1
|
Wu J, Qian Y, Yang K, Zhang S, Zeng E, Luo D. Innate immune cells in vascular lesions: mechanism and significance of diversified immune regulation. Ann Med 2025; 57:2453826. [PMID: 39847394 PMCID: PMC11758805 DOI: 10.1080/07853890.2025.2453826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/18/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Angiogenesis is a complex physiological process. In recent years, the immune regulation of angiogenesis has received increasing attention, and innate immune cells, which are centred on macrophages, are thought to play important roles in vascular neogenesis and development. Various innate immune cells can act on the vasculature through a variety of mechanisms, with commonalities as well as differences and synergistic effects, which are crucial for the progression of vascular lesions. In recent years, monotherapy with antiangiogenic drugs has encountered therapeutic bottlenecks because of the short-term effect of 'vascular normalization'. The combination treatment of antiangiogenic therapy and immunotherapy breaks the traditional treatment pattern. While it has a remarkable curative effect and survival benefits, it also faces many challenges. This review focuses on innate immune cells and mainly introduces the regulatory mechanisms of monocytes, macrophages, natural killer (NK) cells, dendritic cells (DCs) and neutrophils in vascular lesions. The purpose of this paper was to elucidate the underlying mechanisms of angiogenesis and development and the current research status of innate immune cells in regulating vascular lesions in different states. This review provides a theoretical basis for addressing aberrant angiogenesis in disease processes or finding new antiangiogenic immune targets in inflammation and tumor.
Collapse
Affiliation(s)
- Jinjing Wu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yulu Qian
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Kuang Yang
- Queen Mary University of London, Nanchang University, Nanchang, China
| | - Shuhua Zhang
- Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Cardiovascular Research Institute, Nanchang, Jiangxi, China
| | - Erming Zeng
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Daya Luo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Chriqui LE, Cavin S, Perentes JY. Dual implication of endothelial adhesion molecules in tumor progression and cancer immunity. Cell Adh Migr 2025; 19:2472308. [PMID: 40071851 PMCID: PMC11913389 DOI: 10.1080/19336918.2025.2472308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/16/2024] [Accepted: 01/19/2025] [Indexed: 03/19/2025] Open
Abstract
Adhesion molecules are proteins expressed at the surface of various cell types. Their main contribution to immunity is to allow the infiltration of immune cells in an inflamed site. In cancer, adhesion molecules have been shown to promote tumor dissemination favoring the development of metastasis. While adhesion molecule inhibition approaches were unsuccessful for cancer control, their importance for the generation of an immune response alone or in combination with immunotherapies has gained interest over the past years. Currently, the balance of adhesion molecules for tumor promotion/inhibition is unclear. Here we review the role of selectins, intercellular adhesion molecules (ICAM) and vascular cell adhesion molecules (VCAM) from the perspective of the dual contribution of adhesion molecules in tumor progression and immunity.
Collapse
Affiliation(s)
- Louis-Emmanuel Chriqui
- Division of Thoracic Surgery, Department of Surgery, CHUV, Lausanne University Hospital, Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| | - Sabrina Cavin
- Division of Thoracic Surgery, Department of Surgery, CHUV, Lausanne University Hospital, Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| | - Jean Yannis Perentes
- Division of Thoracic Surgery, Department of Surgery, CHUV, Lausanne University Hospital, Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Zhao C, Liu J, Tian Y, Li Z, Zhao J, Xing X, Qiu X, Wang L. A functional cardiac patch with "gas and ion" dual-effect intervention for reconstructing blood microcirculation in myocardial infarction repair. Biomaterials 2025; 321:123300. [PMID: 40174299 DOI: 10.1016/j.biomaterials.2025.123300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/10/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Postinfarction revascularization is critical for repairing the infarcted myocardium and for stopping disease progression. Considering the limitations of surgical intervention, engineered cardiac patches (ECPs) are more effective in establishing rich blood supply networks. For efficacy, ECPs should promote the formation of more mature blood vessels to improve microcirculatory dysfunction and mitigate hypoxia-induced apoptosis. Developing collateral circulation between infarcted myocardium and ECPs for restoring blood perfusion remains a challenge. Here, an ion-conductive composite ECPs (GMA@OSM) with powerful angiogenesis-promoting ability was constructed. Based on dual-effect intervention of oxygen and strontium, the developed ECPs can promote the formation of high-density circulating microvascular network at the infarcted myocardium. In addition, the GMA@OSM possesses effective reactive oxygen species-scavenging capacity and can facilitate electrophysiological repair of myocardium with ionic conductivity. In vitro and in vivo studies indicate that the multifunctional GMA@OSM ECPs form well-developed collateral circulation with infarcted myocardium to protect cardiomyocytes and improve cardiac function. Overall, this study highlights the potential of a multifunctional platform for developing collateral circulation, which can lead to an effective therapeutic strategy for repairing myocardial infarction.
Collapse
Affiliation(s)
- Chaoran Zhao
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Junjie Liu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ye Tian
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhentao Li
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Jiang Zhao
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xianglong Xing
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaozhong Qiu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Leyu Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China; Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
| |
Collapse
|
4
|
Cai T. Hyperbaric oxygen therapy as an adjunt treatment for glioma and brain metastasis: a literature review. Med Gas Res 2025; 15:420-426. [PMID: 39923138 PMCID: PMC12054668 DOI: 10.4103/mgr.medgasres-d-24-00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/10/2024] [Accepted: 12/06/2024] [Indexed: 02/10/2025] Open
Abstract
The incidence and mortality rates of malignant tumors are increasing annually, with gliomas and brain metastases linked to a poor prognosis. Hyperbaric oxygen therapy is a promising treatment modality for both gliomas and brain metastases. It can alleviate tumor hypoxia and enhance radiosensitivity. When combined with other treatments for gliomas, this therapy has the potential to enhance survival rates. This review addresses the progress in research on the use of hyperbaric oxygen therapy combined with radiotherapy. For brain metastases, the combination of hyperbaric oxygen therapy and stereotactic radiosurgery is both feasible and advantagenous. This combination not only offers protection against radiation-induced brain injury but also supports the recovery of neurological and motor functions. The incidence of adverse reactions to hyperbaric oxygen therapy is relatively low, and it is safe and manageable. Future efforts should be made to investigate the mechanisms by which hyperbaric oxygen therapy combined with radiotherapy treats gliomas and brain metastases, optimize protection of the combined treatment against brain injury, minimizing adverse reactions, conducting multidisciplinary research and clinical trials, and training healthcare providers to facilitate broader clinical application.
Collapse
Affiliation(s)
- Tengteng Cai
- Department of Radiotherapy, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Zhang Z, Zhang Q, Wang Y. CAF-mediated tumor vascularization: From mechanistic insights to targeted therapies. Cell Signal 2025; 132:111827. [PMID: 40288665 DOI: 10.1016/j.cellsig.2025.111827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Cancer-associated fibroblasts (CAFs) are a major component of the tumor microenvironment (TME) and play a crucial role in tumor progression. The biological properties of tumors, such as drug resistance, vascularization, immunosuppression, and metastasis are closely associated with CAFs. During tumor development, CAFs contribute to tumor progression by remodeling the extracellular matrix (ECM), inhibiting immune cell function, promoting angiogenesis, and facilitating tumor cell growth, invasion, and metastasis. Studies have shown that CAFs can promote endothelial cell proliferation by directly secreting cytokines such as vascular endothelial growth factor (VEGF) and fibroblast Growth Factor (FGF), as well as through exosomes. CAFs also secrete the chemokine stromal cell-derived factor 1 (SDF-1) to recruit endothelial progenitor cells (EPCs) into the peripheral blood and guide their migration to the tumor periphery. Additionally, CAFs can induce tumor cells to transform into "endothelial cells" that participate in vascular wall formation. However, the precise mechanisms remain to be further investigated. Due to their widespread presence in various solid tumors and their tumor-promoting function, CAFs are emerging as therapeutic targets. In this review, we summarize the specific mechanisms through which CAFs promote angiogenesis and outline current therapeutic strategies targeting CAF-induced vascularization, ongoing clinical trials targeting CAFs, and discuss potential future treatment approaches. We hope this will contribute to the advancement of CAF-targeted tumor treatment strategies.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Qing Zhang
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Yang Wang
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
6
|
Wang L, Yang L, Tian L, Guo B, Dai T, Lv Q, Xie J, Liu F, Bao H, Cao F, Liu Y, Gao Y, Hou Y, Ye Z, Wang S, Zhang Q, Kong L, Cai B. Exosome-capturing scaffold promotes endogenous bone regeneration through neutrophil-derived exosomes by enhancing fast vascularization. Biomaterials 2025; 319:123215. [PMID: 40023128 DOI: 10.1016/j.biomaterials.2025.123215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 01/19/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Exosomes (Exos), extracellular vesicles of endosomal origin, are a promising therapeutic platform for tissue regeneration. In the current study, an exosome-capturing scaffold (ECS) was designed to attract and anchor exosomes via electrostatic adherence followed by lipophilic interactions. Our findings demonstrate that local enrichment of exosomes in the ECS implanted into critical mandibular defects could significantly accelerate endogenous bone regeneration by enhancing vascularization at the defect site. Notably, neutrophil (PMN)-derived exosomes (PMN-Exos) were identified as the predominant exosome subtype among all captured exosomes. During endogenous bone regeneration, PMN-Exos promoted endogenous vascularization primarily by stimulating the proliferation of endothelial progenitor cells (EPCs), which play a pivotal role in the vasculogenesis of new blood vessels. Mechanistically, vascularization involved PMN-Exo-derived miR455-3p, which promotes EPC proliferation by targeting the Smad4 pathway. In conclusion, this study offers an ECS with broad application prospects for enhancing tissue regeneration by accelerating vascularization. The elucidation of underlying mechanisms paves the way for developing novel strategies to regenerate various tissues and organs.
Collapse
Affiliation(s)
- Le Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Luying Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Lei Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Baolin Guo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Taiqiang Dai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Qianxin Lv
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Jirong Xie
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Fuwei Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Han Bao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Feng Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Ya Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China; College of Life Sciences, Northwest University, Xi'an, 710069, China.
| | - Ye Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yan Hou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R, China.
| | - Shenqiang Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Liang Kong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Bolei Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
7
|
Wang R, Zhang F, Li J, Yang D, Zhao H, Yuan J, Jia Y, Yu W, Guo W, Zou L, Zou K. GATA2 promotes cervical cancer progression under the transcriptional activation of TRIP4. Cell Signal 2025; 132:111778. [PMID: 40180167 DOI: 10.1016/j.cellsig.2025.111778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/09/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
The continued rise in recurrence and mortality rates of cervical cancer suggests the need to find novel therapeutic targets. Previous studies suggest that TRIP4 acts as a transcription factor to regulate cervical carcinogenesis and progression. Our aim was to explore whether the key downstream genes of TRIP4 functions same as TRIP4 in promoting cervical cancer development. We analyzed and confirmed the downstream targets of TRIP4 by RNA sequencing in cervical cancer cells with TRIP4 knockdown. The expression correlation between TRIP4 and GATA2 and the effect of GATA2 on cervical cancer cell growth were determined respectively by Western Blot, Scratch, Spheroid, and MTT analyses. Pulldown and ChIP experiments were performed to analyze the binding of TRIP4 to the promoter of GATA2. The clinical significance of GATA2 and TRIP4 expression in cervical cancer patients was analyzed by tissue microarray staining. GATA2 was highly expressed in cervical cancer tissues. Knockdown of GATA2 inhibited the growth, metastasis and stemness of cervical cancer cells and sensitized cervical cancer cells to radiation therapy. The inhibitory effect of TRIP4 knockdown on cervical cancer cells was rescued by GATA2 overexpression. Furthermore, TRIP4 could bind to the specific GATA2 promoter region, thereby activating its transcription. Clinical tissue microarray analysis indicated that the expression of TRIP4 and GATA2 was positively correlated, and high expression of both predicted a poor prognosis in cervical cancer patients. Our study demonstrated that GATA2 functions as the key downstream target of TRIP4 to promote cervical cancer progression and effective intervention of TRIP4/GATA2 signaling is expected to be developed as potential cervical cancer therapeutic strategy.
Collapse
Affiliation(s)
- Ruonan Wang
- The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Feng Zhang
- The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiazhi Li
- The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dian Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Hongmei Zhao
- The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jie Yuan
- The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuhan Jia
- The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wendan Yu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wei Guo
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Lijuan Zou
- The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Kun Zou
- The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
8
|
Yuan J, Deng T, Yang Q, Lv D, Zhou Z, You L, Feng Q, Meng X, Pang Q, Li H, Zhu B. Loss of LSD1 ameliorates myocardial infarction by regulating angiogenesis via transcriptional activation of Vegfa. Life Sci 2025; 372:123613. [PMID: 40210117 DOI: 10.1016/j.lfs.2025.123613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/13/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
AIMS Our study aims to explore the regulatory role and underlying mechanisms of Lysine-specific demethylase 1 (LSD1) in angiogenesis following myocardial infarction (MI). MATERIALS AND METHODS We generated inducible cardiomyocyte-specific Lsd1 knockout (Lsd1-cKO) mice and established a MI model. The function of LSD1 in cardiac angiogenesis in MI mice was assessed through echocardiography, histopathological staining, and immunofluorescence analysis. In vitro, Lsd1 silencing in cardiomyocytes was achieved by transfecting small interfering RNA (siRNA), followed by hypoxic treatment to simulate the in vivo MI model. The above cardiomyocyte-conditioned medium was collected and used to treat endothelial cells to observe changes in endothelial function. Additionally, we employed Cleavage Under Targets and Tagmentation sequencing (CUT&Tag-seq) to investigate the potential mechanisms by which LSD1 exerts its effects. KEY FINDINGS We found that the absence of LSD1 protected against cardiac dysfunction and promoted angiogenesis in mice with MI. Lsd1-silenced cardiomyocytes enhance the migration and tube formation function of endothelial cells by releasing vascular endothelial growth factor A (VEGF-A) under hypoxic conditions. The combined analysis of CUT&Tag-seq data revealed that silencing of Lsd1 promoted the monomethylation of H3K4 at the Vegfa promoter and region, leading to the transcriptional activation of Vegfa mRNA in cardiomyocytes. SIGNIFICANCE Our research indicates that lowered level of LSD1 in cardiomyocytes enhances VEGF-A paracrine secretion and improves endothelial cell function through cross-talk, ultimately promoting angiogenesis. These findings suggest that targeting LSD1 might be an effective therapeutic approach to protect against MI.
Collapse
Affiliation(s)
- Jinghan Yuan
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tian Deng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingshan Yang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Danyi Lv
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenfang Zhou
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu You
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qipu Feng
- Animal Experiment Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Xiangmin Meng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiuyu Pang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hao Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bingmei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Marciniak M, Stachowicz-Suhs M, Wagner M. The role of innate immune cells in modulating vascular dynamics in skin malignancies. Biochim Biophys Acta Rev Cancer 2025; 1880:189331. [PMID: 40280501 DOI: 10.1016/j.bbcan.2025.189331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
A developing tumor relies heavily on blood vessels to supply oxygen and nutrients. As a result, angiogenesis, the formation of new blood vessels, supports tumor growth and progression. Similarly, lymphangiogenesis, the formation of new lymphatic vessels, plays a critical role in metastatic dissemination by providing pathways for malignant cells to spread. The tumor microenvironment is crucial for establishing and maintaining these vascular networks, with innate immune cells playing a key regulatory role. Notably, immune cells are specifically enriched in barrier tissues, such as the skin, emphasizing their importance in skin malignancies. Therefore, understanding their role in regulating angiogenesis and lymphangiogenesis is essential for developing novel therapeutic strategies. This review article explores how innate immune cells influence tumor vasculature and highlights the therapeutic potential that may arise from this knowledge.
Collapse
Affiliation(s)
- Mateusz Marciniak
- Innate Immunity Research Group, Life Sciences and Biotechnology Center, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland; Department of Biochemistry and Immunochemistry, Wrocław Medical University, Wrocław, Poland
| | - Martyna Stachowicz-Suhs
- Innate Immunity Research Group, Life Sciences and Biotechnology Center, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland
| | - Marek Wagner
- Innate Immunity Research Group, Life Sciences and Biotechnology Center, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland.
| |
Collapse
|
10
|
Castillo-González J, González-Rey E. Beyond wrecking a wall: revisiting the concept of blood-brain barrier breakdown in ischemic stroke. Neural Regen Res 2025; 20:1944-1956. [PMID: 39254550 PMCID: PMC11691464 DOI: 10.4103/nrr.nrr-d-24-00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/17/2024] [Accepted: 07/04/2024] [Indexed: 09/11/2024] Open
Abstract
The blood-brain barrier constitutes a dynamic and interactive boundary separating the central nervous system and the peripheral circulation. It tightly modulates the ion transport and nutrient influx, while restricting the entry of harmful factors, and selectively limiting the migration of immune cells, thereby maintaining brain homeostasis. Despite the well-established association between blood-brain barrier disruption and most neurodegenerative/neuroinflammatory diseases, much remains unknown about the factors influencing its physiology and the mechanisms underlying its breakdown. Moreover, the role of blood-brain barrier breakdown in the translational failure underlying therapies for brain disorders is just starting to be understood. This review aims to revisit this concept of "blood-brain barrier breakdown," delving into the most controversial aspects, prevalent challenges, and knowledge gaps concerning the lack of blood-brain barrier integrity. By moving beyond the oversimplistic dichotomy of an "open"/"bad" or a "closed"/"good" barrier, our objective is to provide a more comprehensive insight into blood-brain barrier dynamics, to identify novel targets and/or therapeutic approaches aimed at mitigating blood-brain barrier dysfunction. Furthermore, in this review, we advocate for considering the diverse time- and location-dependent alterations in the blood-brain barrier, which go beyond tight-junction disruption or brain endothelial cell breakdown, illustrated through the dynamics of ischemic stroke as a case study. Through this exploration, we seek to underscore the complexity of blood-brain barrier dysfunction and its implications for the pathogenesis and therapy of brain diseases.
Collapse
Affiliation(s)
- Julia Castillo-González
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada, Spain
| | - Elena González-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada, Spain
| |
Collapse
|
11
|
Sun F, Gao X, Li T, Zhao X, Zhu Y. Tumor immune microenvironment remodeling after neoadjuvant therapy in gastric cancer: Update and new challenges. Biochim Biophys Acta Rev Cancer 2025; 1880:189350. [PMID: 40355011 DOI: 10.1016/j.bbcan.2025.189350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Gastric cancer (GC) is a malignant tumor with one of the highest morbidity and death rates in the world. Neoadjuvant therapy, including neoadjuvant chemotherapy (NAC) and NAC combined with immunotherapy, can improve the resection and long-term survival rates. However, not all patients respond well to neoadjuvant therapy. It has been confirmed that immune cells in the tumor immune microenvironment, including T cells, B cells, and natural killer cells, can affect the efficacy of neoadjuvant therapy. This paper summarizes current preclinical and clinical evidence to more fully describe the effects of neoadjuvant therapy on the immune microenvironment of GC, to provide the impetus to identify biomarkers to predict the potency of neoadjuvant therapy, and to identify the mechanisms of drug resistance, which should promote the development of individualized and accurate treatments for GC patients.
Collapse
Affiliation(s)
- Fujing Sun
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Xiaozhuo Gao
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Tianming Li
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Xiaoyan Zhao
- Graduate School, Dalian Medical University, Dalian, China
| | - Yanmei Zhu
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China.
| |
Collapse
|
12
|
Zhang Y, Kontos CD, Annex BH, Popel AS. Promoting vascular stability through Src inhibition and Tie2 activation: A model-based analysis. iScience 2025; 28:112625. [PMID: 40491479 PMCID: PMC12148613 DOI: 10.1016/j.isci.2025.112625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 01/15/2025] [Accepted: 05/06/2025] [Indexed: 06/11/2025] Open
Abstract
Dysregulated angiogenesis signaling leads to pathological vascular growth and leakage, and is a hallmark of many diseases including cancer and ocular diseases. In peripheral arterial disease, the concomitant increase in vascular permeability presents significant challenges in therapeutic efforts to improve perfusion by stimulating vascular growth. Building a mechanistic understanding of the endothelial control of vascular growth and permeability signaling is crucial to guide our efforts to identify therapeutic strategies that permit blood vessel growth while maintaining vascular stability. We develop a mechanistic systems biology model of the endothelial signaling network formed by the vascular endothelial growth factor (VEGF) and angiopoietin (Ang)-Tie pathways, two major signaling pathways regulating vascular growth and stability. Our model, calibrated and validated against experimental data, reveals the mechanisms through which chronic Ang1 stimulation protects endothelial cells from VEGF-induced hyperpermeability, and predicts that combining Src inhibition with Tie2 activation can inhibit vascular leakage without disturbing angiogenesis signaling.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21215, USA
| | | | - Brian H. Annex
- Department of Medicine, Augusta University, Augusta, GA 30912, USA
| | - Aleksander S. Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21215, USA
| |
Collapse
|
13
|
Halford MM, He MY, Amin N, Paquet-Fifield S, Achen MG, Vincan E, Stacker SA. An endothelial cell competition assay for determinants of the response to targeted anti-angiogenics. Growth Factors 2025:1-27. [PMID: 40526406 DOI: 10.1080/08977194.2025.2516463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/17/2025] [Indexed: 06/19/2025]
Abstract
ABSTRACT/SUMMARYAnti-angiogenics, inhibitors of pathological blood vessel growth, are an important class of targeted agent for the treatment of common cancers and ocular conditions. However, efficacy is compromised by the absence of biomarkers to guide patient selection or inform the management of resistance. We describe an assay for modified endothelial cell (EC) responses to the VEGF-A-neutralizing monoclonal antibody bevacizumab as part of a biomarker discovery program. ECs are transduced by lentivector expressing an experimental or non-silencing shRNA, each co-expressed with a different fluorescent protein. A 1:1 mixed cell population is then cultured with bevacizumab or control antibody under VEGF-A-dependent conditions. A normalized ratio of surviving cells, obtained by flow cytometry analysis, reflects EC resistance or sensitization to bevacizumab mediated by the experimental shRNA. With reagents prepared, the protocol takes 10 days and rigorously quantifies the impact of gene perturbation on the EC response to bevacizumab or other targeted anti-angiogenics.
Collapse
Affiliation(s)
- Michael M Halford
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Michael Y He
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Nancy Amin
- Cancer Biology Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Sophie Paquet-Fifield
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Marc G Achen
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Elizabeth Vincan
- Cancer Biology Laboratory, Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
- Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
- Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Steven A Stacker
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
14
|
Zhang W, Fu H, Liu ZR, Xu L, Che X, Ning YT, Zhan ZY, Zhou GC. Transarterial chemoembolization combined with lenvatinib vs transarterial chemoembolization combined with sorafenib for unresectable hepatocellular carcinoma: A systematic review and meta-analysis. World J Gastrointest Oncol 2025; 17:105887. [DOI: 10.4251/wjgo.v17.i6.105887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/25/2025] [Accepted: 04/23/2025] [Indexed: 06/13/2025] Open
Abstract
BACKGROUND Lenvatinib and sorafenib are tyrosine kinase inhibitors that are effective in the treatment of unresectable hepatocellular carcinoma (uHCC). The efficacy of which of them is better suited to combine transarterial chemoembolization (TACE) for the treatment of uHCC is ripe.
AIM To compare the effectiveness of TACE combined with lenvatinib (TACE-lenvatinib) and TACE combined with sorafenib (TACE-sorafenib) in the treatment of uHCC, this study was carried out.
METHODS Publicly available studies comparing the efficacy of TACE-lenvatinib and TACE-sorafenib in the treatment of uHCC were collected from PubMed, Embase and Cochrane Library, with a cut-off date of December 2024. Stata SE 15 software was used for statistical analysis.
RESULTS A total of six studies involving 547 patients were included, 248 in the TACE-lenvatinib group and 299 in the TACE-sorafenib group. Meta-analysis results showed that TACE-lenvatinib was more effective than TACE-sorafenib in complete response [relative risk (RR) = 1.81, 95% confidence interval (CI): 1.11-2.96, P = 0.02], partial response (RR = 1.38, 95%CI: 1.12-1.70, P = 0.002), objective response rate (RR = 1.47, 95%CI: 1.24-1.74, P < 0.0001) and disease control rate (RR = 1.22, 95%CI: 1.00-1.49, P = 0.05). TACE-lenvatinib was significantly lower than TACE-sorafenib in progressive disease rate (RR = 0.54, 95%CI: 0.39-0.74, P = 0.002). No significant difference was found in stable disease rate (RR = 0.89, 95%CI: 0.60-1.33, P = 0.58) between the two groups. TACE-lenvatinib was significantly more effective than TACE-sorafenib in overall survival (hazard ratio = 2.00, 95%CI: 1.59-2.50, P < 0.05) and progression free survival (hazard ratio = 2.04, 95%CI: 1.49-2.86, P < 0.05). As regards adverse events, TACE-lenvatinib was better in reducing the incidence of hypertension than TACE-sorafenib, while no significant difference was found in overall adverse events, abdominal pain, fever, fatigue, nausea and vomiting, decreased appetite, liver dysfunction, hand-foot skin reaction, diarrhea, thrombocytopenia, and rash between the two groups.
CONCLUSION In patients with uHCC, TACE-lenvatinib induced a better tumor response rate and survival outcome than TACE-sorafenib, while TACE-lenvatinib resulted in a higher incidence of hypertension than TACE-sorafenib. However, these conclusions are derived from currently available medical evidence, and further confirmation by more rigorously designed randomized controlled studies is still needed.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, Guangdong Province, China
| | - Hua Fu
- Department of Hepatobiliary Surgery, People’s Hospital of Xiangxi Autonomous Prefecture, Jishou 416000, Hunan Province, China
| | - Zi-Rong Liu
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, Guangdong Province, China
| | - Lin Xu
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, Guangdong Province, China
| | - Xu Che
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, Guangdong Province, China
| | - Yan-Ting Ning
- Department of Nursing, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, Guangdong Province, China
| | - Zheng-Yin Zhan
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, Guangdong Province, China
| | - Guo-Chao Zhou
- Department of Hepatobiliary Surgery, People’s Hospital of Xiangxi Autonomous Prefecture, Jishou 416000, Hunan Province, China
| |
Collapse
|
15
|
Xia C, Deng Y, Lu Y, Kang L, Wan X, Chen H, Yin X. TLR4 signal inhibition alleviates alkali-burn induced corneal neovascularization. Exp Eye Res 2025:110486. [PMID: 40527362 DOI: 10.1016/j.exer.2025.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 06/03/2025] [Accepted: 06/09/2025] [Indexed: 06/19/2025]
Abstract
Toll-like receptor 4 (TLR4), recognized as a fundamental mediator of inflammatory signaling, plays a crucial role in orchestrating the inflammatory response. Previous studies suggested that TLR4 knockout (KO) notably reduced corneal vascular areas induced by silver nitrate burn based on the morphological observation. The current study seeks to elucidate the influence of TLR4 signaling on corneal neovascularization (CNV) and to examine the underlying mechanisms. The model of alkali burn (AB)-induced CNV was built using TLR4 KO and wildtype (WT) mice. CNV was detected using a slit lamp. Corneal thickness was evaluated using H&E staining. The expression levels of VEGF-A, MyD88, and NF-κB were evaluated employing Western blot analysis, immunohistochemistry, and Real-time PCR techniques. The inflammation factors, IL-1β, TNF-α, and IL-6, were quantified using Real-time PCR. In addition, Resatorvid (Tak242), a specific inhibitor of TLR4, was used to treat AB cornea of WT mice. AB enhanced TLR4 signaling components, including MyD88 and NF-κB. TLR4 inhibition alleviated AB-induced corneal neovascularization and corneal thickness. The TLR4 signal, inflammatory factors and VEGF-A were also down-regulated. Our data indicated that TLR4 participated in the pathology of AB-induced CNV. TLR4 was over-expressed in the cornea of AB mice. TLR4 inhibition alleviated AB-induced CNV, and suppressed MyD88, NF-κB, VEGF-A, and inflammation factors. These findings may provide new insights for the clinical treatment of AB-induced CNV.
Collapse
Affiliation(s)
- Cong Xia
- Department of Ophthalmology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China; Department of Pathology, Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou 341000, Jiangxi Province, China
| | - Yan Deng
- Department of Ophthalmology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yichen Lu
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lumei Kang
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaojuan Wan
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hongping Chen
- Department of Ophthalmology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China; Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.
| | - Xiaolong Yin
- Department of Ophthalmology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.
| |
Collapse
|
16
|
Pu S, Liu T, Gao Y, Wu Z, Liu S. The role of tumor-associated endothelial cells in malignant progression and immune evasion of liver cancer. Int Immunopharmacol 2025; 161:115013. [PMID: 40513333 DOI: 10.1016/j.intimp.2025.115013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Revised: 05/22/2025] [Accepted: 05/30/2025] [Indexed: 06/16/2025]
Abstract
Recent studies have revealed that the malignant progression of hepatocellular carcinoma (HCC) not only stems from tumor cell-intrinsic genetic alterations but is dynamically regulated by the tumor microenvironment (TME). As a pivotal component of TME, tumor-associated endothelial cells (TECs) critically drive HCC progression through dual mechanisms of vascular abnormality and immune modulation. TECs establish a pro-tumorigenic niche by constructing disordered vascular networks while concurrently secreting immunosuppressive factors that induce immune cell dysfunction. This review systematically examines the molecular mechanisms underlying the dynamic transition from hepatic endothelial cells to TECs, identifies key TEC subtypes mediating tumor angiogenesis and immune evasion, and elucidates their crosstalk with immunosuppressive components. Additionally, we highlight TEC-specific biomarkers associated with clinical HCC progression and synthesize current clinical trials targeting TEC-mediated pathways. These findings provide novel insights for developing precision therapies that disrupt the TEC-TME-immune axis in HCC.
Collapse
Affiliation(s)
- Shuangpeng Pu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Tianguang Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yuan Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Zhenyu Wu
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China.
| | - Sulai Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital(The First Affiliated Hospital of Hunan Normal University), Changsha 410005, Hunan Province, China; Hunan Engineering Research Center of Digital Hepatobiliary Medicine, Changsha 410005, Hunan Province, China; Hunan Key Laboratory for the Prevention and Treatment of Biliary Tract Diseases, Changsha 410005, Hunan Province, China; Research Center for Hepatobiliary and Pancreatic Diseases of Furong Laboratory, Changsha 410005, Hunan Province, China.
| |
Collapse
|
17
|
Munir MM, Zhou X, Chang D. Exploring the pro-angiogenic potential of Chinese herbal medicines: a comprehensive insight into mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2025:120132. [PMID: 40513922 DOI: 10.1016/j.jep.2025.120132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 05/30/2025] [Accepted: 06/09/2025] [Indexed: 06/16/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pro-angiogenic therapy aims to stimulate the formation of new blood vessels, thereby enhancing blood flow to tissues and organs. Current strategies, such as growth factors, gene therapy, and cell-based approaches, are widely employed to promote angiogenesis. However, these interventions often suffer from off-target effects and limited efficacy due to the complex regulation of angiogenesis. Chinese herbal medicine (CHM) provides a rich source of therapeutic agents and offers promising alternatives for the treatment of vascular insufficiency-related disorders. AIM OF THE STUDY This review aims to summarise current research on the pro-angiogenic effects and underlying molecular mechanisms of CHM, including herbal extracts, traditional formulations and key bioactive phytochemicals. METHODS A comprehensive literature search was conducted using electronic databases, including PubMed, Web of Science, and Google Scholar, covering publications from 2003 to 2024. Keywords including "Pro-angiogenic", "Angiogenesis", "Phytochemicals", "Traditional Chinese Medicine", "Natural compounds", "Phytomedicine", "Plant medicine", "Botanical drugs" and "Chinese herbal medicine" were used to retrieve relevant studies. The retrieved articles were then assessed, summarised. and synthesised to provide a comprehensive overview of the pro-angiogenic effects of CHMs and the molecular mechanisms underpinning these effects. RESULTS We systematically summarised the key molecular mechanisms involved in angiogenesis, including the vascular endothelial growth factor (VEGF), notch signalling, angiopoietin-tie, fibroblast growth factor, platelet-derived growth factor and hypoxia-inducible factor (HIF) pathways. Mechanistically, CHMs exert pro-angiogenic effects through promoting cell survival, proliferation, and migration, primarily through the upregulation of VEGF, Notch signalling, MAPK signalling, HIF-1α, and PI3K- Protein Kinase B (Akt) signalling pathways. CONCLUSION Multiple Chinese herbal extracts, formulations and key phytochemicals demonstrate significant pro-angiogenic effects. The mechanisms of these effects are multifaceted. The evidence highlights the potential of CHMs as promising candidates for pro-angiogenic therapy, warranting the need for further research and development to fully harness their therapeutic value.
Collapse
Affiliation(s)
- Muhammad Mazhar Munir
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia.
| |
Collapse
|
18
|
Gong L, Zhang Y, Zhu Y, Lee U, Luo AC, Li X, Wang X, Chen D, Pu WT, Lin RZ, Ma M, Cui M, Chen K, Wang K, Melero-Martin JM. Rapid generation of functional vascular organoids via simultaneous transcription factor activation of endothelial and mural lineages. Cell Stem Cell 2025:S1934-5909(25)00221-8. [PMID: 40516530 DOI: 10.1016/j.stem.2025.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/10/2025] [Accepted: 05/26/2025] [Indexed: 06/16/2025]
Abstract
Vascular organoids (VOs) are valuable tools for studying vascular development, disease, and regenerative medicine. However, controlling endothelial and mural compartments independently remains challenging. Here, we present a streamlined method to generate VOs from induced pluripotent stem cells (iPSCs) via orthogonal activation of the transcription factors (TFs) ETV2 and NKX3.1 using Dox-inducible or modRNA systems. This approach enables efficient co-differentiation of endothelial cells (iECs) and mural cells (iMCs), producing functional 3D VOs in 5 days without ECM embedding. VOs matured further upon ECM exposure, forming larger, structured vessels. Single-cell RNA sequencing revealed vascular heterogeneity, and temporal regulation of TF expression allowed modulation of arterial and angiogenic iEC phenotypes. In vivo, VOs engrafted into immunodeficient mice, formed perfused vasculature, and promoted revascularization in models of hind limb ischemia and pancreatic islet transplantation. These findings establish a rapid and versatile VO platform with broad potential for vascular modeling, disease studies, and regenerative cell therapy.
Collapse
Affiliation(s)
- Liyan Gong
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA 02115, USA; Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Yadong Zhang
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Yonglin Zhu
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA 02115, USA; Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Umji Lee
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA 02115, USA; Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Allen Chilun Luo
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Xiang Li
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA 02115, USA; Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Xi Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Danyang Chen
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Ruei-Zeng Lin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA 02115, USA; Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Miao Cui
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kaifu Chen
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kai Wang
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA 02115, USA; Department of Surgery, Harvard Medical School, Boston, MA 02115, USA; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing Advanced Center of Cellular Homeostasis and Aging-Related Diseases, Peking University, Beijing 100191, China.
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA 02115, USA; Department of Surgery, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
19
|
Lee G, Kim YH, Kim D, Lee DH, Bhang SH, Lee K. PCL-fibrin-alginate hydrogel based cell co-culture system for improving angiogenesis and immune modulation in limb ischemia. Colloids Surf B Biointerfaces 2025; 250:114553. [PMID: 39921993 DOI: 10.1016/j.colsurfb.2025.114553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/10/2024] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Stem cell therapy has demonstrated promise in regenerative medicine due to their ability to differentiate into various cell types and secrete growth factors. However, challenges such as poor survival rate of transplanted cells under ischemic and immune conditions limit its effectiveness. To address these issues, we developed a polycaprolactone (PCL)-fibrin-alginate matrix hydrogel, which combines adipose-derived stem cells and human umbilical vein endothelial cells with a PCL fiber, encapsulated within fibrin and alginate hydrogel to enhance cell survival, proliferation, and immune modulation. This structure offers protection to the encapsulated cells, supports angiogenesis, and modulates the immune response, significantly improving therapeutic outcomes in a mouse model of hindlimb ischemia. Our in vitro and in vivo results demonstrate the scaffold's ability to support cell viability, promote angiogenesis, and modulate inflammatory responses, indicating its potential as a promising platform for ischemic tissue repair and regenerative medicine. This innovative approach to cell-based therapy highlights the importance of scaffold design in enhancing the therapeutic efficacy of stem cell treatments for ischemic diseases.
Collapse
Affiliation(s)
- Gyubok Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeong Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dongwoo Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Hyun Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
20
|
Thorndyke HF, Lundberg EP, Ortiz Gaxon E, Dawson MM, Mason EC, Hollaway JM, Vladar EK, Coronado Escobar D, Majka SM. Development of novel technology for the visualization and quantitation of angiogenesis and the alveolar-capillary network in a mouse model of fibrosis. Am J Physiol Lung Cell Mol Physiol 2025; 328:L866-L876. [PMID: 40331514 DOI: 10.1152/ajplung.00317.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/04/2024] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Adaptive angiogenesis can drive repair or underlie the pathogenesis of tissue remodeling. Pulmonary vascular dysfunction is a major manifestation of chronic lung disease (CLD), but the role of angiogenesis in the development of CLD is not well defined. Microvascular capillaries in the alveolar-capillary network are the vessels most affected by pruning and remodeling in the lung, resulting in reduced capillary length and diameter with subsequent loss of gas exchange surfaces. Our lab has previously demonstrated that microvascular endothelial progenitor cells (mvEPCs) drive reparative angiogenesis. We hypothesize that visualization of the alveolar-capillary microvasculature in three-dimensions is essential to define the mechanisms governing repair versus progression to the pathogenesis of CLD. To address this gap in knowledge, we have developed a simple and reliable fluorescent perfusion technique that will allow the quantitation of microvessel structure in the alveolar-capillary network using mouse models of lung injury. This approach may be used in various organ systems to visualize microvasculature structure and its role in disease.NEW & NOTEWORTHY We developed and validated a fluorescent technology to visualize and quantify the alveolar-capillary network in three-dimensions in mouse lung for modeling of the microvasculature in models of lung disease.
Collapse
Affiliation(s)
- Hannah F Thorndyke
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States
| | - Evan P Lundberg
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States
| | - Edwin Ortiz Gaxon
- Cell, Stem Cell and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Maggie M Dawson
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States
| | - Emma C Mason
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States
| | - Julia M Hollaway
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States
| | - Eszter K Vladar
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | | | - Susan M Majka
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, United States
- Cell, Stem Cell and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado, United States
| |
Collapse
|
21
|
Seth G, Singh S, Sharma G, Suvedi D, Kumar D, Nagraik R, Sharma A. Harnessing the power of stem cell-derived exosomes: a rejuvenating therapeutic for skin and regenerative medicine. 3 Biotech 2025; 15:184. [PMID: 40417660 PMCID: PMC12102458 DOI: 10.1007/s13205-025-04345-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 05/04/2025] [Indexed: 05/27/2025] Open
Abstract
Exosomes are small extracellular vesicles produced by most cell types and contain proteins, lipids, and nucleic acids (non-coding RNAs, mRNA, and DNA) that can be released by donor cells to influence the function of recipient cells. Skin photoaging is the premature aging of skin structures caused by prolonged exposure to ultraviolet (UV), as demonstrated by depigmentation, roughness, rhytides, elastosis, and precancerous alterations. Exosomes are associated with aging processes such as oxidative damage, inflammation, and senescence. Exosomes' anti-aging properties have been linked to various in vitro and preclinical investigations. There are still several unanswered questions about the use of MSC exosomes for skin rejuvenation, despite encouraging results. Uncertainty surrounds the precise processes by which exosomes stimulate the creation of collagen, skin tissue via a variety of mechanisms, including reduced matrix metalloproteinase (MMP) expression, increased collagen and elastin production, and modulation of intracellular signaling pathways and intercellular communication. These findings suggest the therapeutic potential of exosomes in skin aging. This review provides information on the molecular mechanisms and consequences of exosome anti-aging.
Collapse
Affiliation(s)
- Gracy Seth
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
| | - Siddharth Singh
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
| | - Geetansh Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
| | - Divyesh Suvedi
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
| | - Dinesh Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
| | - Rupak Nagraik
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, 248002 India
| | - Avinash Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, 248002 India
| |
Collapse
|
22
|
de Jager C, Soliman E, Theus MH. Interrogating mediators of single-cell transcriptional changes in the acute damaged cerebral cortex: Insights into endothelial-astrocyte interactions. Mol Cell Neurosci 2025; 133:104003. [PMID: 40090391 PMCID: PMC12146052 DOI: 10.1016/j.mcn.2025.104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025] Open
Abstract
Traumatic brain injury (TBI) induces complex cellular and molecular changes, challenging recovery and therapeutic development. Although molecular pathways have been implicated in TBI pathology, the cellular specificity of these mechanisms remains underexplored. Here, we investigate the role of endothelial cell (EC) EphA4, a receptor tyrosine kinase receptor involved in axonal guidance, in modulating cell-specific transcriptomic changes within the damaged cerebral cortex. Utilizing single-cell RNA sequencing (scRNA-seq) in an experimental TBI model, we mapped transcriptional changes across various cell types, with a focus on astrocytes and ECs. Our analysis reveals that EC-specific knockout (KO) of EphA4 triggers significant alterations in astrocyte gene expression and shifts predominate subclusters. We identified six distinct astrocyte clusters (C0-C5) in the damaged cortex including as C0-Mobp/Plp1+; C1-Slc1a3/Clu+; C2-Hbb-bs/Hba-a1/Ndrg2+; C3-GFAP/Lcn2+; C4-Gli3/Mertk+, and C5-Cox8a+. We validate a new Sox9+ cluster expressing Mertk and Gas, which mediates efferocytosis to facilitate apoptotic cell clearance and anti-inflammatory responses. Transcriptomic and CellChat analyses of EC-KO cells highlights upregulation of neuroprotective pathways, including increased amyloid precursor protein (APP) and Gas6. Key pathways predicted to be modulated in astrocytes from EC-KO mice include oxidative phosphorylation and FOXO signaling, mitochondrial dysfunction and ephrin B signaling. Concurrently, metabolic and signaling pathways in endothelial cells-such as ceramide and sphingosine phosphate metabolism and NGF-stimulated transcription-indicate an adaptive response to a metabolically demanding post-injury hypoxic environment. These findings elucidate potential interplay between astrocytic and endothelial responses as well as transcriptional networks underlying cortical tissue damage.
Collapse
Affiliation(s)
- Caroline de Jager
- Translational Biology Medicine and Health Graduate Program, Blacksburg, VA 24061, USA
| | - Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Blacksburg, VA 24061, USA
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Blacksburg, VA 24061, USA; Center for Engineered Health, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
23
|
Ji W, Xiong Y, Yang W, Shao Z, Guo X, Jin G, Su J, Zhou M. Transcriptomic profiling of blood platelets identifies a diagnostic signature for pancreatic cancer. Br J Cancer 2025; 132:937-946. [PMID: 40133510 DOI: 10.1038/s41416-025-02980-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/26/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Pancreatic cancer (PaCa) is a deadly malignancy that is often diagnosed at an advanced stage, limiting treatment and reducing survival. There is an urgent need for convenient and accurate diagnostic markers for the early detection of PaCa. METHODS In this multicenter case-control study, we performed transcriptome analysis of 673 platelet samples from different in-house and public cohorts. RNA sequencing and RT-qPCR were used to discover and validate potential platelet biomarkers. A multi-gene signature was developed using binomial generalized linear model and independently validated in multicenter cohorts. RESULTS Two platelet RNAs, SCN1B and MAGOHB, consistently showed robust altered expression patterns between PaCa and healthy controls across cohorts, as confirmed by both RNA sequencing and RT-qPCR. The diagnostic two-RNA signature, PLA2Sig, demonstrated remarkable performance in detecting PaCa, with area under the receiver operating characteristic curve (AUC) values of 0.808, 0.900, 0.783, and 0.830 across multicenter cohorts. Furthermore, PLA2Sig effectively identified resectable stage I&II PaCa cases with an AUC of 0.812. Notably, PLA2Sig outperformed the traditional serum markers carcinoembryonic antigen and carbohydrate antigen 19-9 in distinguishing PaCa from healthy controls, and is complementary to established blood-based screening biomarkers. CONCLUSION These findings provide preliminary but promising evidence for the potential utility of platelet RNAs as an alternative non-invasive liquid biopsy tool for the early detection of PaCa.
Collapse
Affiliation(s)
- Weiping Ji
- Department of General Surgery, School of Biomedical Engineering, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yichun Xiong
- Department of General Surgery, School of Biomedical Engineering, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Wei Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Zhuo Shao
- Department of General Surgery, Shanghai Changhai Hospital of Navy Medical University, Shanghai, 200438, China
| | - Xiaoling Guo
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Gang Jin
- Department of General Surgery, Shanghai Changhai Hospital of Navy Medical University, Shanghai, 200438, China
| | - Jianzhong Su
- Department of General Surgery, School of Biomedical Engineering, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Meng Zhou
- Department of General Surgery, School of Biomedical Engineering, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
24
|
Zhu B, Guo K, Zha L, Di Z, Zhao H, Chang L, Gu N. Effect of BMSCs overexpressing intelectin-1 on angiogenesis in rats with cerebral infarction. IBRO Neurosci Rep 2025; 18:619-626. [PMID: 40292081 PMCID: PMC12022627 DOI: 10.1016/j.ibneur.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Background Cerebral infarction (CI) is a common and frequently occurring acute neurological disease in clinical practice, posing a severe threat to human health. CI results from various causes leading to local cerebral tissue ischemia and hypoxia due to vascular occlusion and impaired blood supply, which in turn leads to tissue necrosis and corresponding clinical manifestations of neurological deficits. However, to date, treatment options for cerebral infarction remain limited. Therefore, it is crucial to rapidly establish collateral circulation to compensate for the occluded vessels and restore blood flow perfusion. Objective To assess the effect of bone marrow mesenchymal cells transfected with intelectin-1 (Itln-1) gene on the angiogenesis and apoptosis of CI. Method Lentiviral-mediated transfection of the Itln-1 gene into bone marrow mesenchymal stem cells (BMSCs) was performed, followed by intravenous injection into rats with CI through the tail vein. The volume of the CI, capillary density, and apoptotic cells were detected. Results With the increase of AKT and eNOS phosphorylation levels, BMSCs with overexpression Itln-1 gene could significantly promote angiogenesis and reduce the infarct volume in the ischemic penumbra. Meanwhile, the ratio of Bcl-2/Bax increased, and apoptotic cells decreased. Conclusion The overexpression of Itln-1 can effectively promote CI angiogenesis and inhibit cell apoptosis than transplantation of Itln-1 gene or MSCS alone.
Collapse
Affiliation(s)
- Bo Zhu
- Department of Neurology, Xi’an Central Hospital, 161 Xiwu Road, Xi’an, Shaanxi 710003, China
| | - Kun Guo
- Department of Neurology, Xi’an Central Hospital, 161 Xiwu Road, Xi’an, Shaanxi 710003, China
| | - Lei Zha
- Department of Neurology, Xi’an Central Hospital, 161 Xiwu Road, Xi’an, Shaanxi 710003, China
| | - Zhengli Di
- Department of Neurology, Xi’an Central Hospital, 161 Xiwu Road, Xi’an, Shaanxi 710003, China
| | - Hongwei Zhao
- Department of Neurology, Xi’an Central Hospital, 161 Xiwu Road, Xi’an, Shaanxi 710003, China
| | - Le Chang
- Department of Neurology, Xi’an Central Hospital, 161 Xiwu Road, Xi’an, Shaanxi 710003, China
| | | |
Collapse
|
25
|
Ni M, Peng L, Zhang Y, Wang L, Wei Q, Li X, Zhang L, Chen J. Comparative lipidomics analysis of human colostrum, mature milk and yak mature milk. Food Chem 2025; 476:143396. [PMID: 39965348 DOI: 10.1016/j.foodchem.2025.143396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Yak milk is a promising lipid source substitute for infant formulas designed to mimic human milk. However, comparative studies on the lipid profiles between human and yak milk are scarce. To address this gap, in this study, we thoroughly analysed and compared the lipidome and fatty acid (FA) composition of human colostrum, human mature milk and yak mature milk. A total of 2686 lipid species from 30 lipid classes were identified in the three milk types. Notably, yak mature milk surpassed both human milk stages in the total content of lipid species, triglycerides (TG) and saturated FA. In particular, three potential lipid biomarkers, namely TG(6,0_8,0_14:0) + NH4, TG(16,0_6,0_8:0) + NH4 and TG(10,0_12,0_12,0) + NH4, were identified to differentiate yak mature milk from human colostrum and mature milk. Moreover, upon analysing the lipid metabolic pathways, it was found that the lipids involved in the pathways of acetylcholine synthesis, as well as starch and sucrose metabolism, may not manifest notable differences between yak mature milk and human colostrum, indicating the presence of similar neurodevelopment-regulating and metabolic characteristics in yak milk as in colostrum. Therefore, this comprehensive comparison offers novel insights into the potential of yak mature milk lipids to enhance the humanisation of infant formulas.
Collapse
Affiliation(s)
- Mengmei Ni
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Linlan Peng
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yuanyuan Zhang
- Sichuan Institute of Food Inspection, Chengdu, Sichuan, China
| | - Liang Wang
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Qijie Wei
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiaomeng Li
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Jinyao Chen
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China..
| |
Collapse
|
26
|
Tan W, Ma L, Li Y, Zhang Y, Hu Z, Li W, Ding H, Liu X, Xie L, Deng C, Zhang W. Glycoside components promote endothelial progenitor cell-derived exosomes repairing damaged vascular endothelium via the PI3K/AKT signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156694. [PMID: 40245456 DOI: 10.1016/j.phymed.2025.156694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/25/2025] [Accepted: 03/25/2025] [Indexed: 04/19/2025]
Abstract
OBJECTIVE This paper investigated the effects of three glycosides-astragaloside IV, amygdalin, and paeoniflorin (AAP)-derived from Buyang Huanwu Decoction combined with endothelial progenitor cell-derived exosomes (EPC-Exo), on vascular endothelial repair in rats following balloon-induced injury, with specific focus on the PI3K/AKT signaling pathway. METHODS Endothelial progenitor cells (EPC) were isolated, cultured, and identified using immunofluorescence, with EPC-Exo being validated through Western blotting (WB), transmission electron microscopy, and particle size analysis. A rat model of endothelial injury was established using a HFD and carotid artery balloon injury (CABI). The rats were subsequently treated with AAP and/or EPC-Exo. Vascular repair was evaluated using hematoxylin-eosin (H&E) staining, ELISA, immunofluorescence, and WB. In vitro, endothelial cell injury was induced, and treatment effects were analyzed using CCK-8, scratch assays, tube formation assays, immunofluorescence, and WB. The involvement of the PI3K/AKT pathway was verified using the PI3K inhibitor LY294002. RESULTS The combination of AAP and EPC-Exo significantly reduced intimal hyperplasia, improved endothelial function, and promoted angiogenesis. Network pharmacology and molecular docking analyses demonstrated strong interactions between AAP and PI3K/AKT-related proteins. By enhancing the uptake of EPC-Exo by vascular endothelial cells (VEC), AAP promoted proliferation, migration, and tube formation in vitro while reducing Cleaved-caspase 3 expression. This combination also increased activation of the PI3K/AKT signaling pathway. The PI3K inhibitor weakened these effects, verifying the pathway's involvement in vascular repair. CONCLUSION The combination of AAP and EPC-Exo synergistically promotes vascular endothelial repair and angiogenesis, partly by enhancing EPC-Exo uptake through activation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Wei Tan
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan 410208, PR China
| | - Lu Ma
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan 410208, PR China
| | - Yanling Li
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan 410208, PR China
| | - Yanyan Zhang
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan 410208, PR China
| | - Zhongji Hu
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan 410208, PR China
| | - Wanyu Li
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan 410208, PR China
| | - Huang Ding
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan 410208, PR China
| | - Xiaodan Liu
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan 410208, PR China
| | - Lingli Xie
- Department of Pathophysiology, College of Medicine, Hunan University of Chinese Medicine, Hunan 410208, PR China
| | - Changqing Deng
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan 410208, PR China.
| | - Wei Zhang
- College of Integrated Chinese and Western Medicine, Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Hunan 410208, PR China.
| |
Collapse
|
27
|
Khalili MR, Ahmadloo S, Mousavi SA, Joghataei MT, Brouki Milan P, Naderi Gharahgheshlagh S, Mohebi SL, Haramshahi SMA, Hosseinpour Sarmadi V. Navigating mesenchymal stem cells doses and delivery routes in heart disease trials: A comprehensive overview. Regen Ther 2025; 29:117-127. [PMID: 40162019 PMCID: PMC11952810 DOI: 10.1016/j.reth.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
In recent years, various clinical trials have been designed and implemented using mesenchymal stem cells (MSCs) for the treatment of heart diseases. Clinical trials exploring MSC-based treatments have proliferated, yet the lack of standardized protocols for MSC administration remains a significant challenge. Despite the growing popularity of MSC trials, questions persist regarding optimal dosing, administration routes, and frequency to achieve safety and efficacy, particularly in the context of cardiac regeneration. The current study has reviewed the clinical trials that have used MSCs for the treatment of heart diseases since 2009. The findings reveal diverse transplantation methods and varying MSCs quantities, highlighting the absence of a universal guideline for MSCs utilization in heart disease clinical trials.
Collapse
Affiliation(s)
- Mohammad Reza Khalili
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Salma Ahmadloo
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran
| | - Seyed Amin Mousavi
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Seyedeh Lena Mohebi
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amin Haramshahi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Li Z, Bai Y, Wu H, Feng Y, Wang X, Zhao C, Wang X. PTEN/PI3K/AKT pathway activation with hypoxia-induced human umbilical vein endothelial cell exosome for angiogenesis-based diabetic skin reconstruction. Mater Today Bio 2025; 32:101651. [PMID: 40177380 PMCID: PMC11964554 DOI: 10.1016/j.mtbio.2025.101651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/06/2025] [Accepted: 03/08/2025] [Indexed: 04/05/2025] Open
Abstract
Diabetic skin, a major clinical challenge due to impaired wound healing, is often exacerbated by a hypoxic microenvironment at the wound site. Exosomes have been proven to have excellent biological activities and applied to solve many bioengineering problems. However, the wide application of exosomes is still limited by their short in vitro lifetime and low yield. To overcome these application limitations, this study specifically enhances the pro-angiogenic biological efficacy of exosomes through hypoxic treatment and achieves sustained release using hydrogel loading. In vitro, hypoxia-induced exosomes (Hp-Exo) significantly enhanced endothelial cell migration, proliferation, and angiogenic capacity. In vivo, Gelman hydrogels loaded with Hp-Exo accelerated wound closure, promoted collagen deposition, and increased vascularization in diabetic mice. miRNA sequencing of Hp-Exo revealed that exosomes induced under hypoxic conditions contain various miRNAs, which enhance vascular endothelial cell proliferation, migration, and angiogenesis through the PTEN/PI3K/AKT pathway. These results highlight that hypoxia-induced exosomes, when delivered through a biocompatible hydrogel platform, provide potential therapeutic approach to improve diabetic wound healing by stimulating angiogenesis and tissue regeneration.
Collapse
Affiliation(s)
- Zhenming Li
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yuhao Bai
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hao Wu
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yisheng Feng
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xinxi Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Cancan Zhao
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai, 200438, China
| | - Xudong Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
29
|
Wu S, Anand N, Guo Z, Li M, Santiago Figueroa M, Jung L, Kelly S, Franses JW. Bridging Immune Evasion and Vascular Dynamics for Novel Therapeutic Frontiers in Hepatocellular Carcinoma. Cancers (Basel) 2025; 17:1860. [PMID: 40507341 PMCID: PMC12153674 DOI: 10.3390/cancers17111860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2025] [Revised: 05/30/2025] [Accepted: 05/30/2025] [Indexed: 06/16/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most lethal cancers globally, driven by chronic liver disease and a complex tumor microenvironment (TME). Recent advances in spatial omics, single-cell analyses, and AI-driven digital pathology have shed light on the intricate heterogeneity of HCC, highlighting key roles for immune suppression, angiogenesis, and fibrosis in tumor progression. This review synthesizes current epidemiological trends, noting a shift from viral hepatitis to metabolic syndrome as a primary etiology in Western populations, and elucidates how TME components-such as tumor-associated macrophages, cancer-associated fibroblasts, vascular endothelial cells, and immunosuppressive cytokines-contribute to resistance against conventional therapies. We detail the evolution of immunotherapeutic strategies from monotherapy to combination regimens, including dual immune checkpoint blockade and the integration of antiangiogenic agents. Emerging circulating and tissue-based biomarkers offer promise for enhanced patient stratification and real-time monitoring of treatment responses. Collectively, these innovations herald a paradigm shift toward TME-directed precision oncology in HCC, emphasizing the need for multi-targeted approaches to synergistically modulate interacting cellular constituents and ultimately improve clinical outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joseph W. Franses
- Section of Hematology and Oncology, Department of Internal Medicine, University of Chicago, 900 E. 57th St., KCBD 7114, Chicago, IL 60637, USA; (S.W.); (N.A.); (Z.G.); (M.L.); (M.S.F.); (L.J.); (S.K.)
| |
Collapse
|
30
|
Gennarini M, Canese R, Capuani S, Miceli V, Tomao F, Palaia I, Zecca V, Maiuro A, Balba I, Catalano C, Rizzo SMR, Manganaro L. Multi-model quantitative MRI of uterine cancers in precision medicine's era-a narrative review. Insights Imaging 2025; 16:113. [PMID: 40437300 PMCID: PMC12119420 DOI: 10.1186/s13244-025-01965-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/30/2025] [Indexed: 06/01/2025] Open
Abstract
PURPOSE This review aims to summarize the current applications of quantitative MRI biomarkers in the staging, treatment response evaluation, and prognostication of endometrial (EC) and cervical cancer (CC). By focusing on functional imaging techniques, we explore how these biomarkers enhance personalized cancer management beyond traditional morphological assessments. METHODS A structured search of the PubMed database from January to May 2024 was conducted to identify relevant studies on quantitative MRI in uterine cancers. We included studies examining MRI biomarkers like Dynamic Contrast-Enhanced MRI (DCE-MRI), Diffusion-Weighted Imaging (DWI), and Magnetic Resonance Spectroscopy (MRS), emphasizing their roles in assessing tumor physiology, microstructure, and metabolic changes. RESULTS DCE-MRI provides valuable quantitative biomarkers such as Ktrans and Ve, which reflect microvascular characteristics and tumor aggressiveness, outperforming T2-weighted imaging in detecting critical factors like myometrial and cervical invasion. DWI, including advanced models like Intravoxel Incoherent Motion (IVIM), distinguishes between normal and cancerous tissue and correlates with tumor grade and treatment response. MRS identifies metabolic alterations, such as elevated choline and lipid signals, which serve as prognostic markers in uterine cancers. CONCLUSION Quantitative MRI offers a noninvasive method to assess key biomarkers that inform prognosis and guide treatment decisions in uterine cancers. By providing insights into tumor biology, these imaging techniques represent a significant step forward in the precision medicine era, allowing for a more tailored therapeutic approach based on the unique pathological and molecular characteristics of each tumor. CRITICAL RELEVANCE STATEMENT Biomarkers obtained from MRI can provide useful quantitative information about the nature of uterine cancers and their prognosis, both at diagnosis and response assessment, allowing better therapeutic strategies to be prepared. KEY POINTS Quantitative MRI improves diagnosis and management of uterine cancers through advanced imaging biomarkers. Quantitative MRI biomarkers enhance staging, prognosis, and treatment response assessment in uterine cancers. Quantitative MRI biomarkers support personalized treatment strategies and improve patient management in uterine cancers.
Collapse
Affiliation(s)
- Marco Gennarini
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Rossella Canese
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy.
| | - Silvia Capuani
- National Research Council (CNR), Institute for Complex Systems (ISC) c/o Physics Department Sapienza University of Rome, Rome, Italy
| | - Valentina Miceli
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Federica Tomao
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Innocenza Palaia
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Valentina Zecca
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
- Department of Basic and Applied Sciences for Engineering, University of Rome Sapienza, Rome, Italy
| | - Alessandra Maiuro
- National Research Council (CNR), Institute for Complex Systems (ISC) c/o Physics Department Sapienza University of Rome, Rome, Italy
| | | | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Stefania Maria Rita Rizzo
- Istituto di Imaging della Svizzera Italiana (IIMSI), Ente Ospedaliero Cantonale (EOC), Lugano, CH, Switzerland
- Facoltà di Scienze Biomediche, Università della Svizzera Italiana, Lugano, CH, Switzerland
| | - Lucia Manganaro
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
31
|
Hossain SM, Gimenez G, Stockwell P, Weeks R, Almomani S, Jones GT, Ratajska M, Shuen M, Bhat B, Ryś J, Cybulska-Stopa B, Harazin-Lechowska A, Rodger E, Jackson C, Chatterjee A, Eccles MR. Pre-treatment DNA methylome and transcriptome profiles correlate with melanoma response to anti-PD1 immunotherapy. Cancer Lett 2025; 618:217638. [PMID: 40089202 DOI: 10.1016/j.canlet.2025.217638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/20/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Successful immune checkpoint inhibitor (ICI) therapy occurs in only a fraction of melanoma patients, and yet all patients are susceptible to potentially serious ICI-related side-effects. No current biomarkers robustly predict ICI treatment response in melanoma patients. In this study we sought to identify methylome and transcriptome markers which have the potential to predict immunotherapy response in melanoma patients ahead of treatment with anti-PD1 ICI monotherapy. Using Infinium MethylationEPIC microarrays, we analysed DNA methylation profiles of >850,000 CpG sites in pre-treatment melanoma tissues from patients administered anti-PD-1 monotherapy as first-line treatment. In addition, we analysed transcriptomes using RNA-seq. DNA methylation and gene expression data were then statistically compared to patient response to anti-PD1 therapy. We identified 2579 DNA hypomethylation and hypermethylation alterations correlating with melanoma response to anti-PD1 therapy. An integrative analysis of DNA methylomes and transcriptomes identified a subset of 35 loci, 13 of which were significantly differentially methylated in both initial discovery and external validation datasets. Functional enrichment analysis of hypomethylated sites (p-value <0.05) in non-responders was associated with "Formation of the cornified envelope", "Regulation of epithelial cell proliferation", and "Purine-containing compound metabolic process". We have identified novel integrated DNA methylation and gene expression markers, which correlate with anti-PD1 treatment response in melanoma patients. These findings suggest a relationship between tumour-associated genomic DNA methylation, gene expression patterns, and anti-PD1 ICI immunotherapy response in melanoma patients.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Peter Stockwell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Robert Weeks
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Suzan Almomani
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Gregory T Jones
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Magdalena Ratajska
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand; Department of Pathology and Neuropathology, Medical University of Gdansk, Gdansk, Poland
| | - Mathew Shuen
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Basharat Bhat
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Janusz Ryś
- Department of Tumor Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, Krakow Branch, Krakow, Poland
| | - Bozena Cybulska-Stopa
- Department of Clinical Oncology, Lower Silesian Oncology Center, Pulmonology and Hematology, Wroclaw, Poland; Department of Hematology and Oncology, Faculty of Medicine, Wroclaw University of Science and Technology, Poland
| | - Agnieszka Harazin-Lechowska
- Department of Tumor Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, Krakow Branch, Krakow, Poland
| | - Euan Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Christopher Jackson
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand.
| |
Collapse
|
32
|
Springer M, Burakgazi ZA, Domukhovska A, Nafchi B, Beary MC, Acquisto A, Acquisto J, Komarov V, Jensen M, Gulledge B, Poplavskyi M, Uddin MG, Rayan G, Zucker SN. HIF-1α-Mediated Disruption of Cellular Junctions: The Impact of Hypoxia on the Tumor Microenvironment and Invasion. Int J Mol Sci 2025; 26:5101. [PMID: 40507913 PMCID: PMC12155139 DOI: 10.3390/ijms26115101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/20/2025] [Accepted: 05/22/2025] [Indexed: 06/16/2025] Open
Abstract
Hypoxia is a critical factor affecting tissue homeostasis that dramatically alters the tumor microenvironment (TME) through genetic, metabolic, and structural changes, promoting tumor survival and proliferation. Hypoxia-inducible factor-1α (HIF-1α) plays a central role in this process by regulating hundreds of genes involved in the processes of tumorigenesis, angiogenesis, metabolic reprogramming, and immune evasion. This review provides a comprehensive examination of the role of HIF-1α in hypoxia and how hypoxia weakens intercellular junctions-including gap junctions, adherens junctions, tight junctions, and desmosomes. The disruption of gap junctions decreases intercellular communication, which alters signal transduction cascades and tumor suppressive properties. Adherens junctions are comprised of proteins that characterize the tissues and link cells to the actin cytoskeleton, whereby their disruption promotes the epithelial-to-mesenchymal transition (EMT). Under hypoxic conditions, the tight junction proteins are dysregulated, altering paracellular transport and cell polarity. In addition, desmosomes provide linkage to intermediate filaments, and hypoxia compromises tissue integrity. Collectively, the influence of hypoxia on cellular junctions promotes tumorigenesis through reducing cell communication, cytoskeletal interactions, and altering signaling pathways. Activation of matrix metalloproteinases (MMPs) further degrades the extracellular matrix and enhances tumor invasion and metastasis. This process also involves hypoxia-induced angiogenesis, regulated by HIF-1α. A comprehensive understanding of the mechanisms of hypoxia-driven tumor adaptation is essential for developing effective therapeutic strategies. Furthermore, this review examines current treatments aimed at targeting HIF-1α and explores future directions to enhance treatment efficacy and improve patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Shoshanna N. Zucker
- D’Youville University School of Pharmacy, Buffalo, NY 14201, USA; (M.S.); (Z.A.B.); (A.D.); (B.N.); (M.C.B.); (A.A.); (J.A.); (V.K.); (M.J.); (B.G.); (M.P.); (M.G.U.); (G.R.)
| |
Collapse
|
33
|
Szabo-Reed AN, Key MN. A Narrative Review Evaluating Diet and Exercise as Complementary Medicine for the Management of Alzheimer's Disease. Nutrients 2025; 17:1804. [PMID: 40507072 PMCID: PMC12158019 DOI: 10.3390/nu17111804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2025] [Revised: 05/16/2025] [Accepted: 05/22/2025] [Indexed: 06/16/2025] Open
Abstract
Alzheimer's Disease (AD) is characterized by complex brain alterations leading to progressive cognitive decline and neuropsychiatric disturbances. This narrative review explores these changes and the potential of diet and exercise as modifiable lifestyle factors to mitigate AD's impact. While some dietary components (e.g., B vitamins, ketogenic diet) and physical activity, particularly aerobic exercise, show promise for improving cognitive function and managing symptoms, evidence for consistent benefits remains limited and requires further investigation. Dietary and exercise research in AD faces significant limitations, including intervention complexity, study design challenges, disease heterogeneity, and difficulties in measuring long-term effects. Addressing these limitations is crucial to fully realize the therapeutic potential of these lifestyle interventions in combating AD.
Collapse
Affiliation(s)
- Amanda N. Szabo-Reed
- KU Alzheimer’s Disease Research Center, Fairway, KS 66205, USA
- Department of Internal Medicine, Division of Physical Activity and Weight Management, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Mickeal N. Key
- KU Alzheimer’s Disease Research Center, Fairway, KS 66205, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
34
|
Picos A, Seoane N, Campos-Toimil M, Viña D. Vascular senescence and aging: mechanisms, clinical implications, and therapeutic prospects. Biogerontology 2025; 26:118. [PMID: 40418230 DOI: 10.1007/s10522-025-10256-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 05/11/2025] [Indexed: 05/27/2025]
Abstract
The aging vasculature is characterized by endothelial dysfunction, arterial stiffness, and increased susceptibility to vascular pathologies. Central to these changes is the process of cellular senescence, where endothelial and vascular smooth muscle cells lose their replicative and functional capacity and adopt a pro-inflammatory secretory phenotype. This review provides an overview of the key mechanisms underlying vascular senescence, including the p53/p21 and p16/Rb pathways, the senescence-associated secretory phenotype (SASP), and oxidative stress, examines its contribution to cardiovascular diseases in older adults, and highlights emerging therapeutic strategies aimed at delaying or reversing these age-related vascular changes. In vascular cells, DNA damage, oxidative stress, and chronic inflammation associated with aging converge to amplify senescence. Clinically, vascular senescence is linked with hypertension, atherosclerosis, and increased overall cardiovascular risk. Several interventions, ranging from senolytics to lifestyle factors, show promise in mitigating these changes; however, long-term studies are needed. Given that vascular senescence is a pivotal driver of cardiovascular pathology in aging, targeting senescent cells or their secretory phenotype may potentially offer new avenues for preventing or attenuating age-related vascular diseases. This review presents an updated and integrative overview of vascular senescence, connecting fundamental cellular mechanisms with their clinical manifestations and highlighting the most promising therapeutic interventions.
Collapse
Affiliation(s)
- Aitor Picos
- Physiology and Pharmacology of Chronic Diseases (FIFAEC), Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- Translational Research in Neurological Diseases (ITEN), Health Research Institute of Santiago de Compostela (IDIS), USC University Hospital Complex (CHUS), SERGAS, Santiago de Compostela, Spain.
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Nuria Seoane
- Physiology and Pharmacology of Chronic Diseases (FIFAEC), Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Translational Research in Neurological Diseases (ITEN), Health Research Institute of Santiago de Compostela (IDIS), USC University Hospital Complex (CHUS), SERGAS, Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Manuel Campos-Toimil
- Physiology and Pharmacology of Chronic Diseases (FIFAEC), Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- Translational Research in Neurological Diseases (ITEN), Health Research Institute of Santiago de Compostela (IDIS), USC University Hospital Complex (CHUS), SERGAS, Santiago de Compostela, Spain.
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Dolores Viña
- Physiology and Pharmacology of Chronic Diseases (FIFAEC), Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Translational Research in Neurological Diseases (ITEN), Health Research Institute of Santiago de Compostela (IDIS), USC University Hospital Complex (CHUS), SERGAS, Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
35
|
Huang CC, Chen YL, Chien CL. Mitochondrial aldehyde dehydrogenase restores the migratory capacity inhibited by high glucose-induced hyperosmolality. Sci Rep 2025; 15:17741. [PMID: 40404697 PMCID: PMC12098716 DOI: 10.1038/s41598-025-02022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 05/08/2025] [Indexed: 05/24/2025] Open
Abstract
Cell migration, which is often impaired under high glucose (HG) conditions, plays a crucial role in the pathogenesis of various diabetic complications. This study investigates the role of mitochondrial aldehyde dehydrogenase (ALDH2) in the HG-induced migratory inhibition. Using fibroblasts sub-cultured in HG medium as a cell model of chronic hyperglycemia, we found that prolonged exposure to HG stress inhibited cell migration via a novel mechanism independent of oxidative stress or cell death. By increasing osmolality, HG induced perinuclear clustering of mitochondria, enhanced focal adhesion maturation, and caused the cells to be less responsive to migratory cues. The pharmacological inhibition of ALDH2 exaggerated this phenomenon, while ALDH2 overexpression protected cells from the migratory impairment caused by HG-induced hyperosmolality. Cells with ALDH2 overexpression exhibited less mature focal adhesions and longer mitochondrial network, suggesting that ALDH2 might preserve mitochondrial integrity to facilitate the focal adhesion turnover during cell migration.
Collapse
Affiliation(s)
- Chi-Cheng Huang
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yuh-Lien Chen
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Liang Chien
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
36
|
Zhao M, Zhou J, Hu Y, Wang X, An J, Liu M, Zhang P, Zhang X, Wang J, Jin X, Xi M, Li J. Defective Endothelial Glutaminolysis Contributes to Impaired Angiogenesis and Poor Ischemic Tissue Repair in Diabetes. RESEARCH (WASHINGTON, D.C.) 2025; 8:0706. [PMID: 40405912 PMCID: PMC12095913 DOI: 10.34133/research.0706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/26/2025]
Abstract
It has been demonstrated that glutamine is a key player in boosting endothelial cell (EC) proliferation. However, despite its importance, the role of endothelial glutaminolysis in diabetes remains largely unexplored. Our research aimed to investigate the function of glutaminolysis in ECs within the context of diabetes and to evaluate the potential therapeutic effects of salvianolic acid B (SalB) and α-ketoglutarate (α-KG) on diabetic vascular complications. Histological analysis of skin wounds in diabetic patients revealed delayed restoration of vascularization and collagen synthesis during wound healing, accompanied by decreased glutaminase 1 (GLS1) expression and reduced colocalization with the EC marker platelet-endothelial cell adhesion molecule-1 (CD31). Additionally, a significant decline in GLS1 activity and expression was observed in ECs isolated from diabetic hearts. In vitro studies using cultured ECs demonstrated that exposure to high glucose and high fat (HGHF) reduced GLS1 expression and suppressed glutaminolysis, impairing EC proliferation and tube formation. These adverse effects were mitigated by treatment with SalB or supplementation with α-KG plus nonessential amino acids (NEAAs). Among diabetic mice subjected to myocardial ischemia/reperfusion (MI/R), SalB administration or α-KG supplementation promoted myocardial revascularization and improved cardiac dysfunction. Notably, endothelial-specific GLS1 deletion in mice blocked the beneficial effects afforded by SalB but not those afforded by α-KG. Furthermore, SalB administration accelerated angiogenesis and cutaneous wound healing in diabetic mice, and these influences were removed by pharmacological inhibition of GLS1 using bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide (BPTES) or genetic deletion of endothelial GLS1. These findings indicate that defective endothelial glutaminolysis contributes to impaired angiogenesis and poor ischemic tissue repair in diabetes. Improving endothelial glutaminolysis by treatment with SalB or metabolic supplementation with α-KG promotes angiogenesis and ischemic tissue repair in diabetic mice, emphasizing the possibility of GLS1 as a treatment target.
Collapse
Affiliation(s)
- Meina Zhao
- Key Laboratory of Aerospace Medicine of Ministry of Education,
School of Aerospace Medicine, Key Laboratory of Preventive Medicine of Ministry of Education, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Department of Pharmacy, Xijing Hospital,
Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Jiaheng Zhou
- Key Laboratory of Aerospace Medicine of Ministry of Education,
School of Aerospace Medicine, Key Laboratory of Preventive Medicine of Ministry of Education, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Yang Hu
- Key Laboratory of Aerospace Medicine of Ministry of Education,
School of Aerospace Medicine, Key Laboratory of Preventive Medicine of Ministry of Education, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Xinpei Wang
- Department of Cardiology, General Hospital of Central Theater Command, Wuhan, Hubei 430061, China
| | - Jiong An
- Key Laboratory of Aerospace Medicine of Ministry of Education,
School of Aerospace Medicine, Key Laboratory of Preventive Medicine of Ministry of Education, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Meijie Liu
- Key Laboratory of Aerospace Medicine of Ministry of Education,
School of Aerospace Medicine, Key Laboratory of Preventive Medicine of Ministry of Education, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Pengfei Zhang
- Key Laboratory of Aerospace Medicine of Ministry of Education,
School of Aerospace Medicine, Key Laboratory of Preventive Medicine of Ministry of Education, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Xing Zhang
- Key Laboratory of Aerospace Medicine of Ministry of Education,
School of Aerospace Medicine, Key Laboratory of Preventive Medicine of Ministry of Education, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital,
Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Xing Jin
- Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing 100853, China
| | - Miaomiao Xi
- TANK Medicinal Biology Institute of Xi’an, Xi’an, Shaanxi 710032, China
| | - Jia Li
- Key Laboratory of Aerospace Medicine of Ministry of Education,
School of Aerospace Medicine, Key Laboratory of Preventive Medicine of Ministry of Education, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment,
Fourth Military Medical University, Xi’an, Shaanxi 712000, China
| |
Collapse
|
37
|
Beylerli O, Gareev I, Kaprin A, Ahmad A, Chekhonin V, Yang S, Yang G. Hemorrhagic and ischemic risks of anti-VEGF therapies in glioblastoma. Cancer Gene Ther 2025:10.1038/s41417-025-00914-8. [PMID: 40394233 DOI: 10.1038/s41417-025-00914-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/11/2025] [Accepted: 05/02/2025] [Indexed: 05/22/2025]
Abstract
Glioblastoma (GBM) is one of the most aggressive primary brain tumors, characterized by extensive neovascularization and a highly infiltrative phenotype. Anti-vascular endothelial growth factor (VEGF) therapies, such as bevacizumab, have emerged as significant adjunct treatments for recurrent and high-grade GBM by targeting abnormal tumor vasculature. Despite demonstrated benefits in slowing tumor progression and alleviating peritumoral edema, these agents are associated with notable vascular complications, including hemorrhagic and ischemic events. Hemorrhagic complications range from minor intracranial microbleeds to life-threatening intracranial hemorrhages (ICH). Mechanistically, VEGF inhibition disrupts endothelial function and decreases vascular integrity, making already fragile tumor vessels prone to rupture. Glioma-associated vascular abnormalities, including disorganized vessel networks and compromised blood-brain barrier, further exacerbate bleeding risks. Concurrent use of anticoagulants, hypertension, and genetic predispositions also significantly elevate hemorrhagic risk. In addition to bleeding complications, ischemic events are increasingly recognized in patients receiving anti-VEGF therapy. Reduced vascular endothelial cells (ECs) survival and diminished microvascular density can lead to regional hypoperfusion and potentially precipitate cerebrovascular ischemia. Impaired vasoreactivity and increased vascular resistance, often accompanied by endothelial dysfunction and microvascular rarefaction, contribute to elevated stroke and arterial thrombotic risk. This review synthesizes current evidence on hemorrhagic and ischemic complications arising from anti-VEGF therapy in GBM. We discuss underlying pathophysiological mechanisms, risk factors, and clinically relevant biomarkers, as well as prevention strategies-such as rigorous blood pressure (BP) control and close monitoring of coagulation parameters. We further highlight emerging avenues in precision medicine, including pharmacogenomic profiling and targeted adjunct agents that protect vascular integrity, aimed at mitigating adverse vascular events while preserving therapeutic efficacy. The goal is to optimize outcomes for GBM patients by balancing the benefits of anti-VEGF therapy with vigilant management of its inherent vascular risks. In addition, this study analyzes existing clinical trials of the use of anti-VEGF drugs in the treatment of gliomas using data from the clinicaltirals.gov website.
Collapse
Affiliation(s)
- Ozal Beylerli
- Central Research Laboratory, Bashkir State Medical University, Ufa, Russia
| | - Ilgiz Gareev
- Central Research Laboratory, Bashkir State Medical University, Ufa, Russia
| | - Andrey Kaprin
- National Medical Research Radiological Centre (NMRRC) of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Vladimir Chekhonin
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Endocrinology Research Center, Moscow, Russia
| | - Shanshan Yang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
- Heilongjiang Province Neuroscience Institute, Harbin, China.
| |
Collapse
|
38
|
Lee C, Kim MJ, Kumar A, Lee HW, Yang Y, Kim Y. Vascular endothelial growth factor signaling in health and disease: from molecular mechanisms to therapeutic perspectives. Signal Transduct Target Ther 2025; 10:170. [PMID: 40383803 PMCID: PMC12086256 DOI: 10.1038/s41392-025-02249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/09/2025] [Accepted: 04/21/2025] [Indexed: 05/20/2025] Open
Abstract
Vascular endothelial growth factor (VEGF) signaling is a critical regulator of vasculogenesis, angiogenesis, and lymphangiogenesis, processes that are vital for the development of vascular and lymphatic systems, tissue repair, and the maintenance of homeostasis. VEGF ligands and their receptors orchestrate endothelial cell proliferation, migration, and survival, playing a pivotal role in dynamic vascular remodeling. Dysregulated VEGF signaling drives diverse pathological conditions, including tumor angiogenesis, cardiovascular diseases, and ocular disorders. Excessive VEGF activity promotes tumor growth, invasion, and metastasis, while insufficient signaling contributes to impaired wound healing and ischemic diseases. VEGF-targeted therapies, such as monoclonal antibodies and tyrosine kinase inhibitors, have revolutionized the treatment of diseases involving pathological angiogenesis, offering significant clinical benefits in oncology and ophthalmology. These therapies inhibit angiogenesis and slow disease progression, but they often face challenges such as therapeutic resistance, suboptimal efficacy, and adverse effects. To further explore these issues, this review provides a comprehensive overview of VEGF ligands and receptors, elucidating their molecular mechanisms and regulatory networks. It evaluates the latest progress in VEGF-targeted therapies and examines strategies to address current challenges, such as resistance mechanisms. Moreover, the discussion includes emerging therapeutic strategies such as innovative drug delivery systems and combination therapies, highlighting the continuous efforts to improve the effectiveness and safety of VEGF-targeted treatments. This review highlights the translational potential of recent discoveries in VEGF biology for improving patient outcomes.
Collapse
Affiliation(s)
- Chunsik Lee
- Department of R&D, GEMCRO Inc, Seoul, Republic of Korea.
| | - Myung-Jin Kim
- Department of Biological Sciences and Research Institute of Women's Health, Sookmyung Women's University, Seoul, Republic of Korea
| | - Anil Kumar
- Center for Research and Innovations, Adichunchanagiri University, Mandya, Karnataka, India
| | - Han-Woong Lee
- Department of R&D, GEMCRO Inc, Seoul, Republic of Korea
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yonghwan Kim
- Department of Biological Sciences and Research Institute of Women's Health, Sookmyung Women's University, Seoul, Republic of Korea.
| |
Collapse
|
39
|
Li Y, Man W, Li X, Wu X, Cui Y, Chen S, Li X, Lin Y, Jiang L, Wang Y. Plasmolipin deficiency is essential for HUVECs survival under hypoxic conditions. Cell Death Discov 2025; 11:239. [PMID: 40379643 DOI: 10.1038/s41420-025-02526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/29/2025] [Accepted: 05/07/2025] [Indexed: 05/19/2025] Open
Abstract
This study aims to explore the molecules that affect the survival of Human Umbilical Vein Endothelial Cells (HUVECs) under hypoxia and their mechanisms of action. In hypoxia, plasmolipin (PLLP) was identified through the screening of CRISPR/Cas9 and small guide RNA (sgRNA) library. Functionally, PLLP knockout led to increase cell proliferation, cellular metabolism, tight junction formation, angiogenesis ability, migration and invasion in hypoxic HUVECs. Furthermore, PLLP knockout countered the inhibitory effects of bevacizumab on HUVECs angiogenesis and cell survival in hypoxic conditions. PLLP knockout was found to modulate the survival of HUVECs in hypoxia by enhancing the phosphorylation of AKT and ERK1/2 proteins. In conclusion, inhibiting the expression of PLLP in HUVECs promotes cell survival and maintenance of cellular functions under hypoxic condition. PLLP plays a crucial role in regulating cell survival in hypoxia through the activation of AKT and ERK1/2 pathways. This study identifies novel molecules that affect HUVECs survival under hypoxic conditions and provides a new possibility for future studies on cell survival under hypoxic conditions.
Collapse
Affiliation(s)
- Yanghua Li
- Medical College, Guangxi University, Nanning, China
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Weiling Man
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Xiang Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaojie Wu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yumeng Cui
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Shiyun Chen
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Xianhong Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yanli Lin
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China.
| | - Lihe Jiang
- Medical College, Guangxi University, Nanning, China.
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China.
- Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China.
| | - Youliang Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China.
| |
Collapse
|
40
|
Zhou Y, Ma W, Hu H, He Q, Yu C, Chen W, Yu G. Angiogenesis related gene signatures predict prognosis and guide therapeutic strategies in renal clear cell carcinoma. Sci Rep 2025; 15:17030. [PMID: 40379825 PMCID: PMC12084375 DOI: 10.1038/s41598-025-02134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 05/12/2025] [Indexed: 05/19/2025] Open
Abstract
Kidney tumors are hypervascular tumors with crucial antiangiogenic effects in tumor therapy. This study aimed to develop a predictive model for kidney renal clear cell carcinoma (KIRC) by utilizing angiogenesis-related genes to formulate targeted therapy and immunotherapy strategies. Angiogenesis-related genes were screened via the GeneCard and Molecular Signatures Database (MSigDB). The KIRC data downloaded from The Cancer Genome Atlas (TCGA) were randomly divided into an experimental cohort and a validation cohort. In the experimental cohort, a risk score prediction model was constructed through successive analyses via univariate Cox regression, LASSO regression, and multivariate Cox regression. Receiver operating characteristic (ROC) curves were employed to assess the sensitivity of the model's predictions. The model's stability and generalizability were subsequently validated in both the validation cohort and the E-MTAB-1980 cohort. Subsequently, the TCGA-KIRC dataset was stratified into two distinct groups: a localized tumor cohort and a progression/metastasis cohort, based on tumor staging criteria. The efficacy of the prognostic prediction model was evaluated within each subgroup. A nomogram model was developed in conjunction with each independent prognostic factor to accurately predict patient outcomes. Additionally, single-cell and intercellular communication analyses were conducted via KIRC single-cell data obtained from the Gene Expression Omnibus (GEO) database. The effects of immunotherapy and targeted therapy on patients were predicted via prognostic modeling. A total of 260 angiogenesis-related genes were identified through screening in the GeneCards and Molecular Signatures Database(MSigDB). We subsequently developed a risk model comprising five genes: MEOX2, PLG, PROX1, TEK, and TIMP1. Survival analysis indicated that the prognosis for high-risk patients was significantly poorer than that for low-risk patients (P < 0.001), and the model demonstrated satisfactory accuracy in predicting 1-, 3-, and 5-year survival rates. This finding was further validated in both internal and external validation cohorts. The model demonstrated applicability for prognostic predictions in both the localized tumor cohort and the progression/metastasis cohort, with proficiency in forecasting the prognosis of patients diagnosed with metastatic renal cancer. The AUC values for 1, 3, and 5 years were recorded at 0.691, 0.709, and 0.773, respectively. We successfully constructed a nomogram model to facilitate accurate prognostic predictions for patients. Analysis of single-cell data revealed that PLG was expressed predominantly in tumor cell clusters, whereas TEK was highly expressed primarily in pericytes. TIMP1 was found to be highly expressed in vascular smooth muscle cells. In contrast, MEOX2 and PROX1 were highly expressed in specific cell clusters but presented low expression levels across the overall cell population. Cell communication analysis indicated that the modeling gene TEK was involved in the angiogenic pathway, with the interaction between the ligand ANGPT2 and the receptor ITGA5-ITGB1 being particularly prominent in this study. Furthermore, the immune dysfunction and rejection scores for high-risk patients within the non-localized renal cancer cohort were markedly elevated compared to those observed in the low-risk group. In terms of targeted pharmacological intervention, individuals classified in the low-risk group exhibited a heightened sensitivity to sorafenib. The KIRC prognostic prediction model, which is based on five angiogenesis-related genes, demonstrated reliable performance, indicating that high-risk patients have a significantly poorer prognosis than low-risk patients do. The developed nomogram model effectively visualizes and accurately predicts patient prognosis. It is essential to highlight that individuals diagnosed with low-risk metastatic KIRC may experience greater advantages from the administration of immunotherapy and sorafenib.
Collapse
Affiliation(s)
- Yuhe Zhou
- Department of Urology, Jinshan Branch of the Sixth People's Hospital of Shanghai, 147 Jiankang Road, Jinshan District, Shanghai, China
| | - Weixiong Ma
- Department of Urology, Jinshan Branch of the Sixth People's Hospital of Shanghai, 147 Jiankang Road, Jinshan District, Shanghai, China.
| | - Hengda Hu
- Department of Urology, Jinshan Branch of the Sixth People's Hospital of Shanghai, 147 Jiankang Road, Jinshan District, Shanghai, China
| | - Qirui He
- Department of Urology, Jinshan Branch of the Sixth People's Hospital of Shanghai, 147 Jiankang Road, Jinshan District, Shanghai, China
| | - Chengshuai Yu
- Department of Urology, Jinshan Branch of the Sixth People's Hospital of Shanghai, 147 Jiankang Road, Jinshan District, Shanghai, China
| | - Wenpu Chen
- Department of Urology, Jinshan Branch of the Sixth People's Hospital of Shanghai, 147 Jiankang Road, Jinshan District, Shanghai, China
| | - Guofeng Yu
- Department of Urology, Jinshan Branch of the Sixth People's Hospital of Shanghai, 147 Jiankang Road, Jinshan District, Shanghai, China
| |
Collapse
|
41
|
Ávila-Gálvez MÁ, Vico-Padilla A, Schneider C, Espín JC, González-Sarrías A, Giménez-Bastida JA. Angiogenesis as a Therapeutic Target of (Poly)phenols: Tackling Cancer and Vascular-Related Complications. Mol Nutr Food Res 2025:e70110. [PMID: 40370203 DOI: 10.1002/mnfr.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/01/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025]
Abstract
Targeting angiogenesis as a strategy for treating cancer or vascular-associated complications is an inspiring field for many investigators. An active area within this discipline is the search for agents capable of modulating angiogenesis in order to ameliorate its structural and functional abnormalities associated with these diseases. (Poly)phenols are a broad group of molecules, many of which fall within the category of natural compounds with therapeutic potential. These potential medicinal effects have launched a considerable number of studies investigating the pro- and(or) anti-angiogenic properties of (poly)phenols in different (patho)physiological settings. The purpose of this review is to summarize the current evidence of the role of (poly)phenols in modulating angiogenesis. This review will guide the reader through preclinical and human investigations describing the pro- and anti-angiogenic effects of these compounds in different pathophysiological context, the cellular and molecular mechanisms associated, the key points in the design and evaluation of the effects described, and suggest new approaches to be considered in future studies to overcome the current limitations.
Collapse
Affiliation(s)
- María Ángeles Ávila-Gálvez
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - Antonio Vico-Padilla
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - Claus Schneider
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Juan Carlos Espín
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - Antonio González-Sarrías
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | - Juan Antonio Giménez-Bastida
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|
42
|
Larrea Murillo L, Green M, Mahon N, Saiani A, Tsigkou O. Modelling Cancer Pathophysiology: Mechanisms and Changes in the Extracellular Matrix During Cancer Initiation and Early Tumour Growth. Cancers (Basel) 2025; 17:1675. [PMID: 40427172 PMCID: PMC12110603 DOI: 10.3390/cancers17101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 05/05/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Cancer initiation and early tumour growth are complex processes influenced by multiple cellular and microenvironmental factors. A critical aspect of tumour progression is the dynamic interplay between cancer cells and the extracellular matrix (ECM), which undergoes significant alterations to support malignancy. The loss of cell polarity is an early hallmark of tumour progression, disrupting normal tissue architecture and fostering cancerous transformation. Circumstantially, cancer-associated microRNAs (miRNAs) regulate key oncogenic processes, including ECM remodelling, epithelial-to-mesenchymal transition (EMT), and tumorigenic vascular development, further driving tumour growth. ECM alterations, particularly changes in stiffness and mechanotransduction signals, create a supportive niche for cancer cells, enhancing their survival, proliferation, and invasion. EMT and its subtype, epithelial-to-endothelial transition (EET), contribute to tumour plasticity, promote the generation of cancer stem cells (CSCs), and support tumour vascularisation. Furthermore, processes of vascular development like vasculogenesis and angiogenesis are critical for sustaining early tumour growth, supplying oxygen and nutrients to hypoxic malignant cells within the evolving cancerous microenvironments. This review explores key mechanisms underlying these changes in tumorigenic microenvironments, with an emphasis on their collective role for tumour initiation and early tumour growth. It will further delve into present in vitro modelling strategies developed to closely mimic early cancer pathophysiology. Understanding these processes is crucial for developing targeted therapies aimed at disrupting key cancer-promoting pathways and improving clinical outcomes.
Collapse
Affiliation(s)
- Luis Larrea Murillo
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (M.G.)
- The Henry Royce Institute, Royce Hub Building, Manchester M13 9PL, UK
| | - Megan Green
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (M.G.)
- The Henry Royce Institute, Royce Hub Building, Manchester M13 9PL, UK
- Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester M1 7DN, UK
| | - Niall Mahon
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (M.G.)
- The Henry Royce Institute, Royce Hub Building, Manchester M13 9PL, UK
- Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester M1 7DN, UK
| | - Alberto Saiani
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (M.G.)
- Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester M1 7DN, UK
| | - Olga Tsigkou
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (M.G.)
- The Henry Royce Institute, Royce Hub Building, Manchester M13 9PL, UK
| |
Collapse
|
43
|
Takii A, Tanabe Y, Li W, Shiomi H, Inoue A, Muramatsu F, Jia W, Takakura N. CD157 + vascular endothelial cells derived from human-induced pluripotent stem cells have high angiogenic potential. Inflamm Regen 2025; 45:14. [PMID: 40369638 PMCID: PMC12077006 DOI: 10.1186/s41232-025-00379-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 05/05/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND We previously reported that a vascular endothelial stem cell population resides in pre-existing blood vessels in mice and may contribute to vascular endothelial cells in liver injury or hind limb ischemia models in the long-term. However, whether such stem cells exist in humans and can differentiate specifically into vascular endothelial cells have not been determined. We hypothesized that CD157+ vascular endothelial cells in humans may also possess high angiogenic potential. METHODS First, human-derived induced pluripotent stem cells were differentiated into vascular endothelial cells and the expression of CD157 was monitored during the differentiation process. We found that CD157 emerged 11 days after the induction of differentiation, peaked at 14 days, and then declined by 24 days. We also evaluated blood vessel formation by 14- and 24-day-old vascular endothelial cells. RESULTS It was found that 14-day-old cells, when CD157 expression was at its peak, formed more blood vessels than 24-day-old cells. CONCLUSION These results suggest that vascular endothelial cells expressing CD157 have high angiogenic potential and may exist as vascular endothelial stem cells.
Collapse
Affiliation(s)
- Ami Takii
- Department of Signal Transduction, Research Institute for Microbial Diseases, The University of Osaka, Suita, Osaka, Japan
| | - Yukika Tanabe
- Department of Signal Transduction, Research Institute for Microbial Diseases, The University of Osaka, Suita, Osaka, Japan
| | - Wenting Li
- Department of Signal Transduction, Research Institute for Microbial Diseases, The University of Osaka, Suita, Osaka, Japan
| | - Hiroki Shiomi
- Department of Signal Transduction, Research Institute for Microbial Diseases, The University of Osaka, Suita, Osaka, Japan
| | - Akane Inoue
- Department of Signal Transduction, Research Institute for Microbial Diseases, The University of Osaka, Suita, Osaka, Japan
| | - Fumitaka Muramatsu
- Department of Signal Transduction, Research Institute for Microbial Diseases, The University of Osaka, Suita, Osaka, Japan
| | - Weizhen Jia
- Department of Signal Transduction, Research Institute for Microbial Diseases, The University of Osaka, Suita, Osaka, Japan.
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, The University of Osaka, Suita, Osaka, Japan.
- World Premier Institute Immunology Frontier Research Center, The University of Osaka, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), The University of Osaka, Osaka, Japan.
- Center for Infectious Disease Education and Research, The University of Osaka, Osaka, Japan.
| |
Collapse
|
44
|
Martin J, Falaise A, Faour S, Terryn C, Hachet C, Thiébault É, Huber L, Nizet P, Rioult D, Jaffiol R, Salesse S, Dedieu S, Langlois B. Differential Modulation of Endothelial Cell Functionality by LRP1 Expression in Fibroblasts and Cancer-Associated Fibroblasts via Paracrine signals and Matrix Remodeling. Matrix Biol 2025:S0945-053X(25)00048-4. [PMID: 40379110 DOI: 10.1016/j.matbio.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
LRP1 is a multifunctional endocytosis receptor involved in the regulation of cancer cell aggressiveness, fibroblast phenotype and angiogenesis. In breast cancer microenvironment, cancer-associated fibroblasts (CAFs) play a crucial role in matrix remodeling and tumor niche composition. LRP1 expression was described in fibroblasts and CAFs but remains poorly understood regarding its impact on endothelial cell behavior and angiocrine signaling. We analyzed the angio-modulatory effect of LRP1 expression in murine embryonic fibroblasts (MEFs) and breast cancer-educated CAF2 cells. We employed conditioned media and fibroblast-derived matrices to model fibroblastic cells angiogenic effects on human umbilical vein endothelial cells (HUVEC). Neither the extracellular matrix assembled by MEFs knock-out for LRP1 (PEA-13) nor their secretome modify the migration of HUVEC as compared to wild-type. Conversely, LRP1-deficient CAF2 secretome and matrices stimulate endothelial cell migration. Using spheroids, we demonstrate that PEA-13 secretome does not affect HUVEC angio-invasion. By contrast, CAF2 secretome invalidated for LRP1 stimulates endothelial sprouting as compared to controls. In addition, it specifically stabilized peripheral VE-cadherin-mediated endothelial cell junctions. A global proteomic analysis revealed that LRP1 expression in CAFs orchestrates a specific mobilization of secreted matricial components, surface receptors and membrane-associated proteins at the endothelial cell surface, thereby illustrating the deep influence exerted by LRP1 in angiogenic signals emitted by activated fibroblasts.
Collapse
Affiliation(s)
- Julie Martin
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Auréana Falaise
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Sara Faour
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France; Light, nanomaterials, nanotechnologies, ERL CNRS 7004, Université de Technologie de Troyes, Troyes, France
| | - Christine Terryn
- Plate-Forme Imagerie Cellulaire et Tissulaire (PICT), Université de Reims Champagne-Ardenne, UFR Médecine, Reims, France
| | - Cathy Hachet
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Émilie Thiébault
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Louise Huber
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Pierre Nizet
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France
| | - Damien Rioult
- Plateau Technique Mobile de Cytométrie Environnementale MOBICYTE, Université de Reims Champagne-Ardenne/INERIS, Reims, France
| | - Rodolphe Jaffiol
- Light, nanomaterials, nanotechnologies, ERL CNRS 7004, Université de Technologie de Troyes, Troyes, France
| | - Stéphanie Salesse
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France.
| | - Stéphane Dedieu
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France.
| | - Benoit Langlois
- UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims, France; Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, UMR 7369 CNRS, Reims, France.
| |
Collapse
|
45
|
Kong M, Zhai Y, Liu H, Zhang S, Chen S, Li W, Ma X, Ji Y. Insights into the mechanisms of angiogenesis in hepatoblastoma. Front Cell Dev Biol 2025; 13:1535339. [PMID: 40438141 PMCID: PMC12116456 DOI: 10.3389/fcell.2025.1535339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 05/02/2025] [Indexed: 06/01/2025] Open
Abstract
Hepatoblastoma (HB), the most common pediatric liver malignancy, is characterized by aggressive growth and metastasis driven by complex angiogenic mechanisms. This review elucidates the pivotal role of angiogenesis in HB progression, emphasizing metabolic reprogramming, tumor microenvironment (TME) dynamics, and oncogenic signalling pathways. The Warburg effect in HB cells fosters a hypoxic microenvironment, stabilizing hypoxia-inducible factor-1α (HIF-1α) and upregulating vascular endothelial growth factor (VEGF), which synergistically enhances angiogenesis. Key pathways such as the Wnt/β-catenin, VEGF, PI3K/AKT, and JAK2/STAT3 pathways are central to endothelial cell proliferation, migration, and vascular maturation, whereas interactions with tumor-associated macrophages (TAMs) and pericytes further remodel the TME to support neovascularization. Long noncoding RNAs and glycolytic enzymes have emerged as critical regulators of angiogenesis, linking metabolic activity with vascular expansion. Anti-angiogenic therapies, including VEGF inhibitors and metabolic pathway-targeting agents, show preclinical promise but face challenges such as resistance and off-target effects. Future directions advocate for dual-target strategies, spatial multiomics technologies to map metabolic-angiogenic crosstalk, and personalized approaches leveraging biomarkers for risk stratification. This synthesis underscores the need for interdisciplinary collaboration to translate mechanistic insights into durable therapies, ultimately improving outcomes for HB patients.
Collapse
Affiliation(s)
- Meng Kong
- Department of Pediatric Surgery, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Pediatric Surgery, Jinan Children’s Hospital, Jinan, China
| | - Yunpeng Zhai
- Department of Pediatric Surgery, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Pediatric Surgery, Jinan Children’s Hospital, Jinan, China
| | - Hongzhen Liu
- Department of Pediatric Surgery, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Pediatric Surgery, Jinan Children’s Hospital, Jinan, China
| | - Shisong Zhang
- Department of Pediatric Surgery, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Pediatric Surgery, Jinan Children’s Hospital, Jinan, China
| | - Shuai Chen
- Department of Pediatric Surgery, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Pediatric Surgery, Jinan Children’s Hospital, Jinan, China
| | - Wenfei Li
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiang Ma
- Department of Respiratory Disease, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Jinan Key Laboratory of Pediatric Respiratory Diseases, Jinan Children’s Hospital, Jinan, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Xiao Q, Liu Y, Li T, Wang C, He S, Zhai L, Yang Z, Zhang X, Wu Y, Liu Y. Viral oncogenesis in cancer: from mechanisms to therapeutics. Signal Transduct Target Ther 2025; 10:151. [PMID: 40350456 PMCID: PMC12066790 DOI: 10.1038/s41392-025-02197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/22/2025] [Accepted: 03/03/2025] [Indexed: 05/14/2025] Open
Abstract
The year 2024 marks the 60th anniversary of the discovery of the Epstein-Barr virus (EBV), the first virus confirmed to cause human cancer. Viral infections significantly contribute to the global cancer burden, with seven known Group 1 oncogenic viruses, including hepatitis B virus (HBV), human papillomavirus (HPV), EBV, Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV), human T-cell leukemia virus type 1 (HTLV-1), and human immunodeficiency virus (HIV). These oncogenic viruses induce cellular transformation and cancer development by altering various biological processes within host cells, particularly under immunosuppression or co-carcinogenic exposures. These viruses are primarily associated with hepatocellular carcinoma, gastric cancer, cervical cancer, nasopharyngeal carcinoma, Kaposi sarcoma, lymphoma, and adult T-cell leukemia/lymphoma. Understanding the mechanisms of viral oncogenesis is crucial for identifying and characterizing the early biological processes of virus-related cancers, providing new targets and strategies for treatment or prevention. This review first outlines the global epidemiology of virus-related tumors, milestone events in research, and the process by which oncogenic viruses infect target cells. It then focuses on the molecular mechanisms by which these viruses induce tumors directly or indirectly, including the regulation of oncogenes or tumor suppressor genes, induction of genomic instability, disruption of regular life cycle of cells, immune suppression, chronic inflammation, and inducing angiogenesis. Finally, current therapeutic strategies for virus-related tumors and recent advances in preclinical and clinical research are discussed.
Collapse
Affiliation(s)
- Qing Xiao
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yi Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Tingting Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Chaoyu Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Sanxiu He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Liuyue Zhai
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Zailin Yang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaomei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| | - Yongzhong Wu
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| | - Yao Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
47
|
Foda MY, Al-Shun SA, Abdelkrim G, Salem ML, Salah NA, El-Khawaga OY. Bioinformatics approach reveals the modulatory role of JUN in atorvastatin-mediated anti-breast cancer effects. J Biomol Struct Dyn 2025:1-21. [PMID: 40351185 DOI: 10.1080/07391102.2025.2499950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/21/2024] [Indexed: 05/14/2025]
Abstract
Atorvastatin, a widely prescribed cholesterol-lowering drug, has recently shown potential anticancer effects. However, its influence on gene expression and its biological functions in cancer, in particular breast cancer, still unclear. We aim to identify the dysregulated genes associated with atorvastatin treatment and the main players in their biological network. A total of 103 differentially expressed genes (DEGs) in the unified signature were identified, and the functional enrichment analysis suggested their relation to multiple cancer-related pathways. JUN was identified as the hub gene in the protein-protein interaction (PPI) network and was shown to be responsive to atorvastatin in breast cancer. Atorvastatin exhibited notable predicted cytotoxicity against breast cancer lines, with the activity positively correlated with JUN expression. JUN was significantly downregulated in breast cancer expression inversely correlated with cancer progression, whereas higher JUN expression was linked with better survival outcomes. Atorvastatin may directly interact with JUN protein forming a more compact and stable conformation. These findings demystify the potential therapeutic mechanism of atorvastatin in breast cancer, possibly by fine tuning of JUN expression. As such, JUN might serve as a valuable prognostic biomarker in breast cancer.
Collapse
Affiliation(s)
- Mohamed Y Foda
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Sara A Al-Shun
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Guendouzi Abdelkrim
- Laboratory of Chemistry, Synthesis, Properties and Applications (LCSPA), University of Saida, Saïda, Algeria
| | - Mohamed L Salem
- Immunology and Biotechnology Unit, Department of Zoology, Faculty of Science, and Center of Excellence in Cancer Research, Tanta University, Tanta, Egypt
| | - Nevin A Salah
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Omali Y El-Khawaga
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
48
|
Svendsen JE, Ford MR, Asnes CL, Oh SC, Dorogin J, Fear KM, O'Hara-Smith JR, Chisholm LO, Phillips SR, Harms MJ, Hosseinzadeh P, Hettiaratchi MH. Applying Computational Protein Design to Engineer Affibodies for Affinity-controlled Delivery of Vascular Endothelial Growth Factor and Platelet-Derived Growth Factor. Biomacromolecules 2025. [PMID: 40343812 DOI: 10.1021/acs.biomac.5c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) play coordinated roles in angiogenesis. However, current biomaterial delivery vehicles for these proteins have a limited ability to precisely control the kinetics of protein release, preventing systematic exploration of their temporal effects. Here, we combined yeast surface display and computational protein design to engineer eight VEGF-specific and PDGF-specific protein binders called affibodies with a broad range of affinities for controlled protein release. Soluble affibodies modulated protein bioactivity as evidenced by changes in VEGF-induced endothelial cell proliferation and luminescent output of a PDGF-responsive cell line. Affibody-conjugated hydrogels enabled tunable protein release over 7 days. VEGF and PDGF released from affibody-conjugated hydrogels exhibited higher bioactivity than proteins released from hydrogels without affibodies, suggesting that these engineered affinity interactions could prolong protein bioactivity. This work underscores the power of computational protein design to enhance biomaterial functionality, creating a platform for tunable protein delivery.
Collapse
Affiliation(s)
- Justin E Svendsen
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Madeleine R Ford
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
- Department of Human Physiology, University of Oregon, Eugene, Oregon 97403, United States
| | - Chandler L Asnes
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Simon C Oh
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
- Department of Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Jonathan Dorogin
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Karly M Fear
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Johnathan R O'Hara-Smith
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
- Department of Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Lauren O Chisholm
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Sophia R Phillips
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Michael J Harms
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Parisa Hosseinzadeh
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Marian H Hettiaratchi
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
49
|
Kawauchi D, Narita Y. The curse of blood-brain barrier and blood-tumor barrier in malignant brain tumor treatment. Int J Clin Oncol 2025:10.1007/s10147-025-02777-3. [PMID: 40338447 DOI: 10.1007/s10147-025-02777-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 04/24/2025] [Indexed: 05/09/2025]
Abstract
The blood-brain barrier (BBB) is crucial for brain homeostasis but is a major obstacle in delivering anticancer drugs to brain tumors. However, this perspective requires re-evaluation, particularly for malignant brain tumors, such as gliomas and brain metastases. In these aggressive tumors, the BBB undergoes significant alterations, leading to the formation of a more permeable blood-tumor barrier. While this increased permeability allows better drug penetration, heterogeneity in blood-tumor barrier (BTB) integrity across different tumor regions remains a challenge. Additionally, the main challenge in treating brain tumors lies not in BBB penetration but in the lack of effective drugs. Conventional chemotherapies, including temozolomide and nitrosourea agents, have shown limited efficacy, and resistance mechanisms often reduce their long-term benefits. The "BBB curse" has often been blamed for the slow progress in drug development. However, emerging evidence suggests that even larger-molecule therapies, such as antibody-drug conjugates, can successfully target brain tumors. This review aims to critically reassess the roles of the BBB and BTB in brain tumor therapy, highlighting their impact on drug delivery and evaluating the current landscape of chemotherapeutic strategies. Furthermore, it explores new approaches to overcome treatment limitations, emphasizing the need for personalized and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Daisuke Kawauchi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Chuo City, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Chuo City, Japan.
| |
Collapse
|
50
|
Kulkarni GC, Saha R, Peters CJ. Ion channel expression and function in glioblastoma multiforme (GBM): pathophysiological mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119982. [PMID: 40328081 DOI: 10.1016/j.bbamcr.2025.119982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/29/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
Glioblastoma Multiforme (GBM) is a highly malignant and diffusely invasive WHO Grade IV brain tumor arising from glial and neural stem cells. GBM is characterized by rapid proliferation and migration, aggressive invasion of local brain parenchyma, a hypoxic microenvironment, resistance to apoptosis and high vascular remodeling and angiogenesis. These hallmarks contribute to a near universal tumor recurrence after treatment or resection and poor patient prognosis. Ion channels, a superfamily of proteins responsible for permitting ion flux across otherwise impermeant membranes, show extensive remodeling in GBM with aberrant function mechanistically linked to manipulation of each of these hallmarks. In this review, we will discuss the known links between ion channel expression and activity and cellular processes that are enhanced or perturbed during GBM formation or progression. We will also discuss the extent to which basic or translational findings on ion channels in GBM samples or cell lines have shown preclinical promise towards the development of improved therapeutics against GBMs.
Collapse
Affiliation(s)
- Gauri C Kulkarni
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Rayna Saha
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Christian J Peters
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|