1
|
Overhoff D, Ansari U, Hohneck A, Tülümen E, Rudic B, Kuschyk J, Lossnitzer D, Baumann S, Froelich MF, Waldeck S, Akin I, Borggrefe M, Schoenberg SO, Papavassiliu T. Prediction of cardiac events with non-contrast magnetic resonance feature tracking in patients with ischaemic cardiomyopathy. ESC Heart Fail 2021; 9:574-584. [PMID: 34818694 PMCID: PMC8788051 DOI: 10.1002/ehf2.13712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/24/2021] [Accepted: 10/31/2021] [Indexed: 11/23/2022] Open
Abstract
Aims The aim of this study was to evaluate the prognostic value of feature tracking (FT) derived cardiac magnetic resonance (CMR) strain parameters of the left ventricle (LV)/right ventricle (RV) in ischaemic cardiomyopathy (ICM) patients treated with an implantable cardioverter‐defibrillator (ICD). Current guidelines suggest a LV‐ejection fraction ≤35% as major criterion for ICD implantation in ICM, but this is a poor predictor for arrhythmic events. Supplementary parameters are missing. Methods and results Ischaemic cardiomyopathy patients (n = 242), who underwent CMR imaging prior to primary and secondary implantation of ICD, were classified depending on EF ≤ 35% (n = 188) or >35% (n = 54). FT parameters were derived from steady‐state free precession cine views using dedicated software. The primary endpoint was a composite of cardiovascular mortality (CVM) and/or appropriate ICD therapy. There were no significant differences in FT‐function or LV‐/RV‐function parameters in patients with an EF ≤ 35% correlating to the primary endpoint. In patients with EF > 35%, standard CMR functional parameters, such as LV‐EF, did not reveal significant differences. However, significant differences in most FT parameters correlating to the primary endpoint were observed in this subgroup. LV‐GLS (left ventricular‐global longitudinal strain) and RV‐GRS (right ventricular‐global radial strain) revealed the best diagnostic performance in ROC curve analysis. The combination of LV‐GLS and RV‐GRS showed a sensitivity of 85% and a specificity of 76% for the prediction of future events. Conclusions The impact of FT derived measurements in the risk stratification of patients with ICM depends on LV function. The combination of LV‐GLS/RV‐GRS seems to be a predictor of cardiovascular mortality and/or appropriate ICD therapy in patients with EF > 35%.
Collapse
Affiliation(s)
- Daniel Overhoff
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.,Department of Radiology and Neuroradiology, German Federal Armed Forces Central Hospital, Koblenz, Germany
| | - Uzair Ansari
- 1st Department of Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Heidelberg, D-68167, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Mannheim, Mannheim, Germany
| | - Anna Hohneck
- 1st Department of Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Heidelberg, D-68167, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Mannheim, Mannheim, Germany
| | - Erol Tülümen
- 1st Department of Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Heidelberg, D-68167, Germany
| | - Boris Rudic
- 1st Department of Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Heidelberg, D-68167, Germany
| | - Jürgen Kuschyk
- 1st Department of Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Heidelberg, D-68167, Germany
| | - Dirk Lossnitzer
- 1st Department of Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Heidelberg, D-68167, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Mannheim, Mannheim, Germany
| | - Stefan Baumann
- 1st Department of Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Heidelberg, D-68167, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Mannheim, Mannheim, Germany
| | - Matthias F Froelich
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Stephan Waldeck
- Department of Radiology and Neuroradiology, German Federal Armed Forces Central Hospital, Koblenz, Germany
| | - Ibrahim Akin
- 1st Department of Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Heidelberg, D-68167, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Mannheim, Mannheim, Germany
| | - Martin Borggrefe
- 1st Department of Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Heidelberg, D-68167, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Mannheim, Mannheim, Germany
| | - Stefan O Schoenberg
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Theano Papavassiliu
- 1st Department of Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Heidelberg, D-68167, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Mannheim, Mannheim, Germany
| |
Collapse
|
2
|
Kihlberg J, Gupta V, Haraldsson H, Sigfridsson A, Sarvari SI, Ebbers T, Engvall JE. Clinical validation of three cardiovascular magnetic resonance techniques to measure strain and torsion in patients with suspected coronary artery disease. J Cardiovasc Magn Reson 2020; 22:83. [PMID: 33280612 PMCID: PMC7720468 DOI: 10.1186/s12968-020-00684-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 10/29/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Several cardiovascular magnetic resonance (CMR) techniques can measure myocardial strain and torsion with high accuracy. The purpose of this study was to compare displacement encoding with stimulated echoes (DENSE), tagging and feature tracking (FT) for measuring circumferential and radial myocardial strain and myocardial torsion in order to assess myocardial function and infarct scar burden both at a global and at a segmental level. METHOD 116 patients with a high likelihood of coronary artery disease (European SCORE > 15%) underwent CMR examination including cine images, tagging, DENSE and late gadolinium enhancement (LGE) in the short axis direction. In total, 97 patients had signs of myocardial disease and 19 had no abnormalities in terms of left ventricular (LV) wall mass index, LV ejection fraction, wall motion, LGE or a history of myocardial infarction. Thirty-four patients had myocardial infarct scar with a transmural LGE extent (transmurality) that exceeded 50% of the wall thickness in at least one segment. Global circumferential strain (GCS) and global radial strain (GRS) was analyzed using FT of cine loops, deformation of tag lines or DENSE displacement. RESULTS DENSE and tagging both showed high sensitivity (82% and 71%) at a specificity of 80% for the detection of segments with > 50% LGE transmurality, and receiver operating characteristics (ROC) analysis showed significantly higher area under the curve-values (AUC) for DENSE (0.87) than for tagging (0.83, p < 0.001) and FT (0.66, p = 0.003). GCS correlated with global LGE when determined with DENSE (r = 0.41), tagging (r = 0.37) and FT (r = 0.15). GRS had a low but significant negative correlation with LGE; DENSE r = - 0.10, FT r = - 0.07 and tagging r = - 0.16. Torsion from DENSE and tagging had a weak correlation (- 0.20 and - 0.22 respectively) with global LGE. CONCLUSION Circumferential strain from DENSE detected segments with > 50% scar with a higher AUC than strain determined from tagging and FT at a segmental level. GCS and torsion computed from DENSE and tagging showed similar correlation with global scar size, while when computed from FT, the correlation was lower.
Collapse
Affiliation(s)
- Johan Kihlberg
- Department of Radiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
| | - Vikas Gupta
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Henrik Haraldsson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Andreas Sigfridsson
- Department of Clinical Physiology & Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Sebastian I Sarvari
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, 0316, Oslo, Norway
| | - Tino Ebbers
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Jan E Engvall
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Clinical Physiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Azuma M, Kato S, Kodama S, Hayakawa K, Kagimoto M, Iguchi K, Fukuoka M, Fukui K, Iwasawa T, Utsunomiya D, Kimura K, Tamura K. Relationship between the cardiac magnetic resonance derived extracellular volume fraction and feature tracking myocardial strain in patients with non-ischemic dilated cardiomyopathy. Magn Reson Imaging 2020; 74:14-20. [PMID: 32898651 DOI: 10.1016/j.mri.2020.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND Feature tracking (FT) has emerged as a promising method to quantify myocardial strain using conventional cine magnetic resonance imaging (MRI). Extracellular volume fraction (ECV) by T1 mapping enables quantification of myocardial fibrosis. To date, the correlation between FT-derived left ventricular strain and ECV has not been elucidated yet. The aim of this study was to evaluate the relationship between myocardial strain by FT and ECV by T1 mapping in patients with non-ischemic dilated cardiomyopathy (NIDCM). METHODS A total of 57 patients with NIDCM (61 ± 12 years; 46 (81%) male)) and 15 controls (62 ± 11 years; 11 (73%) male)) were studied. Using a 1.5 T magnetic resonance scanner, pre- and post- T1 mapping images of the LV wall at the mid-ventricular level were acquired to calculate the ECV by a modified Look-Locker inversion recovery (MOLLI) sequence. The radial strain (RS), circumferential strain (CS), and longitudinal strain (LS) were assessed by the FT technique. The ECV and myocardial strain were compared using a 6-segment model at the mid-ventricular level. RESULTS The ECV and myocardial strain were evaluable in all 432 segments in 72 subjects. On a patient-based analysis, NIDCM patients had a significantly higher ECV (0.30 ± 0.07 vs. 0.28 ± 0.06, p = .007) and impaired myocardial strain than the control subjects (RS, 22.7 ± 10.3 vs. 30.3 ± 18.2, p < .01; CS, -6.47 ± 1.89 vs. -9.52 ± 5.15, p < .001; LS -10.2 ± 3.78 vs. -19.8 ± 4.30, p < .001, respectively). A significant linear correlation was found between the RS and ECV (r = -0.38, p < .001) and CS and ECV, (r = 0.38, p < .001). LS and ECV also correlated (r = 0.31, p < 0.001). On a segment-based analysis, there was a significant correlation between the ECV and RS and ECV and CS (all p values < .05). The intraclass correlation coefficient was good for the strain measurement (>0.80). CONCLUSIONS In patients with NIDCM, significant correlation was found between myocardial strain and ECV, suggesting the FT-derived myocardial strain might be useful as a non-invasive imaging marker for the detection of myocardial fibrosis without any contrast media.
Collapse
Affiliation(s)
- Mai Azuma
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Kanagawa, Japan
| | - Shingo Kato
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Kanagawa, Japan.
| | - Sho Kodama
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Kanagawa, Japan
| | - Keigo Hayakawa
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Kanagawa, Japan
| | - Minako Kagimoto
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Kanagawa, Japan
| | - Kohei Iguchi
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Kanagawa, Japan
| | - Masahiro Fukuoka
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Kanagawa, Japan
| | - Kazuki Fukui
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Kanagawa, Japan
| | - Tae Iwasawa
- Department of Radiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Kanagawa, Japan
| | - Daisuke Utsunomiya
- Department of Radiology, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Kazuo Kimura
- Department of Cardiology, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
4
|
Xu Y, Yamashiro T, Moriya H, Tsubakimoto M, Nagatani Y, Matsuoka S, Murayama S. Strain measurement on four-dimensional dynamic-ventilation CT: quantitative analysis of abnormal respiratory deformation of the lung in COPD. Int J Chron Obstruct Pulmon Dis 2018; 14:65-72. [PMID: 30587962 PMCID: PMC6305131 DOI: 10.2147/copd.s183740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Strain measurement is frequently used to assess myocardial motion in cardiac imaging. This study aimed to apply strain measurement to pulmonary motion observed by four-dimensional dynamic-ventilation computed tomography (CT) and to clarify motion abnormality in COPD. Materials and methods Thirty-two smokers, including ten with COPD, underwent dynamic-ventilation CT during spontaneous breathing. CT data were continuously reconstructed every 0.5 seconds. In the series of images obtained by dynamic-ventilation CT, five expiratory frames were identified starting from the peak inspiratory frame (first expiratory frame) and ending with the fifth expiratory frame. Strain measurement of the scanned lung was performed using research software that was originally developed for cardiac strain measurement and modified for assessing deformation of the lung. The measured strain values were divided by the change in mean lung density to adjust for the degree of expiration. Spearman’s rank correlation analysis was used to evaluate associations between the adjusted strain measurements and various spirometric values. Results The adjusted strain measurement was negatively correlated with FEV1/FVC (ρ=−0.52, P<0.01), maximum mid-expiratory flow (ρ=−0.59, P<0.001), and peak expiratory flow (ρ=−0.48, P<0.01), suggesting that abnormal deformation of lung motion is related to various patterns of expiratory airflow limitation. Conclusion Abnormal deformation of lung motion exists in COPD patients and can be quantitatively assessed by strain measurement using dynamic-ventilation CT. This technique can be expanded to dynamic-ventilation CT in patients with various lung and airway diseases that cause abnormal pulmonary motion.
Collapse
Affiliation(s)
- Yanyan Xu
- Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara, Okinawa, Japan, .,Department of Radiology, China-Japan Friendship Hospital, Beijing, Republic of China
| | - Tsuneo Yamashiro
- Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara, Okinawa, Japan,
| | - Hiroshi Moriya
- Department of Radiology, Ohara General Hospital, Fukushima-City, Fukushima, Japan
| | - Maho Tsubakimoto
- Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara, Okinawa, Japan,
| | - Yukihiro Nagatani
- Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Shin Matsuoka
- Department of Radiology, St Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Sadayuki Murayama
- Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara, Okinawa, Japan,
| | | |
Collapse
|
5
|
Muser D, Castro SA, Santangeli P, Nucifora G. Clinical applications of feature-tracking cardiac magnetic resonance imaging. World J Cardiol 2018; 10:210-221. [PMID: 30510638 PMCID: PMC6259029 DOI: 10.4330/wjc.v10.i11.210] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/04/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases represent the leading cause of mortality and morbidity in the western world. Assessment of cardiac function is pivotal for early diagnosis of primitive myocardial disorders, identification of cardiac involvement in systemic diseases, detection of drug-related cardiac toxicity as well as risk stratification and monitor of treatment effects in patients with heart failure of various etiology. Determination of ejection fraction with different imaging modalities currently represents the gold standard for evaluation of cardiac function. However, in the last few years, cardiovascular magnetic resonance feature tracking techniques has emerged as a more accurate tool for quantitative evaluation of cardiovascular function with several parameters including strain, strain-rate, torsion and mechanical dispersion. This imaging modality allows precise quantification of ventricular and atrial mechanics by directly evaluating myocardial fiber deformation. The purpose of this article is to review the basic principles, current clinical applications and future perspectives of cardiovascular magnetic resonance myocardial feature tracking, highlighting its prognostic implications.
Collapse
Affiliation(s)
- Daniele Muser
- Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Simon A Castro
- Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Pasquale Santangeli
- Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Gaetano Nucifora
- NorthWest Cardiac Imaging Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, United Kingdom.
| |
Collapse
|
6
|
Giusca S, Korosoglou G, Zieschang V, Stoiber L, Schnackenburg B, Stehning C, Gebker R, Pieske B, Schuster A, Backhaus S, Pieske-Kraigher E, Patel A, Kawaji K, Steen H, Lapinskas T, Kelle S. Reproducibility study on myocardial strain assessment using fast-SENC cardiac magnetic resonance imaging. Sci Rep 2018; 8:14100. [PMID: 30237411 PMCID: PMC6147889 DOI: 10.1038/s41598-018-32226-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/04/2018] [Indexed: 12/26/2022] Open
Abstract
Myocardial strain is a well validated parameter for estimating left ventricular (LV) performance. The aim of our study was to evaluate the inter-study as well as intra- and interobserver reproducibility of fast-SENC derived myocardial strain. Eighteen subjects (11 healthy individuals and 7 patients with heart failure) underwent a cardiac MRI examination including fast-SENC acquisition for evaluating left ventricular global longitudinal (GLS) and circumferential strain (GCS) as well as left ventricular ejection fraction (LVEF). The examination was repeated after 63 [range 49‒87] days and analyzed by two experienced observers. Ten datasets were repeatedly assessed after 1 month by the same observer to test intraobserver variability. The reproducibility was measured using the intraclass correlation coefficient (ICC) and Bland-Altman analysis. Patients with heart failure demonstrated reduced GLS and GCS compared to healthy controls (−15.7 ± 3.7 vs. −20.1 ± 1.4; p = 0.002 for GLS and −15.3 ± 3.7 vs. −21.4 ± 1.1; p = 0.001 for GCS). The test-retest analysis showed excellent ICC for LVEF (0.92), GLS (0.94) and GCS (0.95). GLS exhibited excellent ICC (0.99) in both intra- and interobserver variability analysis with very narrow limits of agreement (−0.6 to 0.5 for intraobserver and −1.3 to 0.96 for interobserver agreement). Similarly, GCS showed excellent ICC (0.99) in both variability analyses with narrow limits of agreement (−1.1 to 1.2 for intraobserver and −1.7 to 1.3 for interobserver agreement), whereas LVEF showed larger limits of agreement (−14.4 to 10.1). The analysis of fast-SENC derived myocardial strain using cardiac MRI provides a highly reproducible method for assessing LV functional performance.
Collapse
Affiliation(s)
- Sorin Giusca
- Department of Cardiology and Vascular Medicine, GRN Hospital Weinheim, Weinheim, Germany
| | - Grigorios Korosoglou
- Department of Cardiology and Vascular Medicine, GRN Hospital Weinheim, Weinheim, Germany
| | - Victoria Zieschang
- Department of Internal Medicine/Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Lukas Stoiber
- Department of Internal Medicine/Cardiology, German Heart Center Berlin, Berlin, Germany
| | | | | | - Rolf Gebker
- Department of Internal Medicine/Cardiology, German Heart Center Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Burkert Pieske
- Department of Internal Medicine/Cardiology, German Heart Center Berlin, Berlin, Germany.,Department of Internal Medicine/Cardiology, Charité Campus Virchow Clinic, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center, Georg-August University, Göttingen, Germany.,Department of Cardiology, Royal North Shore Hospital, the Kolling Institute, Northern Clinical School, University of Sydney, Sydney, Australia
| | - Sören Backhaus
- Department of Cardiology and Pneumology, University Medical Center, Georg-August University, Göttingen, Germany
| | | | - Amit Patel
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Keigo Kawaji
- Department of Medicine, University of Chicago, Chicago, Illinois, USA.,Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Henning Steen
- Department of Internal Medicine/Cardiology, Marienkrankenhaus Hamburg, Hamburg, Germany
| | - Tomas Lapinskas
- Department of Internal Medicine/Cardiology, German Heart Center Berlin, Berlin, Germany.,Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Sebastian Kelle
- Department of Internal Medicine/Cardiology, German Heart Center Berlin, Berlin, Germany. .,Department of Internal Medicine/Cardiology, Charité Campus Virchow Clinic, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany.
| |
Collapse
|
7
|
Gupta V, Lantz J, Henriksson L, Engvall J, Karlsson M, Persson A, Ebbers T. Automated three-dimensional tracking of the left ventricular myocardium in time-resolved and dose-modulated cardiac CT images using deformable image registration. J Cardiovasc Comput Tomogr 2018; 12:139-148. [DOI: 10.1016/j.jcct.2018.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/12/2018] [Accepted: 01/22/2018] [Indexed: 12/27/2022]
|
8
|
Mangion K, McComb C, Auger DA, Epstein FH, Berry C. Magnetic Resonance Imaging of Myocardial Strain After Acute ST-Segment-Elevation Myocardial Infarction: A Systematic Review. Circ Cardiovasc Imaging 2017; 10:CIRCIMAGING.117.006498. [PMID: 28733364 DOI: 10.1161/circimaging.117.006498] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this systematic review is to provide a clinically relevant, disease-based perspective on myocardial strain imaging in patients with acute myocardial infarction or stable ischemic heart disease. Cardiac magnetic resonance imaging uniquely integrates myocardial function with pathology. Therefore, this review focuses on strain imaging with cardiac magnetic resonance. We have specifically considered the relationships between left ventricular (LV) strain, infarct pathologies, and their associations with prognosis. A comprehensive literature review was conducted in accordance with the PRISMA guidelines. Publications were identified that (1) described the relationship between strain and infarct pathologies, (2) assessed the relationship between strain and subsequent LV outcomes, and (3) assessed the relationship between strain and health outcomes. In patients with acute myocardial infarction, circumferential strain predicts the recovery of LV systolic function in the longer term. The prognostic value of longitudinal strain is less certain. Strain differentiates between infarcted versus noninfarcted myocardium, even in patients with stable ischemic heart disease with preserved LV ejection fraction. Strain recovery is impaired in infarcted segments with intramyocardial hemorrhage or microvascular obstruction. There are practical limitations to measuring strain with cardiac magnetic resonance in the acute setting, and knowledge gaps, including the lack of data showing incremental value in clinical practice. Critically, studies of cardiac magnetic resonance strain imaging in patients with ischemic heart disease have been limited by sample size and design. Strain imaging has potential as a tool to assess for early or subclinical changes in LV function, and strain is now being included as a surrogate measure of outcome in therapeutic trials.
Collapse
Affiliation(s)
- Kenneth Mangion
- From the British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, United Kingdom (K.M., C.M., C.B.); Department of Clinical Physics, NHS Greater Glasgow and Clyde, United Kingdom (C.M.); and Department of Biomedical Engineering, University of Virginia, Charlottesville (D.A.A., F.H.E.)
| | - Christie McComb
- From the British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, United Kingdom (K.M., C.M., C.B.); Department of Clinical Physics, NHS Greater Glasgow and Clyde, United Kingdom (C.M.); and Department of Biomedical Engineering, University of Virginia, Charlottesville (D.A.A., F.H.E.)
| | - Daniel A Auger
- From the British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, United Kingdom (K.M., C.M., C.B.); Department of Clinical Physics, NHS Greater Glasgow and Clyde, United Kingdom (C.M.); and Department of Biomedical Engineering, University of Virginia, Charlottesville (D.A.A., F.H.E.)
| | - Frederick H Epstein
- From the British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, United Kingdom (K.M., C.M., C.B.); Department of Clinical Physics, NHS Greater Glasgow and Clyde, United Kingdom (C.M.); and Department of Biomedical Engineering, University of Virginia, Charlottesville (D.A.A., F.H.E.)
| | - Colin Berry
- From the British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, United Kingdom (K.M., C.M., C.B.); Department of Clinical Physics, NHS Greater Glasgow and Clyde, United Kingdom (C.M.); and Department of Biomedical Engineering, University of Virginia, Charlottesville (D.A.A., F.H.E.).
| |
Collapse
|
9
|
Goto Y, Ishida M, Takase S, Sigfridsson A, Uno M, Nagata M, Ichikawa Y, Kitagawa K, Sakuma H. Comparison of Displacement Encoding With Stimulated Echoes to Magnetic Resonance Feature Tracking for the Assessment of Myocardial Strain in Patients With Acute Myocardial Infarction. Am J Cardiol 2017; 119:1542-1547. [PMID: 28335982 DOI: 10.1016/j.amjcard.2017.02.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
Abstract
The aim of this study was to compare myocardial strain by cardiovascular magnetic resonance feature tracking (CMR-FT) to those derived from displacement encoding with stimulated echoes (DENSE) in patients with acute myocardial infarction (AMI). Twenty patients (65 pa13 years) with AMI underwent cine, DENSE, black-blood T2-weighted and late gadolinium enhancement CMR at 1.5 T. Global and segmental strain was determined by CMR-FT analysis and DENSE on matched 3 short-axis planes. Global circumferential strain by CMR-FT showed a good agreement with that by DENSE (r = 0.85, p <0.001; bias 0.02, limits of agreement -0.03 to 0.06). For segmental circumferential strain, r coefficient between CMR-FT and DENSE was 0.61 (p <0.001) with bias of 0.02, limits of agreement of -0.07 to 0.11. Regional circumferential strain determined by CMR-FT in infarct segments (-0.08 ± 0.05) was significantly altered compared with that in remote normal segments (-0.15 ± 0.05, p <0.001). CMR-FT measurement of regional and global circumferential strain showed good agreement with DENSE in patients with AMI.
Collapse
|
10
|
Chitiboi T, Axel L. Magnetic resonance imaging of myocardial strain: A review of current approaches. J Magn Reson Imaging 2017; 46:1263-1280. [PMID: 28471530 DOI: 10.1002/jmri.25718] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/14/2017] [Indexed: 11/07/2022] Open
Abstract
Contraction of the heart is central to its purpose of pumping blood around the body. While simple global function measures (such as the ejection fraction) are most commonly used in the clinical assessment of cardiac function, MRI also provides a range of approaches for quantitatively characterizing regional cardiac function, including the local deformation (or strain) within the heart wall. While they have been around for some years, these methods are still undergoing further technical development, and they have had relatively little clinical evaluation. However, they can provide potentially useful new ways to assess cardiac function, which may be able to contribute to better classification and treatment of heart disease. This article provides some basic background on the physical and physiological factors that determine the motion of the heart, in health and disease and then reviews some of the ways that MRI methods are being developed to image and quantify strain within the myocardium. LEVEL OF EVIDENCE 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1263-1280.
Collapse
Affiliation(s)
- Teodora Chitiboi
- NYU School of Medicine, Department of Radiology, New York, New York, USA
| | - Leon Axel
- NYU School of Medicine, Department of Radiology, New York, New York, USA
| |
Collapse
|
11
|
Kihlberg J, Haraldsson H, Sigfridsson A, Ebbers T, Engvall JE. Clinical experience of strain imaging using DENSE for detecting infarcted cardiac segments. J Cardiovasc Magn Reson 2015; 17:50. [PMID: 26104510 PMCID: PMC4478716 DOI: 10.1186/s12968-015-0155-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/10/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We hypothesised that myocardial deformation determined with magnetic resonance imaging (MRI) will detect myocardial scar. METHODS Displacement Encoding with Stimulated Echoes (DENSE) was used to calculate left ventricular strain in 125 patients (29 women and 96 men) with suspected coronary artery disease. The patients also underwent cine imaging and late gadolinium enhancement. 57 patients had a scar area >1% in at least one segment, 23 were considered free from coronary artery disease (control group) and 45 had pathological findings but no scar (mixed group). Peak strain was calculated in eight combinations: radial and circumferential strain in transmural, subendocardial and epicardial layers derived from short axis acquisition, and transmural longitudinal and radial strain derived from long axis acquisitions. In addition, the difference between strain in affected segments and reference segments, "differential strain", from the control group was analysed. RESULTS In receiver-operator-characteristic analysis for the detection of 50% transmurality, circumferential strain performed best with area-under-curve (AUC) of 0.94. Using a cut-off value of -17%, sensitivity was 95% at a specificity of 80%. AUC did not further improve with differential strain. There were significant differences between the control group and global strain circumferential direction (-17% versus -12%) and in the longitudinal direction (-13% versus -10%). Interobserver and scan-rescan reproducibility was high with an intraclass correlation coefficient (ICC) >0.93. CONCLUSIONS DENSE-derived circumferential strain may be used for the detection of myocardial segments with >50 % scar area. The repeatability of strain is satisfactory. DENSE-derived global strain agrees with other global measures of left ventricular ejection fraction.
Collapse
Affiliation(s)
- Johan Kihlberg
- Department of Radiology and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
| | - Henrik Haraldsson
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Andreas Sigfridsson
- Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | - Tino Ebbers
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
| | - Jan E Engvall
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
- Department of Clinical Physiology and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
12
|
McComb C, Carrick D, McClure JD, Woodward R, Radjenovic A, Foster JE, Berry C. Assessment of the relationships between myocardial contractility and infarct tissue revealed by serial magnetic resonance imaging in patients with acute myocardial infarction. Int J Cardiovasc Imaging 2015; 31:1201-9. [PMID: 26047771 PMCID: PMC4486782 DOI: 10.1007/s10554-015-0678-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 05/11/2015] [Indexed: 02/06/2023]
Abstract
Imaging changes in left ventricular (LV) volumes during the cardiac cycle and LV ejection fraction do not provide information on regional contractility. Displacement ENcoding with Stimulated Echoes (DENSE) is a strain-encoded cardiac magnetic resonance (CMR) technique that measures strain directly. We investigated the relationships between strain revealed by DENSE and the presence and extent of infarction in patients with recent myocardial infarction (MI). 50 male subjects were invited to undergo serial CMR within 7 days of MI (baseline) and after 6 months (follow-up; n = 47). DENSE and late gadolinium enhancement (LGE) images were acquired to enable localised regional quantification of peak circumferential strain (Ecc) and the extent of infarction, respectively. We assessed: (1) receiver operating characteristic (ROC) analysis for the classification of LGE, (2) strain differences according to LGE status (remote, adjacent, infarcted) and (3) changes in strain revealed between baseline and follow-up. 300 and 258 myocardial segments were available for analysis at baseline and follow-up respectively. LGE was present in 130/300 (43 %) and 97/258 (38 %) segments, respectively. ROC analysis revealed moderately high values for peak Ecc at baseline [threshold 12.8 %; area-under-curve (AUC) 0.88, sensitivity 84 %, specificity 78 %] and at follow-up (threshold 15.8 %; AUC 0.76, sensitivity 85 %, specificity 64 %). Differences were observed between remote, adjacent and infarcted segments. Between baseline and follow-up, increases in peak Ecc were observed in infarcted segments (median difference of 5.6 %) and in adjacent segments (1.5 %). Peak Ecc at baseline was indicative of the change in LGE status between baseline and follow-up. Strain-encoded CMR with DENSE has the potential to provide clinically useful information on contractility and its recovery over time in patients with MI.
Collapse
Affiliation(s)
- Christie McComb
- Clinical Physics, NHS Greater Glasgow and Clyde, Glasgow, UK
| | | | | | | | | | | | | |
Collapse
|
13
|
Suever JD, Wehner GJ, Haggerty CM, Jing L, Hamlet SM, Binkley CM, Kramer SP, Mattingly AC, Powell DK, Bilchick KC, Epstein FH, Fornwalt BK. Simplified post processing of cine DENSE cardiovascular magnetic resonance for quantification of cardiac mechanics. J Cardiovasc Magn Reson 2014; 16:94. [PMID: 25430079 PMCID: PMC4246464 DOI: 10.1186/s12968-014-0094-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 11/14/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance using displacement encoding with stimulated echoes (DENSE) is capable of assessing advanced measures of cardiac mechanics such as strain and torsion. A potential hurdle to widespread clinical adoption of DENSE is the time required to manually segment the myocardium during post-processing of the images. To overcome this hurdle, we proposed a radical approach in which only three contours per image slice are required for post-processing (instead of the typical 30-40 contours per image slice). We hypothesized that peak left ventricular circumferential, longitudinal and radial strains and torsion could be accurately quantified using this simplified analysis. METHODS AND RESULTS We tested our hypothesis on a large multi-institutional dataset consisting of 541 DENSE image slices from 135 mice and 234 DENSE image slices from 62 humans. We compared measures of cardiac mechanics derived from the simplified post-processing to those derived from original post-processing utilizing the full set of 30-40 manually-defined contours per image slice. Accuracy was assessed with Bland-Altman limits of agreement and summarized with a modified coefficient of variation. The simplified technique showed high accuracy with all coefficients of variation less than 10% in humans and 6% in mice. The accuracy of the simplified technique was also superior to two previously published semi-automated analysis techniques for DENSE post-processing. CONCLUSIONS Accurate measures of cardiac mechanics can be derived from DENSE cardiac magnetic resonance in both humans and mice using a simplified technique to reduce post-processing time by approximately 94%. These findings demonstrate that quantifying cardiac mechanics from DENSE data is simple enough to be integrated into the clinical workflow.
Collapse
Affiliation(s)
- Jonathan D Suever
- />Department of Pediatrics and Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY USA
| | - Gregory J Wehner
- />Department of Pediatrics and Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY USA
- />Department of Biomedical Engineering, University of Kentucky, Lexington, KY USA
| | - Christopher M Haggerty
- />Department of Pediatrics and Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY USA
| | - Linyuan Jing
- />Department of Pediatrics and Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY USA
| | - Sean M Hamlet
- />Department of Pediatrics and Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY USA
- />Department of Electrical Engineering, University of Kentucky, Lexington, KY USA
| | - Cassi M Binkley
- />Department of Pediatrics and Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY USA
| | - Sage P Kramer
- />Department of Pediatrics and Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY USA
| | - Andrea C Mattingly
- />Department of Pediatrics and Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY USA
| | - David K Powell
- />Department of Biomedical Engineering, University of Kentucky, Lexington, KY USA
| | - Kenneth C Bilchick
- />Department of Medicine, University of Virginia, Charlottesville, VA USA
| | - Frederick H Epstein
- />Department of Biomedical Engineering, University of Virginia, Charlottesville, VA USA
| | - Brandon K Fornwalt
- />Department of Pediatrics and Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY USA
- />Department of Biomedical Engineering, University of Kentucky, Lexington, KY USA
| |
Collapse
|
14
|
|