, Zhang X, Xu Y, Jia T, Yang P, Zhang C, Sun Y, Li X, Yang H, Ding Y, Zhuang T, Guo H, Zhu J. YAP represses the TEAD-NF-κB complex and inhibits the growth of clear cell renal cell carcinoma. Sci Signal 2024; 17:eadk0231. [PMID: 38954637 DOI: 10.1126/scisignal.adk0231] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
The Hippo pathway is generally understood to inhibit tumor growth by phosphorylating the transcriptional cofactor YAP to sequester it to the cytoplasm and reduce the formation of YAP-TEAD transcriptional complexes. Aberrant activation of YAP occurs in various cancers. However, we found a tumor-suppressive function of YAP in clear cell renal cell carcinoma (ccRCC). Using cell cultures, xenografts, and patient-derived explant models, we found that the inhibition of upstream Hippo-pathway kinases MST1 and MST2 or expression of a constitutively active YAP mutant impeded ccRCC proliferation and decreased gene expression mediated by the transcription factor NF-κB. Mechanistically, the NF-κB subunit p65 bound to the transcriptional cofactor TEAD to facilitate NF-κB-target gene expression that promoted cell proliferation. However, by competing for TEAD, YAP disrupted its interaction with NF-κB and prompted the dissociation of p65 from target gene promoters, thereby inhibiting NF-κB transcriptional programs. This cross-talk between the Hippo and NF-κB pathways in ccRCC suggests that targeting the Hippo-YAP axis in an atypical manner-that is, by activating YAP-may be a strategy for slowing tumor growth in patients.
Collapse
Affiliation(s)
- Zhongbo Li
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
| | - Peng Su
- Department of Pathology, Shandong University Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, P.R. China
| | - Miao Yu
- Department of General Surgery, Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, P.R. China
| | - Xufeng Zhang
- Kidney Transplantation, Second Hospital, Cheloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, P.R. China
| | - Yaning Xu
- Department of Clinical Laboratory, Second Hospital, Cheloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, P.R. China
| | - Tianwei Jia
- Department of Clinical Laboratory, Second Hospital, Cheloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, P.R. China
| | - Penghe Yang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
| | - Chenmiao Zhang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
| | - Yanan Sun
- Department of Pathology, Shandong University Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, P.R. China
| | - Xin Li
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
| | - Huijie Yang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
| | - Yinlu Ding
- Department of General Surgery, Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, P.R. China
| | - Ting Zhuang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
| | - Haiyang Guo
- Department of Clinical Laboratory, Second Hospital, Cheloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, P.R. China
| | - Jian Zhu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning Province, PR China
| |
Collapse
|
43
|
Xie J, Huck WTS, Bao M. Unveiling the Intricate Connection: Cell Volume as a Key Regulator of Mechanotransduction. Annu Rev Biophys 2024; 53:299-317. [PMID: 38424091 DOI: 10.1146/annurev-biophys-030822-035656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The volumes of living cells undergo dynamic changes to maintain the cells' structural and functional integrity in many physiological processes. Minor fluctuations in cell volume can serve as intrinsic signals that play a crucial role in cell fate determination during mechanotransduction. In this review, we discuss the variability of cell volume and its role in vivo, along with an overview of the mechanisms governing cell volume regulation. Additionally, we provide insights into the current approaches used to control cell volume in vitro. Furthermore, we summarize the biological implications of cell volume regulation and discuss recent advances in understanding the fundamental relationship between cell volume and mechanotransduction. Finally, we delve into the potential underlying mechanisms, including intracellular macromolecular crowding and cellular mechanics, that govern the global regulation of cell fate in response to changes in cell volume. By exploring the intricate interplay between cell volume and mechanotransduction, we underscore the importance of considering cell volume as a fundamental signaling cue to unravel the basic principles of mechanotransduction. Additionally, we propose future research directions that can extend our current understanding of cell volume in mechanotransduction. Overall, this review highlights the significance of considering cell volume as a fundamental signal in understanding the basic principles in mechanotransduction and points out the possibility of controlling cell volume to control cell fate, mitigate disease-related damage, and facilitate the healing of damaged tissues.
Collapse
Affiliation(s)
- Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands;
| | - Min Bao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China;
| |
Collapse
|
44
|
Duman E, Özmen Ö, Kul S. Profiling several key milk miRNAs and analysing their signalling pathways in dairy sheep breeds during peak and late lactation. Vet Med Sci 2024; 10:e1505. [PMID: 38924289 PMCID: PMC11198020 DOI: 10.1002/vms3.1505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 04/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The comprehensive understanding of microRNAs (miRNAs) in sheep milk during various lactation periods and their impact on milk yield and composition remains limited. OBJECTIVES This study aimed to investigate the expression patterns of four highly expressed miRNAs in sheep milk and their association with milk composition and yield parameters during peak and late lactation stages. METHODS A total of 40 healthy 4-year-old Akkaraman (n = 20) and Awassi (n = 20) ewes registered with the Ministry of Agriculture and Forestry of the Republic of Türkiye were used in the present study. For miRNA isolation from milk, the Qiagen miRNeasy Serum/Plasma Advanced Kit was utilised following the manufacturer's instructions. The expression levels of miRNAs were assessed using Qiagen miRNA PCR Assays. RESULTS The significant fold changes in the expression levels of oar-miR-30a-5p, oar-miR-148a and oar-miR-181a were observed between peak and late lactation periods in the Awassi sheep breed. Conversely, only oar-miR-30a-5p and oar-miR-148a exhibited statistically significant changes in the Akkaraman sheep breed during the same lactation periods. Furthermore, oar-miR-21-5p demonstrated a significant fold change exclusively in peak lactation compared to Akkaraman and Awassi ewes. CONCLUSIONS The findings suggest that the expression of the analysed miRNAs is influenced by both the lactation stage and different sheep breeds. This study offers valuable insights into the relationship between key miRNA expressions in sheep milk and milk composition and yield parameters during peak and late lactation, contributing to the existing knowledge in this field.
Collapse
Affiliation(s)
- Esra Duman
- Faculty of Medicine, Institute of Molecular Gastroenterology and HepatologyKocaeli UniversityKocaeliTürkiye
| | - Özge Özmen
- Faculty of Veterinary Medicine, Department of GeneticsAnkara UniversityAnkaraTürkiye
| | - Selim Kul
- Faculty of Veterinary Medicine, Department of Animal BreedingYozgat Bozok UniversityYozgatTürkiye
| |
Collapse
|
45
|
Ji C, Zhang J, Shi H, Chen B, Xu W, Jin J, Qian H. Single-cell RNA transcriptomic reveal the mechanism of MSC derived small extracellular vesicles against DKD fibrosis. J Nanobiotechnology 2024; 22:339. [PMID: 38890734 PMCID: PMC11184851 DOI: 10.1186/s12951-024-02613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Diabetic kidney disease (DKD), a chronic kidney disease, is characterized by progressive fibrosis caused due to persistent hyperglycemia. The development of fibrosis in DKD determines the patient prognosis, but no particularly effective treatment. Here, small extracellular vesicles derived from mesenchymal stem cells (MSC-sEV) have been used to treat DKD fibrosis. Single-cell RNA sequencing was used to analyze 27,424 cells of the kidney, we have found that a novel fibrosis-associated TGF-β1+Arg1+ macrophage subpopulation, which expanded and polarized in DKD and was noted to be profibrogenic. Additionally, Actin+Col4a5+ mesangial cells in DKD differentiated into myofibroblasts. Multilineage ligand-receptor and cell-communication analysis showed that fibrosis-associated macrophages activated the TGF-β1/Smad2/3/YAP signal axis, which promotes mesangial fibrosis-like change and accelerates renal fibrosis niche. Subsequently, the transcriptome sequencing and LC-MS/MS analysis indicated that MSC-sEV intervention could restore the levels of the kinase ubiquitin system in DKD and attenuate renal interstitial fibrosis via delivering CK1δ/β-TRCP to mediate YAP ubiquitination degradation in mesangial cells. Our findings demonstrate the unique cellular and molecular mechanisms of MSC-sEV in treating the DKD fibrosis niche at a single-cell level and provide a novel therapeutic strategy for renal fibrosis.
Collapse
Affiliation(s)
- Cheng Ji
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Chang Zhou, Jiangsu, 213004, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Binghai Chen
- Institute of Translational Medicine, Department of Urology, Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jianhua Jin
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Chang Zhou, Jiangsu, 213004, China.
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Chang Zhou, Jiangsu, 213004, China.
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, ShangHai, 200040, China.
| |
Collapse
|
46
|
Liu Y, Wu X, Xu Q, Lan X, Li W. Temporal Transcriptome Dynamics of Longissimus dorsi Reveals the Mechanism of the Differences in Muscle Development and IMF Deposition between Fuqing Goats and Nubian Goats. Animals (Basel) 2024; 14:1770. [PMID: 38929389 PMCID: PMC11200590 DOI: 10.3390/ani14121770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, we measured the growth performance and intramuscular fat (IMF) content of the Longissimus dorsi (LD) of Fuqing goats (FQs) and Nubian goats (NBYs), which exhibit extreme phenotypic differences in terms of their production and meat quality traits. RNA-Seq analysis was performed, and transcriptome data were obtained from the LD tissue of 3-month fetuses (E3), 0-month lambs (0M), 3-month lambs (3M), and 12-month lambs (12M) to reveal the differences in the molecular mechanisms regulating the muscle development and IMF deposition between FQs and NBYs. The results showed that a higher body weight and average daily gain were observed in the NBYs at three developmental stages after birth, whereas a higher IMF content was registered in the FQs at 12M. Additionally, transcriptome profiles during the embryonic period and after birth were completely different for both FQs and NBYs. Moreover, DEGs (KIF23, CCDC69, CCNA2, MKI67, KIF11, RACGAP1, NUSAP1, SKP2, ZBTB18, NES, LOC102180034, CAPN6, TUBA1A, LOC102178700, and PEG10) significantly enriched in the cell cycle (ko04110) at E3 (FQs vs. NBYs), and DEGs (MRPS7, RPS8, RPL6, RPL4, RPS11, RPS10, RPL5, RPS6, RPL8, RPS13, RPS24, RPS15, RPL23) significantly enriched in ribosomes (ko03010) at 0M (FQs vs. NBYs) related to myogenic differentiation and fusion were identified. Meanwhile, the differences in glucose and lipid metabolism began at the E3 timepoint and continued to strengthen as growth proceeded in FQs vs. NBYs. DEGs (CD36, ADIROQR2, ACACA, ACACB, CPT1A, IGF1R, IRS2, LDH-A, PKM, HK2, PFKP, PCK1, GPI, FASN, FADS1, ELOVL6, HADHB, ACOK1, ACAA2, and ACSL4) at 3M (FQs vs. NBYs) and 12M (FQs vs. NBYs) significantly enriched in the AMPK signaling pathway (ko04152), insulin resistance (ko04931), the insulin signaling pathway (ko04910), fatty acid metabolism (ko01212), and glycolysis/gluconeogenesis (ko00010) related to IMF deposition were identified. Further, the results from this study provide the basis for future studies on the mechanisms regulating muscle development and IMF deposition in different breeds of goats, and the candidate genes identified could be used in the selection process.
Collapse
Affiliation(s)
- Yuan Liu
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Q.X.)
| | - Xianfeng Wu
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Q.X.)
| | - Qian Xu
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Q.X.)
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Wenyang Li
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Q.X.)
| |
Collapse
|
47
|
Chu CQ, Quan T. Fibroblast Yap/Taz Signaling in Extracellular Matrix Homeostasis and Tissue Fibrosis. J Clin Med 2024; 13:3358. [PMID: 38929890 PMCID: PMC11204269 DOI: 10.3390/jcm13123358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Tissue fibrosis represents a complex pathological condition characterized by the excessive accumulation of collagenous extracellular matrix (ECM) components, resulting in impaired organ function. Fibroblasts are central to the fibrotic process and crucially involved in producing and depositing collagen-rich ECM. Apart from their primary function in ECM synthesis, fibroblasts engage in diverse activities such as inflammation and shaping the tissue microenvironment, which significantly influence cellular and tissue functions. This review explores the role of Yes-associated protein (Yap) and Transcriptional co-activator with PDZ-binding motif (Taz) in fibroblast signaling and their impact on tissue fibrosis. Gaining a comprehensive understanding of the intricate molecular mechanisms of Yap/Taz signaling in fibroblasts may reveal novel therapeutic targets for fibrotic diseases.
Collapse
Affiliation(s)
- Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Portland, OR 97239, USA;
- Rheumatology Section, VA Portland Health Care System, Portland, OR 97239, USA
| | - Taihao Quan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
48
|
Boamah GA, Huang Z, Ke C, You W, Ayisi CL, Amenyogbe E, Droepenu E. Preliminary analysis of pathways and their implications during salinity stress in abalone. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101224. [PMID: 38430709 DOI: 10.1016/j.cbd.2024.101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Transcriptome sequencing has offered immense opportunities to study non-model organisms. Abalone is an important marine mollusk that encounters harsh environmental conditions in its natural habitat and under aquaculture conditions; hence, research that increases molecular information to understand abalone physiology and stress response is noteworthy. Accordingly, the study used transcriptome sequencing of the gill tissues of abalone exposed to low salinity stress. The aim is to explore some enriched pathways during salinity stress and the crosstalk and functions of the genes involved in the candidate biological processes for future further analysis of their expression patterns. The data suggest that abalone genes such as YAP/TAZ, Myc, Nkd, and Axin (involved in the Hippo signaling pathway) and PI3K/Akt, SHC, and RTK (involved in the Ras signaling pathways) might mediate growth and development. Thus, deregulation of the Hippo and Ras pathways by salinity stress could be a possible mechanism by which unfavorable salinities influence growth in abalone. Furthermore, PEPCK, GYS, and PLC genes (mediating the Glucagon signaling pathway) might be necessary for glucose homeostasis, reproduction, and abalone meat sensory qualities; hence, a need to investigate how they might be influenced by environmental stress. Genes such as MYD88, IRAK1/4, JNK, AP-1, and TRAF6 (mediating the MAPK signaling pathway) could be useful in understanding abalone's innate immune response to environmental stresses. Finally, the aminoacyl-tRNA biosynthesis pathway hints at the mechanism by which new raw materials for protein biosynthesis are mobilized for physiological processes and how abalone might respond to this process during salinity stress. Low salinity clearly regulated genes in these pathways in a time-dependent manner, as hinted by the heat maps. In the future, qRT-PCR verification and in-depth study of the various genes and proteins discussed would provide enormous molecular information resources for the abalone biology.
Collapse
Affiliation(s)
- Grace Afumwaa Boamah
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana.
| | - Zekun Huang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China
| | - Christian Larbi Ayisi
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana
| | - Eric Amenyogbe
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana
| | - Eric Droepenu
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana
| |
Collapse
|
49
|
Cao J, Su Z, Zhang Y, Chen Z, Li J, Cai Y, Chang Y, Lei M, He Q, Li W, Liao X, Zhang S, Hong A, Chen X. Turning sublimed sulfur and bFGF into a nanocomposite to accelerate wound healing via co-activate FGFR and Hippo signaling pathway. Mater Today Bio 2024; 26:101104. [PMID: 38952539 PMCID: PMC11216016 DOI: 10.1016/j.mtbio.2024.101104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Clinical treatment of diabetic refractory ulcers is impeded by chronic inflammation and cell dysfunction associated with wound healing. The significant clinical application of bFGF in wound healing is limited by its instability in vivo. Sulfur has been applied for the treatment of skin diseases in the clinic for antibiosis. We previously found that sulfur incorporation improves the ability of selenium nanoparticles to accelerate wound healing, yet the toxicity of selenium still poses a risk for its clinical application. To obtain materials with high pro-regeneration activity and low toxicity, we explored the mechanism by which selenium-sulfur nanoparticles aid in wound healing via RNA-Seq and designed a nanoparticle called Nano-S@bFGF, which was constructed from sulfur and bFGF. As expected, Nano-S@bFGF not only regenerated zebrafish tail fins and promoted skin wound healing but also promoted skin repair in diabetic mice with a profitable safety profile. Mechanistically, Nano-S@bFGF successfully coactivated the FGFR and Hippo signalling pathways to regulate wound healing. Briefly, the Nano-S@bFGF reported here provides an efficient and feasible method for the synthesis of bioactive nanosulfur and bFGF. In the long term, our results reinvigorated efforts to discover more peculiar unique biofunctions of sulfur and bFGF in a great variety of human diseases.
Collapse
Affiliation(s)
- Jieqiong Cao
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zijian Su
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yibo Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zhiqi Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Jingsheng Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yulin Cai
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yiming Chang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Minghua Lei
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Qianyi He
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Weicai Li
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Xuan Liao
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - An Hong
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Xiaojia Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| |
Collapse
|
50
|
D'Aguanno S, Brignone M, Scalera S, Chiacchiarini M, Di Martile M, Valentini E, De Nicola F, Ricci A, Pelle F, Botti C, Maugeri-Saccà M, Del Bufalo D. Bcl-2 dependent modulation of Hippo pathway in cancer cells. Cell Commun Signal 2024; 22:277. [PMID: 38755629 PMCID: PMC11097437 DOI: 10.1186/s12964-024-01647-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
INTRODUCTION Bcl-2 and Bcl-xL are the most studied anti-apoptotic members of Bcl-2 family proteins. We previously characterized both of them, not only for their role in regulating apoptosis and resistance to therapy in cancer cells, but also for their non-canonical functions, mainly including promotion of cancer progression, metastatization, angiogenesis, and involvement in the crosstalk among cancer cells and components of the tumor microenvironment. Our goal was to identify transcriptional signature and novel cellular pathways specifically modulated by Bcl-2. METHODS We performed RNAseq analysis of siRNA-mediated transient knockdown of Bcl-2 or Bcl-xL in human melanoma cells and gene ontology analysis to identify a specific Bcl-2 transcriptional signature. Expression of genes modulated by Bcl-2 and associated to Hippo pathway were validated in human melanoma, breast adenocarcinoma and non-small cell lung cancer cell lines by qRT-PCR. Western blotting analysis were performed to analyse protein expression of upstream regulators of YAP and in relation to different level of Bcl-2 protein. The effects of YAP silencing in Bcl-2 overexpressing cancer cells were evaluated in migration and cell viability assays in relation to different stiffness conditions. In vitro wound healing assays and co-cultures were used to evaluate cancer-specific Bcl-2 ability to activate fibroblasts. RESULTS We demonstrated the Bcl-2-dependent modulation of Hippo Pathway in cancer cell lines from different tumor types by acting on upstream YAP regulators. YAP inhibition abolished the ability of Bcl-2 to increase tumor cell migration and proliferation on high stiffness condition of culture, to stimulate in vitro fibroblasts migration and to induce fibroblasts activation. CONCLUSIONS We discovered that Bcl-2 regulates the Hippo pathway in different tumor types, promoting cell migration, adaptation to higher stiffness culture condition and fibroblast activation. Our data indicate that Bcl-2 inhibitors should be further investigated to counteract cancer-promoting mechanisms.
Collapse
Affiliation(s)
- Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy.
| | - Matteo Brignone
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Stefano Scalera
- Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Martina Chiacchiarini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Elisabetta Valentini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy
| | | | - Alessia Ricci
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, 66100, Italy
| | - Fabio Pelle
- Department of Surgery, Division of Breast Surgery, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Claudio Botti
- Department of Surgery, Division of Breast Surgery, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Marcello Maugeri-Saccà
- Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy
| |
Collapse
|