Kim WH, Jung DW, Williams DR. Making cardiomyocytes with your chemistry set: Small molecule-induced cardiogenesis in somatic cells.
World J Cardiol 2015;
7:125-133. [PMID:
25810812 PMCID:
PMC4365307 DOI:
10.4330/wjc.v7.i3.125]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 01/05/2015] [Accepted: 01/20/2015] [Indexed: 02/06/2023] Open
Abstract
Cell transplantation is an attractive potential therapy for heart diseases. For example, myocardial infarction (MI) is a leading cause of mortality in many countries. Numerous medical interventions have been developed to stabilize patients with MI and, although this has increased survival rates, there is currently no clinically approved method to reverse the loss of cardiac muscle cells (cardiomyocytes) that accompanies this disease. Cell transplantation has been proposed as a method to replace cardiomyocytes, but a safe and reliable source of cardiogenic cells is required. An ideal source would be the patients’ own somatic tissue cells, which could be converted into cardiogenic cells and transplanted into the site of MI. However, these are difficult to produce in large quantities and standardized protocols to produce cardiac cells would be advantageous for the research community. To achieve these research goals, small molecules represent attractive tools to control cell behavior. In this editorial, we introduce the use of small molecules in stem cell research and summarize their application to the induction of cardiogenesis in non-cardiac cells. Exciting new developments in this field are discussed, which we hope will encourage cardiac stem cell biologists to further consider employing small molecules in their culture protocols.
Collapse