1
|
Behnam R, Dinari M, Behzad T. Innovative unsaturated polyurethane for cardiac regeneration: Enhancing cytocompatibility and gene expression through gelatin modification. Int J Biol Macromol 2025; 316:144659. [PMID: 40441578 DOI: 10.1016/j.ijbiomac.2025.144659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/11/2025] [Accepted: 05/24/2025] [Indexed: 06/11/2025]
Abstract
Developing a biomimetic platform that can effectively support myocardial repair and regeneration after a heart attack remains a major challenge for researchers. Polyurethanes (PU), known for their versatile properties, are increasingly being recognized as promising materials for creating cardiac patches. This research study developed the synthesis of a novel unsaturated chain extender via the Baylis-Hillman reaction for incorporation into the backbone of PU to create the unsaturated bridge for post-modification response. Thiol-ene chemistry performed post-modification of unsaturated hard domains of PU with thiolated gelatin as another reactant. Modification of the hard segment domains of PU with gelatin can have a synergistic effect on fabricating a new platform for repairing cardiac tissue. The films were characterized by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Nuclear Magnetic Resonance (NMR), mechanical tests, in vitro degradation rate, water contact angle measurement, and swelling measurement. Metabolic activity and cytocompatibility of the cells onto the films were assessed by MTT assay. An investigation of cardiac-specific marker expression was conducted using immunofluorescence staining and quantitative real-time PCR. The findings showed that none of the substances were cytotoxic to cardiomyocytes, and that the expression of cadiac-specific genes, such as Troponin T, GATA4, Connexin43, and Alpha-SMA, was higher than that of the control group.
Collapse
Affiliation(s)
- Reza Behnam
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Tayebeh Behzad
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
2
|
Ali AA, Abo Dena AS, Fahmy T, El-Sherbiny IM, Sarhan A. Fabrication and preliminary characterization of conductive nanofillers-enhanced polymeric hydrogels for cardiac patch applications. Int J Biol Macromol 2025; 305:141177. [PMID: 39971078 DOI: 10.1016/j.ijbiomac.2025.141177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/25/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
The development of conducting polymeric nanocomposites patches for cardiac tissue engineering has opened new possibilities for restoring the health of infarcted heart tissues. Herein, we report the fabrication of biocompatible and relatively cost-effective poly(vinyl alcohol)/alginate-based hydrogels patches modified with different conducting nanofillers such as silver nanoparticles, polyaniline nanofibers, copper oxide nanoleaves, and graphene oxide nanosheets. The impact of the different nanofiller materials on the molecular structure, charge transport mechanism and mechanical characteristics of the designed nanocomposites patches was investigated. In addition, some significant parameters of the nanocomposites were characterized such as swelling ability, antioxidant activity as well as hemocompatibility. Infrared spectroscopy results demonstrated the occurrence of different interactions between the included nanofillers and the polymer matrix depending on the type of the nanofiller. Moreover, conductivity measurements revealed that only the polyaniline nanofibers-modified nanocomposites hydrogels showed the highest conductivity compared to other counterparts. Mechanical characterization, antioxidant activity, swelling and hemocompatibility proved the suitability of the developed polyaniline nanofibers-modified nanocomposites hydrogels as potential candidates for successful application in cardiac tissue engineering.
Collapse
Affiliation(s)
- Asmaa A Ali
- Polymer Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Ahmed S Abo Dena
- Nanomedicine Research Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6 October City, 12578, Giza, Egypt; Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Tarek Fahmy
- Polymer Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6 October City, 12578, Giza, Egypt.
| | - Afaf Sarhan
- Polymer Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt.
| |
Collapse
|
3
|
Ahmed MR, Newby S, Potluri P, Mirihanage W, Fernando A. Emerging Paradigms in Fetal Heart Rate Monitoring: Evaluating the Efficacy and Application of Innovative Textile-Based Wearables. SENSORS (BASEL, SWITZERLAND) 2024; 24:6066. [PMID: 39338811 PMCID: PMC11436206 DOI: 10.3390/s24186066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
This comprehensive review offers a thorough examination of fetal heart rate (fHR) monitoring methods, which are an essential component of prenatal care for assessing fetal health and identifying possible problems early on. It examines the clinical uses, accuracy, and limitations of both modern and traditional monitoring techniques, such as electrocardiography (ECG), ballistocardiography (BCG), phonocardiography (PCG), and cardiotocography (CTG), in a variety of obstetric scenarios. A particular focus is on the most recent developments in textile-based wearables for fHR monitoring. These innovative devices mark a substantial advancement in the field and are noteworthy for their continuous data collection capability and ergonomic design. The review delves into the obstacles that arise when incorporating these wearables into clinical practice. These challenges include problems with signal quality, user compliance, and data interpretation. Additionally, it looks at how these technologies could improve fetal health surveillance by providing expectant mothers with more individualized and non-intrusive options, which could change the prenatal monitoring landscape.
Collapse
Affiliation(s)
| | | | | | | | - Anura Fernando
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK; (M.R.A.); (S.N.); (P.P.); (W.M.)
| |
Collapse
|
4
|
Yahyazadeh R, Baradaran Rahimi V, Askari VR. Stem cell and exosome therapies for regenerating damaged myocardium in heart failure. Life Sci 2024; 351:122858. [PMID: 38909681 DOI: 10.1016/j.lfs.2024.122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Finding novel treatments for cardiovascular diseases (CVDs) is a hot topic in medicine; cell-based therapies have reported promising news for controlling dangerous complications of heart disease such as myocardial infarction (MI) and heart failure (HF). Various progenitor/stem cells were tested in various in-vivo, in-vitro, and clinical studies for regeneration or repairing the injured tissue in the myocardial to accelerate the healing. Fetal, adult, embryonic, and induced pluripotent stem cells (iPSC) have revealed the proper potency for cardiac tissue repair. As an essential communicator among cells, exosomes with specific contacts (proteins, lncRNAs, and miRNAs) greatly promote cardiac rehabilitation. Interestingly, stem cell-derived exosomes have more efficiency than stem cell transplantation. Therefore, stem cells induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), cardiac stem cells (CDC), and skeletal myoblasts) and their-derived exosomes will probably be considered an alternative therapy for CVDs remedy. In addition, stem cell-derived exosomes have been used in the diagnosis/prognosis of heart diseases. In this review, we explained the advances of stem cells/exosome-based treatment, their beneficial effects, and underlying mechanisms, which will present new insights in the clinical field in the future.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Memarian P, Bagher Z, Asghari S, Aleemardani M, Seifalian A. Emergence of graphene as a novel nanomaterial for cardiovascular applications. NANOSCALE 2024; 16:12793-12819. [PMID: 38919053 DOI: 10.1039/d4nr00018h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Cardiovascular diseases (CDs) are the foremost cause of death worldwide. Several promising therapeutic methods have been developed for this approach, including pharmacological, surgical intervention, cell therapy, or biomaterial implantation since heart tissue is incapable of regenerating and healing on its own. The best treatment for heart failure to date is heart transplantation and invasive surgical intervention, despite their invasiveness, donor limitations, and the possibility of being rejected by the patient's immune system. To address these challenges, research is being conducted on less invasive and efficient methods. Consequently, graphene-based materials (GBMs) have attracted a great deal of interest in the last decade because of their exceptional mechanical, electrical, chemical, antibacterial, and biocompatibility properties. An overview of GBMs' applications in the cardiovascular system has been presented in this article. Following a brief explanation of graphene and its derivatives' properties, the potential of GBMs to improve and restore cardiovascular system function by using them as cardiac tissue engineering, stents, vascular bypass grafts,and heart valve has been discussed.
Collapse
Affiliation(s)
- Paniz Memarian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London BioScience Innovation Centre, London, UK.
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Zohreh Bagher
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering & Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sheida Asghari
- Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, S3 7HQ, UK.
- Department of Translational Health Science, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK.
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London BioScience Innovation Centre, London, UK.
| |
Collapse
|
6
|
Cinici B, Yaba S, Kurt M, Yalcin HC, Duta L, Gunduz O. Fabrication Strategies for Bioceramic Scaffolds in Bone Tissue Engineering with Generative Design Applications. Biomimetics (Basel) 2024; 9:409. [PMID: 39056850 PMCID: PMC11275129 DOI: 10.3390/biomimetics9070409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of this study is to provide an overview of the current state-of-the-art in the fabrication of bioceramic scaffolds for bone tissue engineering, with an emphasis on the use of three-dimensional (3D) technologies coupled with generative design principles. The field of modern medicine has witnessed remarkable advancements and continuous innovation in recent decades, driven by a relentless desire to improve patient outcomes and quality of life. Central to this progress is the field of tissue engineering, which holds immense promise for regenerative medicine applications. Scaffolds are integral to tissue engineering and serve as 3D frameworks that support cell attachment, proliferation, and differentiation. A wide array of materials has been explored for the fabrication of scaffolds, including bioceramics (i.e., hydroxyapatite, beta-tricalcium phosphate, bioglasses) and bioceramic-polymer composites, each offering unique properties and functionalities tailored to specific applications. Several fabrication methods, such as thermal-induced phase separation, electrospinning, freeze-drying, gas foaming, particle leaching/solvent casting, fused deposition modeling, 3D printing, stereolithography and selective laser sintering, will be introduced and thoroughly analyzed and discussed from the point of view of their unique characteristics, which have proven invaluable for obtaining bioceramic scaffolds. Moreover, by highlighting the important role of generative design in scaffold optimization, this review seeks to pave the way for the development of innovative strategies and personalized solutions to address significant gaps in the current literature, mainly related to complex bone defects in bone tissue engineering.
Collapse
Affiliation(s)
- Bilal Cinici
- Department of Mechanical Engineering, Faculty of Technology, Marmara University, Istanbul 34890, Turkey; (B.C.); (M.K.)
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34890, Turkey
- AYEM Innovation Anonim Sirketi, Cube Incubation Center, Technopark Istanbul, Istanbul 34890, Turkey;
| | - Sule Yaba
- AYEM Innovation Anonim Sirketi, Cube Incubation Center, Technopark Istanbul, Istanbul 34890, Turkey;
| | - Mustafa Kurt
- Department of Mechanical Engineering, Faculty of Technology, Marmara University, Istanbul 34890, Turkey; (B.C.); (M.K.)
| | - Huseyin C. Yalcin
- Biomedical Research Center, Qatar University, Doha 2713, Qatar;
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
| | - Liviu Duta
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34890, Turkey
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34890, Turkey
| |
Collapse
|
7
|
Deng J, Wu J, Chen X, Sarrafian TL, Varela CE, Whyte W, Guo CF, Roche ET, Griffiths LG, Yuk H, Nabzdyk CS, Zhao X. A bioadhesive pacing lead for atraumatic cardiac monitoring and stimulation in rodent and porcine models. Sci Transl Med 2024; 16:eado9003. [PMID: 38896601 DOI: 10.1126/scitranslmed.ado9003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Current clinically used electronic implants, including cardiac pacing leads for epicardial monitoring and stimulation of the heart, rely on surgical suturing or direct insertion of electrodes to the heart tissue. These approaches can cause tissue trauma during the implantation and retrieval of the pacing leads, with the potential for bleeding, tissue damage, and device failure. Here, we report a bioadhesive pacing lead that can directly interface with cardiac tissue through physical and covalent interactions to support minimally invasive adhesive implantation and gentle on-demand removal of the device with a detachment solution. We developed 3D-printable bioadhesive materials for customized fabrication of the device by graft-polymerizing polyacrylic acid on hydrophilic polyurethane and mixing with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to obtain electrical conductivity. The bioadhesive construct exhibited mechanical properties similar to cardiac tissue and strong tissue adhesion, supporting stable electrical interfacing. Infusion of a detachment solution to cleave physical and covalent cross-links between the adhesive interface and the tissue allowed retrieval of the bioadhesive pacing leads in rat and porcine models without apparent tissue damage. Continuous and reliable cardiac monitoring and pacing of rodent and porcine hearts were demonstrated for 2 weeks with consistent capture threshold and sensing amplitude, in contrast to a commercially available alternative. Pacing and continuous telemetric monitoring were achieved in a porcine model. These findings may offer a promising platform for adhesive bioelectronic devices for cardiac monitoring and treatment.
Collapse
Affiliation(s)
- Jue Deng
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
| | - Jingjing Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
| | | | - Claudia E Varela
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William Whyte
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ellen T Roche
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leigh G Griffiths
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
| | - Christoph S Nabzdyk
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Tamo AK, Djouonkep LDW, Selabi NBS. 3D Printing of Polysaccharide-Based Hydrogel Scaffolds for Tissue Engineering Applications: A Review. Int J Biol Macromol 2024; 270:132123. [PMID: 38761909 DOI: 10.1016/j.ijbiomac.2024.132123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
In tissue engineering, 3D printing represents a versatile technology employing inks to construct three-dimensional living structures, mimicking natural biological systems. This technology efficiently translates digital blueprints into highly reproducible 3D objects. Recent advances have expanded 3D printing applications, allowing for the fabrication of diverse anatomical components, including engineered functional tissues and organs. The development of printable inks, which incorporate macromolecules, enzymes, cells, and growth factors, is advancing with the aim of restoring damaged tissues and organs. Polysaccharides, recognized for their intrinsic resemblance to components of the extracellular matrix have garnered significant attention in the field of tissue engineering. This review explores diverse 3D printing techniques, outlining distinctive features that should characterize scaffolds used as ideal matrices in tissue engineering. A detailed investigation into the properties and roles of polysaccharides in tissue engineering is highlighted. The review also culminates in a profound exploration of 3D polysaccharide-based hydrogel applications, focusing on recent breakthroughs in regenerating different tissues such as skin, bone, cartilage, heart, nerve, vasculature, and skeletal muscle. It further addresses challenges and prospective directions in 3D printing hydrogels based on polysaccharides, paving the way for innovative research to fabricate functional tissues, enhancing patient care, and improving quality of life.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany; Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany; Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France.
| | - Lesly Dasilva Wandji Djouonkep
- College of Petroleum Engineering, Yangtze University, Wuhan 430100, China; Key Laboratory of Drilling and Production Engineering for Oil and Gas, Wuhan 430100, China
| | - Naomie Beolle Songwe Selabi
- Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
9
|
Baheiraei N, Razavi M, Ghahremanzadeh R. Reduced graphene oxide coated alginate scaffolds: potential for cardiac patch application. Biomater Res 2023; 27:109. [PMID: 37924106 PMCID: PMC10625265 DOI: 10.1186/s40824-023-00449-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/15/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Cardiovascular diseases, particularly myocardial infarction (MI), are the leading cause of death worldwide and a major contributor to disability. Cardiac tissue engineering is a promising approach for preventing functional damage or improving cardiac function after MI. We aimed to introduce a novel electroactive cardiac patch based on reduced graphene oxide-coated alginate scaffolds due to the promising functional behavior of electroactive biomaterials to regulate cell proliferation, biocompatibility, and signal transition. METHODS The fabrication of novel electroactive cardiac patches based on alginate (ALG) coated with different concentrations of reduced graphene oxide (rGO) using sodium hydrosulfite is described here. The prepared scaffolds were thoroughly tested for their physicochemical properties and cytocompatibility. ALG-rGO scaffolds were also tested for their antimicrobial and antioxidant properties. Subcutaneous implantation in mice was used to evaluate the scaffolds' ability to induce angiogenesis. RESULTS The Young modulus of the scaffolds was increased by increasing the rGO concentration from 92 ± 4.51 kPa for ALG to 431 ± 4.89 kPa for ALG-rGO-4 (ALG coated with 0.3% w/v rGO). The scaffolds' tensile strength trended similarly. The electrical conductivity of coated scaffolds was calculated in the semi-conductive range (~ 10-4 S/m). Furthermore, when compared to ALG scaffolds, human umbilical vein endothelial cells (HUVECs) cultured on ALG-rGO scaffolds demonstrated improved cell viability and adhesion. Upregulation of VEGFR2 expression at both the mRNA and protein levels confirmed that rGO coating significantly boosted the angiogenic capability of ALG against HUVECs. OD620 assay and FE-SEM observation demonstrated the antibacterial properties of electroactive scaffolds against Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes. We also showed that the prepared samples possessed antioxidant activity using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay and UV-vis spectroscopy. Histological evaluations confirmed the enhanced vascularization properties of coated samples after subcutaneous implantation. CONCLUSION Our findings suggest that ALG-rGO is a promising scaffold for accelerating the repair of damaged heart tissue.
Collapse
Affiliation(s)
- Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division,Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 1411713116, Iran.
| | - Mehdi Razavi
- Department of Medicine, Biionix (Bionic Materials, Implants & Interfaces) Cluster, University of Central Florida College of Medicine, Orlando, FL, 32827, USA
- Department of Material Sciences and Engineering, University of Central Florida, Orlando, FL, 32816, USA
| | - Ramin Ghahremanzadeh
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
10
|
Edrisi F, Baheiraei N, Razavi M, Roshanbinfar K, Imani R, Jalilinejad N. Potential of graphene-based nanomaterials for cardiac tissue engineering. J Mater Chem B 2023; 11:7280-7299. [PMID: 37427687 DOI: 10.1039/d3tb00654a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cardiovascular diseases are the primary cause of death worldwide. Despite significant advances in pharmacological treatments and surgical interventions to restore heart function after myocardial infarction, it can progress to heart failure due to the restricted inherent potential of adult cardiomyocytes to self-regenerate. Hence, the evolution of new therapeutic methods is critical. Nowadays, novel approaches in tissue engineering have assisted in restoring biological and physical specifications of the injured myocardium and, hence, cardiac function. The incorporation of a supporting matrix that could mechanically and electronically support the heart tissue and stimulate the cells to proliferate and regenerate will be advantageous. Electroconductive nanomaterials can facilitate intracellular communication and aid synchronous contraction via electroactive substrate creation, preventing the issue of arrhythmia in the heart. Among a wide range of electroconductive materials, graphene-based nanomaterials (GBNs) are promising for cardiac tissue engineering (CTE) due to their outstanding features including high mechanical strength, angiogenesis, antibacterial and antioxidant properties, low cost, and scalable fabrication. In the present review, we discuss the effect of applying GBNs on angiogenesis, proliferation, and differentiation of implanted stem cells, their antibacterial and antioxidant properties, and their role in improving the electrical and mechanical properties of the scaffolds for CTE. Also, we summarize the recent research that has applied GBNs in CTE. Finally, we present a concise discussion on the challenges and prospects.
Collapse
Affiliation(s)
- Fatemeh Edrisi
- Modern Technologies in Engineering Group, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran.
| | - Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, Florida 32827, USA
- Department of Material Sciences and Engineering, University of Central Florida, Orlando, Florida 32816, USA
| | - Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Muscle Research Center Erlangen (MURCE), 91054 Erlangen, Germany
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Negin Jalilinejad
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
11
|
Weymann A, Foroughi J, Vardanyan R, Punjabi PP, Schmack B, Aloko S, Spinks GM, Wang CH, Arjomandi Rad A, Ruhparwar A. Artificial Muscles and Soft Robotic Devices for Treatment of End-Stage Heart Failure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207390. [PMID: 36269015 DOI: 10.1002/adma.202207390] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/19/2022] [Indexed: 05/12/2023]
Abstract
Medical soft robotics constitutes a rapidly developing field in the treatment of cardiovascular diseases, with a promising future for millions of patients suffering from heart failure worldwide. Herein, the present state and future direction of artificial muscle-based soft robotic biomedical devices in supporting the inotropic function of the heart are reviewed, focusing on the emerging electrothermally artificial heart muscles (AHMs). Artificial muscle powered soft robotic devices can mimic the action of complex biological systems such as heart compression and twisting. These artificial muscles possess the ability to undergo complex deformations, aiding cardiac function while maintaining a limited weight and use of space. Two very promising candidates for artificial muscles are electrothermally actuated AHMs and biohybrid actuators using living cells or tissue embedded with artificial structures. Electrothermally actuated AHMs have demonstrated superior force generation while creating the prospect for fully soft robotic actuated ventricular assist devices. This review will critically analyze the limitations of currently available devices and discuss opportunities and directions for future research. Last, the properties of the cardiac muscle are reviewed and compared with those of different materials suitable for mechanical cardiac compression.
Collapse
Affiliation(s)
- Alexander Weymann
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Javad Foroughi
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
- Faculty of Engineering and Information Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Library Rd, Kensington, NSW, 2052, Australia
| | - Robert Vardanyan
- Department of Medicine, Faculty of Medicine, Imperial College London, Imperial College Road, London, SW7 2AZ, UK
| | - Prakash P Punjabi
- Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, 72 Du Cane Rd, London, W12 0HS, UK
| | - Bastian Schmack
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Sinmisola Aloko
- Faculty of Engineering and Information Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia
| | - Geoffrey M Spinks
- Faculty of Engineering and Information Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia
| | - Chun H Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Library Rd, Kensington, NSW, 2052, Australia
| | - Arian Arjomandi Rad
- Department of Medicine, Faculty of Medicine, Imperial College London, Imperial College Road, London, SW7 2AZ, UK
| | - Arjang Ruhparwar
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| |
Collapse
|
12
|
Adhami M, Martin NK, Maguire C, Courtenay AJ, Donnelly RF, Domínguez-Robles J, Larrañeta E. Drug loaded implantable devices to treat cardiovascular disease. Expert Opin Drug Deliv 2023; 20:507-522. [PMID: 36924328 DOI: 10.1080/17425247.2023.2190580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
INTRODUCTION It is widely acknowledged that cardiovascular diseases (CVDs) continue to be the leading cause of death globally. Furthermore, CVDs are the leading cause of diminished quality of life for patients, frequently as a result of their progressive deterioration. Medical implants that release drugs into the body are active implants that do more than just provide mechanical support; they also have a therapeutic role. Primarily, this is achieved through the controlled release of active pharmaceutical ingredients (API) at the implementation site. AREAS COVERED In this review, the authors discuss drug-eluting stents, drug-eluting vascular grafts, and drug-eluting cardiac patches with the aim of providing a broad overview of the three most common types of cardiac implant. EXPERT OPINION Drug eluting implants are an ideal alternative to traditional drug delivery because they allow for accurate drug release, local drug delivery to the target tissue, and minimise the adverse side effects associated with systemic administration. Despite the fact that there are still challenges that need to be addressed, the ever-evolving new technologies are making the fabrication of drug eluting implants a rewarding therapeutic endeavour with the possibility for even greater advances.
Collapse
Affiliation(s)
| | | | | | - Aaron J Courtenay
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, UK
| | | | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, UK.,Department of Pharmacy and Pharmaceutical Technology, University of Seville, Seville, Spain
| | | |
Collapse
|
13
|
Rosa E, de Mello L, Castelletto V, Dallas ML, Accardo A, Seitsonen J, Hamley IW. Cell Adhesion Motif-Functionalized Lipopeptides: Nanostructure and Selective Myoblast Cytocompatibility. Biomacromolecules 2023; 24:213-224. [PMID: 36520063 PMCID: PMC9832505 DOI: 10.1021/acs.biomac.2c01068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The conformation and self-assembly of four lipopeptides, peptide amphiphiles comprising peptides conjugated to lipid chains, in aqueous solution have been examined. The peptide sequence in all four lipopeptides contains the integrin cell adhesion RGDS motif, and the cytocompatibility of the lipopeptides is also analyzed. Lipopeptides have either tetradecyl (C14, myristyl) or hexadecyl (C16, palmitoyl) lipid chains and peptide sequence WGGRGDS or GGGRGDS, that is, with either a tryptophan-containing WGG or triglycine GGG tripeptide spacer between the bioactive peptide motif and the alkyl chain. All four lipopeptides self-assemble above a critical aggregation concentration (CAC), determined through several comparative methods using circular dichroism (CD) and fluorescence. Spectroscopic methods [CD and Fourier transform infrared (FTIR) spectroscopy] show the presence of β-sheet structures, consistent with the extended nanotape, helical ribbon, and nanotube structures observed by cryogenic transmission electron microscopy (cryo-TEM). The high-quality cryo-TEM images clearly show the coexistence of helically twisted ribbon and nanotube structures for C14-WGGRGDS, which highlight the mechanism of nanotube formation by the closure of the ribbons. Small-angle X-ray scattering shows that the nanotapes comprise highly interdigitated peptide bilayers, which are also present in the walls of the nanotubes. Hydrogel formation was observed at sufficiently high concentrations or could be induced by a heat/cool protocol at lower concentrations. Birefringence due to nematic phase formation was observed for several of the lipopeptides, along with spontaneous flow alignment of the lyotropic liquid crystal structure in capillaries. Cell viability assays were performed using both L929 fibroblasts and C2C12 myoblasts to examine the potential uses of the lipopeptides in tissue engineering, with a specific focus on application to cultured (lab-grown) meat, based on myoblast cytocompatibility. Indeed, significantly higher cytocompatibility of myoblasts was observed for all four lipopeptides compared to that for fibroblasts, in particular at a lipopeptide concentration below the CAC. Cytocompatibility could also be improved using hydrogels as cell supports for fibroblasts or myoblasts. Our work highlights that precision control of peptide sequences using bulky aromatic residues within "linker sequences" along with alkyl chain selection can be used to tune the self-assembled nanostructure. In addition, the RGDS-based lipopeptides show promise as materials for tissue engineering, especially those of muscle precursor cells.
Collapse
Affiliation(s)
- Elisabetta Rosa
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights,
Reading, Berkshire RG6 6AD, U.K.,Department
of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Via Domenico Montesano 49, Naples 80131, Italy
| | - Lucas de Mello
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights,
Reading, Berkshire RG6 6AD, U.K.,Departamento
de Biofísica, Universidade Federal
de São Paulo, São
Paulo 04023-062, Brazil
| | - Valeria Castelletto
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights,
Reading, Berkshire RG6 6AD, U.K.
| | - Mark L. Dallas
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights,
Reading, Berkshire RG6 6AD, U.K.
| | - Antonella Accardo
- Department
of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples “Federico II”, Via Domenico Montesano 49, Naples 80131, Italy
| | - Jani Seitsonen
- Nanomicroscopy
Center, Aalto University, Puumiehenkuja 2, Espoo FIN-02150, Finland
| | - Ian W. Hamley
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights,
Reading, Berkshire RG6 6AD, U.K.,
| |
Collapse
|
14
|
Jafari A, Ajji Z, Mousavi A, Naghieh S, Bencherif SA, Savoji H. Latest Advances in 3D Bioprinting of Cardiac Tissues. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2101636. [PMID: 38044954 PMCID: PMC10691862 DOI: 10.1002/admt.202101636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 12/05/2023]
Abstract
Cardiovascular diseases (CVDs) are known as the major cause of death worldwide. In spite of tremendous advancements in medical therapy, the gold standard for CVD treatment is still transplantation. Tissue engineering, on the other hand, has emerged as a pioneering field of study with promising results in tissue regeneration using cells, biological cues, and scaffolds. Three-dimensional (3D) bioprinting is a rapidly growing technique in tissue engineering because of its ability to create complex scaffold structures, encapsulate cells, and perform these tasks with precision. More recently, 3D bioprinting has made its debut in cardiac tissue engineering, and scientists are investigating this technique for development of new strategies for cardiac tissue regeneration. In this review, the fundamentals of cardiac tissue biology, available 3D bioprinting techniques and bioinks, and cells implemented for cardiac regeneration are briefly summarized and presented. Afterwards, the pioneering and state-of-the-art works that have utilized 3D bioprinting for cardiac tissue engineering are thoroughly reviewed. Finally, regulatory pathways and their contemporary limitations and challenges for clinical translation are discussed.
Collapse
Affiliation(s)
- Arman Jafari
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| | - Zineb Ajji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| | - Ali Mousavi
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| | - Saman Naghieh
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
- Department of Bioengineering, Northeastern University, Boston, MA 02115, United States
- Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, 60203 Compiègne, France
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02128, United States
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| |
Collapse
|
15
|
Carr BP, Chen Z, Chung JHY, Wallace GG. Collagen Alignment via Electro-Compaction for Biofabrication Applications: A Review. Polymers (Basel) 2022; 14:4270. [PMID: 36297848 PMCID: PMC9609630 DOI: 10.3390/polym14204270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022] Open
Abstract
As the most prevalent structural protein in the extracellular matrix, collagen has been extensively investigated for biofabrication-based applications. However, its utilisation has been impeded due to a lack of sufficient mechanical toughness and the inability of the scaffold to mimic complex natural tissues. The anisotropic alignment of collagen fibres has been proven to be an effective method to enhance its overall mechanical properties and produce biomimetic scaffolds. This review introduces the complicated scenario of collagen structure, fibril arrangement, type, function, and in addition, distribution within the body for the enhancement of collagen-based scaffolds. We describe and compare existing approaches for the alignment of collagen with a sharper focus on electro-compaction. Additionally, various effective processes to further enhance electro-compacted collagen, such as crosslinking, the addition of filler materials, and post-alignment fabrication techniques, are discussed. Finally, current challenges and future directions for the electro-compaction of collagen are presented, providing guidance for the further development of collagenous scaffolds for bioengineering and nanotechnology.
Collapse
Affiliation(s)
| | | | - Johnson H. Y. Chung
- Australian Research Council Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gordon G. Wallace
- Australian Research Council Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
16
|
Scott L, Elídóttir K, Jeevaratnam K, Jurewicz I, Lewis R. Electrical stimulation through conductive scaffolds for cardiomyocyte tissue engineering: Systematic review and narrative synthesis. Ann N Y Acad Sci 2022; 1515:105-119. [PMID: 35676231 PMCID: PMC9796457 DOI: 10.1111/nyas.14812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electrical conductivity is of great significance to cardiac tissue engineering and permits the use of electrical stimulation in mimicking cardiac pacing. The development of biomaterials for tissue engineering can incorporate physical properties that are uncommon to standard cell culture and can facilitate improved cardiomyocyte function. In this review, the PICOT question asks, "How has the application of external electrical stimulation in conductive scaffolds for tissue engineering affected cardiomyocyte behavior in in vitro cell culture?" The Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, with predetermined inclusion and quality appraisal criteria, were used to assess publications from PubMed, Web of Science, and Scopus. Results revealed carbon nanotubes to be the most common conductive agent in biomaterials and rodent-sourced cell types as the most common cardiomyocytes used. To assess cardiomyocytes, immunofluorescence was used most often, utilizing proteins, such as connexin 43, cardiac α-actinin, and cardiac troponins. It was determined that the modal average stimulation protocol comprised 1-3 V square biphasic 50-ms pulses at 1 Hz, applied toward the end of cell culture. The addition of electrical stimulation to in vitro culture has exemplified it as a powerful tool for cardiac tissue engineering and brings researchers closer to creating optimal artificial cardiac tissue constructs.
Collapse
Affiliation(s)
- Louie Scott
- School of Veterinary MedicineUniversity of SurreyGuildfordUK
| | | | | | | | - Rebecca Lewis
- School of Veterinary MedicineUniversity of SurreyGuildfordUK
| |
Collapse
|
17
|
Hayam R, Ertracht O, Zahran S, Baruch L, Atar S, Machluf M. Electrospun extracellular matrix scaffold improves cardiac structure and function post‐myocardial infarction. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rotem Hayam
- Faculty of Biotechnology & Food Engineering Israel Institute of Technology (IIT) Technion Haifa Israel
| | - Offir Ertracht
- The Cardiovascular Research Laboratory, Research institute Galilee Medical Center Nahariya Israel
| | - Sharbel Zahran
- Faculty of Biotechnology & Food Engineering Israel Institute of Technology (IIT) Technion Haifa Israel
| | - Limor Baruch
- Faculty of Biotechnology & Food Engineering Israel Institute of Technology (IIT) Technion Haifa Israel
| | - Shaul Atar
- The Cardiovascular Research Laboratory, Research institute Galilee Medical Center Nahariya Israel
- The Cardiology Department Galilee Medical Center Nahariya Israel
- The Azrieli Faculty of Medicine Bar‐Ilan University Safed Israel
| | - Marcelle Machluf
- Faculty of Biotechnology & Food Engineering Israel Institute of Technology (IIT) Technion Haifa Israel
| |
Collapse
|
18
|
Pournemati B, Tabesh H, Jenabi A, Mehdinavaz Aghdam R, Hossein Rezayan A, Poorkhalil A, Ahmadi Tafti SH, Mottaghy K. Injectable conductive nanocomposite hydrogels for cardiac tissue engineering: Focusing on carbon and metal-based nanostructures. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Laughlin ME, Stephens SE, Hestekin JA, Jensen MO. Development of Custom Wall-Less Cardiovascular Flow Phantoms with Tissue-Mimicking Gel. Cardiovasc Eng Technol 2022; 13:1-13. [PMID: 34080171 PMCID: PMC8888498 DOI: 10.1007/s13239-021-00546-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/12/2021] [Indexed: 10/26/2022]
Abstract
PURPOSE Flow phantoms are used in experimental settings to aid in the simulation of blood flow. Custom geometries are available, but current phantom materials present issues with degradability and/or mimicking the mechanical properties of human tissue. In this study, a method of fabricating custom wall-less flow phantoms from a tissue-mimicking gel using 3D printed inserts is developed. METHODS A 3D blood vessel geometry example of a bifurcated artery model was 3D printed in polyvinyl alcohol, embedded in tissue-mimicking gel, and subsequently dissolved to create a phantom. Uniaxial compression testing was performed to determine the Young's moduli of the five gel types. Angle-independent, ultrasound-based imaging modalities, Vector Flow Imaging (VFI) and Blood Speckle Imaging (BSI), were utilized for flow visualization of a straight channel phantom. RESULTS A wall-less phantom of the bifurcated artery was fabricated with minimal bubbles and continuous flow demonstrated. Additionally, flow was visualized through a straight channel phantom by VFI and BSI. The available gel types are suitable for mimicking a variety of tissue types, including cardiac tissue and blood vessels. CONCLUSION Custom, tissue-mimicking flow phantoms can be fabricated using the developed methodology and have potential for use in a variety of applications, including ultrasound-based imaging methods. This is the first reported use of BSI with an in vitro flow phantom.
Collapse
Affiliation(s)
- Megan E Laughlin
- Department of Biomedical Engineering, University of Arkansas, John A. White Jr. Engineering Hall, 790 W. Dickson St. #120, Fayetteville, AR, 72701, USA
| | - Sam E Stephens
- Department of Biomedical Engineering, University of Arkansas, John A. White Jr. Engineering Hall, 790 W. Dickson St. #120, Fayetteville, AR, 72701, USA
| | - Jamie A Hestekin
- Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA
| | - Morten O Jensen
- Department of Biomedical Engineering, University of Arkansas, John A. White Jr. Engineering Hall, 790 W. Dickson St. #120, Fayetteville, AR, 72701, USA.
| |
Collapse
|
20
|
Karimi SNH, Mehdinavaz Aghdam R, Ebrahimi SAS, Chehrehsaz Y. Tri‐layered alginate/
PCL
electrospun scaffold for cardiac tissue engineering. POLYM INT 2022. [DOI: 10.1002/pi.6371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Seyed Nasir Hosseini Karimi
- School of Metallurgy and Materials Engineering, College of Engineering University of Tehran P.O. Box: 11155‐4563 Tehran Iran
| | - Rouhollah Mehdinavaz Aghdam
- School of Metallurgy and Materials Engineering, College of Engineering University of Tehran P.O. Box: 11155‐4563 Tehran Iran
| | - Seyed Ali Seyyed Ebrahimi
- School of Metallurgy and Materials Engineering, College of Engineering University of Tehran P.O. Box: 11155‐4563 Tehran Iran
- Advanced Magnetic Materials Research Center, College of Engineering University of Tehran Tehran Iran
| | - Yalda Chehrehsaz
- Department of Biomedical Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| |
Collapse
|
21
|
Ladeira B, Custodio C, Mano J. Core-Shell Microcapsules: Biofabrication and Potential Applications in Tissue Engineering and Regenerative Medicine. Biomater Sci 2022; 10:2122-2153. [DOI: 10.1039/d1bm01974k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The construction of biomaterial scaffolds that accurately recreate the architecture of living tissues in vitro is a major challenge in the field of tissue engineering and regenerative medicine. Core-shell microcapsules...
Collapse
|
22
|
Chang T, Liu C, Lu K, Wu Y, Xu M, Yu Q, Shen Z, Jiang T, Zhang Y. Biomaterials based cardiac patches for the treatment of myocardial infarction. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 2021; 94:77-89. [DOI: 10.1016/j.jmst.2021.03.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Bazgir M, Zhang W, Zhang X, Elies J, Saeinasab M, Coates P, Youseffi M, Sefat F. Fabrication and Characterization of PCL/PLGA Coaxial and Bilayer Fibrous Scaffolds for Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6295. [PMID: 34771821 PMCID: PMC8584973 DOI: 10.3390/ma14216295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/25/2021] [Accepted: 10/11/2021] [Indexed: 12/26/2022]
Abstract
Electrospinning is an innovative new fibre technology that aims to design and fabricate membranes suitable for a wide range of tissue engineering (TE) applications including vascular grafts, which is the main objective of this research work. This study dealt with fabricating and characterising bilayer structures comprised of an electrospun sheet made of polycaprolactone (PCL, inner layer) and an outer layer made of poly lactic-co-glycolic acid (PLGA) and a coaxial porous scaffold with a micrometre fibre structure was successfully produced. The membranes' propriety for intended biomedical applications was assessed by evaluating their morphological structure/physical properties and structural integrity when they underwent the degradation process. A scanning electron microscope (SEM) was used to assess changes in the electrospun scaffolds' structural morphology such as in their fibre diameter, pore size (μm) and the porosity of the scaffold surface which was measured with Image J software. During the 12-week degradation process at room temperature, most of the scaffolds showed a similar trend in their degradation rate except the 60 min scaffolds. The coaxial scaffold had significantly less mass loss than the bilayer PCL/PLGA scaffold with 1.348% and 18.3%, respectively. The mechanical properties of the fibrous membranes were measured and the coaxial scaffolds showed greater tensile strength and elongation at break (%) compared to the bilayer scaffolds. According to the results obtained in this study, it can be concluded that a scaffold made with a coaxial needle is more suitable for tissue engineering applications due to the improved quality and functionality of the resulting polymeric membrane compared to the basic electrospinning process. However, whilst fabricating a vascular graft is the main aim of this research work, the biological data will not present in this paper.
Collapse
Affiliation(s)
- Morteza Bazgir
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (M.B.); (M.Y.)
| | - Wei Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, China;
- Advanced Polymer Materials Research Center, Sichuan University, Shishi 362700, China
| | - Ximu Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering, Higher Education and Stomatological Hospital, Chongqing Medical University, Chongqing 401174, China;
| | - Jacobo Elies
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK;
| | - Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91779-4897, Iran;
| | - Phil Coates
- Interdisciplinary Research Centre in Polymer Science and Technology (Polymer IRC), University of Bradford, Bradford BD7 1DP, UK;
| | - Mansour Youseffi
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (M.B.); (M.Y.)
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (M.B.); (M.Y.)
- Interdisciplinary Research Centre in Polymer Science and Technology (Polymer IRC), University of Bradford, Bradford BD7 1DP, UK;
| |
Collapse
|
24
|
Oxygen Delivery Approaches to Augment Cell Survival After Myocardial Infarction: Progress and Challenges. Cardiovasc Toxicol 2021; 22:207-224. [PMID: 34542796 DOI: 10.1007/s12012-021-09696-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Myocardial infarction (MI), triggered by blockage of a coronary artery, remains the most common cause of death worldwide. After MI, the capability of providing sufficient blood and oxygen significantly decreases in the heart. This event leads to depletion of oxygen from cardiac tissue and consequently leads to massive cardiac cell death due to hypoxemia. Over the past few decades, many studies have been carried out to discover acceptable approaches to treat MI. However, very few have addressed the crucial role of efficient oxygen delivery to the injured heart. Thus, various strategies were developed to increase the delivery of oxygen to cardiac tissue and improve its function. Here, we have given an overall discussion of the oxygen delivery mechanisms and how the current technologies are employed to treat patients suffering from MI, including a comprehensive view on three major technical approaches such as oxygen therapy, hemoglobin-based oxygen carriers (HBOCs), and oxygen-releasing biomaterials (ORBs). Although oxygen therapy and HBOCs have shown promising results in several animal and clinical studies, they still have a few drawbacks which limit their effectiveness. More recent studies have investigated the efficacy of ORBs which may play a key role in the future of oxygenation of cardiac tissue. In addition, a summary of conducted studies under each approach and the remaining challenges of these methods are discussed.
Collapse
|
25
|
Polonchuk L, Surija L, Lee MH, Sharma P, Liu Chung Ming C, Richter F, Ben-Sefer E, Rad MA, Mahmodi Sheikh Sarmast H, Shamery WA, Tran HA, Vettori L, Haeusermann F, Filipe EC, Rnjak-Kovacina J, Cox T, Tipper J, Kabakova I, Gentile C. Towards engineering heart tissues from bioprinted cardiac spheroids. Biofabrication 2021; 13. [PMID: 34265755 DOI: 10.1088/1758-5090/ac14ca] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
Currentin vivoandin vitromodels fail to accurately recapitulate the human heart microenvironment for biomedical applications. This study explores the use of cardiac spheroids (CSs) to biofabricate advancedin vitromodels of the human heart. CSs were created from human cardiac myocytes, fibroblasts and endothelial cells (ECs), mixed within optimal alginate/gelatin hydrogels and then bioprinted on a microelectrode plate for drug testing. Bioprinted CSs maintained their structure and viability for at least 30 d after printing. Vascular endothelial growth factor (VEGF) promoted EC branching from CSs within hydrogels. Alginate/gelatin-based hydrogels enabled spheroids fusion, which was further facilitated by addition of VEGF. Bioprinted CSs contracted spontaneously and under stimulation, allowing to record contractile and electrical signals on the microelectrode plates for industrial applications. Taken together, our findings indicate that bioprinted CSs can be used to biofabricate human heart tissues for long termin vitrotesting. This has the potential to be used to study biochemical, physiological and pharmacological features of human heart tissue.
Collapse
Affiliation(s)
- Liudmila Polonchuk
- F Hoffmann-La Roche AG Research and Development Division, Pharmaceutical Sciences, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel, Basel-Stadt CH-4070, Switzerland
| | - Lydia Surija
- The University of Sydney Faculty of Medicine and Health, Kolling Building, Kolling Institute, St Leonards, Sydney, NSW 2065, Australia
| | - Min Ho Lee
- The University of Sydney Faculty of Medicine and Health, Kolling Building, Kolling Institute, St Leonards, Sydney, NSW 2065, Australia
| | - Poonam Sharma
- The University of Sydney Faculty of Medicine and Health, Kolling Building, Kolling Institute, St Leonards, Sydney, NSW 2065, Australia.,The University of Newcastle Faculty of Health and Medicine, University Drive, Callaghan, NSW 2308, Australia.,University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Clara Liu Chung Ming
- University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Florian Richter
- The University of Sydney Faculty of Medicine and Health, Kolling Building, Kolling Institute, St Leonards, Sydney, NSW 2065, Australia
| | - Eitan Ben-Sefer
- University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Maryam Alsadat Rad
- University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Hadi Mahmodi Sheikh Sarmast
- University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Wafa Al Shamery
- University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Hien A Tran
- School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Laura Vettori
- University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Fabian Haeusermann
- F Hoffmann-La Roche AG Research and Development Division, Pharmaceutical Sciences, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel, Basel-Stadt CH-4070, Switzerland
| | - Elysse C Filipe
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia.,St Vincent Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | | | - Thomas Cox
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia.,St Vincent Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Joanne Tipper
- University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Irina Kabakova
- University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| | - Carmine Gentile
- The University of Sydney Faculty of Medicine and Health, Kolling Building, Kolling Institute, St Leonards, Sydney, NSW 2065, Australia.,University of Technology Sydney Faculty of Engineering and IT, Building 11, Level 10, Room 115, Ultimo, Sydney, NSW 2007, Australia
| |
Collapse
|
26
|
Scott L, Jurewicz I, Jeevaratnam K, Lewis R. Carbon Nanotube-Based Scaffolds for Cardiac Tissue Engineering-Systematic Review and Narrative Synthesis. Bioengineering (Basel) 2021; 8:80. [PMID: 34207645 PMCID: PMC8228669 DOI: 10.3390/bioengineering8060080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/21/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease is currently the top global cause of death, however, research into new therapies is in decline. Tissue engineering is a solution to this crisis and in combination with the use of carbon nanotubes (CNTs), which have drawn recent attention as a biomaterial, could facilitate the development of more dynamic and complex in vitro models. CNTs' electrical conductivity and dimensional similarity to cardiac extracellular proteins provide a unique opportunity to deliver scaffolds with stimuli that mimic the native cardiac microenvironment in vitro more effectively. This systematic review aims to evaluate the use and efficacy of CNTs for cardiac tissue scaffolds and was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Three databases were searched: PubMed, Scopus, and Web of Science. Papers resulting from these searches were then subjected to analysis against pre-determined inclusion and quality appraisal criteria. From 249 results, 27 manuscripts met the criteria and were included in this review. Neonatal rat cardiomyocytes were most commonly used in the experiments, with multi-walled CNTs being most common in tissue scaffolds. Immunofluorescence was the experimental technique most frequently used, which was employed for the staining of cardiac-specific proteins relating to contractile and electrophysiological function.
Collapse
Affiliation(s)
- Louie Scott
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, UK; (L.S.); (K.J.)
| | - Izabela Jurewicz
- Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK;
| | - Kamalan Jeevaratnam
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, UK; (L.S.); (K.J.)
| | - Rebecca Lewis
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, UK; (L.S.); (K.J.)
| |
Collapse
|
27
|
Pushp P, Nogueira DES, Rodrigues CAV, Ferreira FC, Cabral JMS, Gupta MK. A Concise Review on Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Personalized Regenerative Medicine. Stem Cell Rev Rep 2021; 17:748-776. [PMID: 33098306 DOI: 10.1007/s12015-020-10061-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
The induced pluripotent stem cells (iPSCs) are derived from somatic cells by using reprogramming factors such as Oct4, Sox2, Klf4, and c-Myc (OSKM) or Oct4, Sox2, Nanog and Lin28 (OSNL). They resemble embryonic stem cells (ESCs) and have the ability to differentiate into cell lineage of all three germ-layer, including cardiomyocytes (CMs). The CMs can be generated from iPSCs by inducing embryoid bodies (EBs) formation and treatment with activin A, bone morphogenic protein 4 (BMP4), and inhibitors of Wnt signaling. However, these iPSC-derived CMs are a heterogeneous population of cells and require purification and maturation to mimic the in vivo CMs. The matured CMs can be used for various therapeutic purposes in regenerative medicine by cardiomyoplasty or through the development of tissue-engineered cardiac patches. In recent years, significant advancements have been made in the isolation of iPSC and their differentiation, purification, and maturation into clinically usable CMs. Newer small molecules have also been identified to substitute the reprogramming factors for iPSC generation as well as for direct differentiation of somatic cells into CMs without an intermediary pluripotent state. This review provides a concise update on the generation of iPSC-derived CMs and their application in personalized cardiac regenerative medicine. It also discusses the current limitations and challenges in the application of iPSC-derived CMs. Graphical abstract.
Collapse
Affiliation(s)
- Pallavi Pushp
- Department of Biotechnology, Institute of Engineering and Technology (IET), Bundelkhand University, Jhansi, Uttar Pradesh, 284128, India
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769 008, India
| | - Diogo E S Nogueira
- Department of Bioengineering, and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carlos A V Rodrigues
- Department of Bioengineering, and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Frederico C Ferreira
- Department of Bioengineering, and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering, and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769 008, India.
| |
Collapse
|
28
|
Shams Z, Akbari B, Rajabi S, Aghdami N. Bioinspired Device Improves The Cardiogenic Potential of Cardiac Progenitor Cells. CELL JOURNAL 2021; 23:129-136. [PMID: 33650829 PMCID: PMC7944134 DOI: 10.22074/cellj.2021.7232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/09/2019] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Functional cardiac tissue engineering holds promise as a candidate approach for myocardial infarction. Tissue engineering has emerged to generate functional tissue constructs and provide an alternative means to repair and regenerate damaged heart tissues. MATERIALS AND METHODS In this experimental study, we fabricated a composite polycaprolactone (PCL)/gelatine electrospun scaffold with aligned nanofibres. The electrospinning parameters and optimum proportion of the PCL/ gelatine were tested to design a scaffold with aligned and homogenized nanofibres. Using scanning electron microscopy (SEM) and mechanophysical testes, the PCL/gelatine composite scaffold with a ratio of 70:30 was selected. In order to simulate cardiac contraction, a developed mechanical loading device (MLD) was used to apply a mechanical stress with specific frequency and tensile rate to cardiac progenitor cells (CPCs) in the direction of the aligned nanofibres. Cell metabolic determination of CPCs was performed using real-time polymerase chain reaction(RT-PCR). RESULTS Physicochemical and mechanical characterization showed that the PCL/gelatine composite scaffold with a ratio of 70:30 was the best sample. In vitro analysis showed that the scaffold supported active metabolism and proliferation of CPCs, and the generation of uniform cellular constructs after five days. Real-time PCR analysis revealed elevated expressions of the specific genes for synchronizing beating cells (MYH-6, TTN and CX-43) on the dynamic scaffolds compared to the control sample with a static culture system. CONCLUSION Our study provides a robust platform for generation of synchronized beating cells on a nanofibre patch that can be used in cardiac tissue engineering applications in the near future.
Collapse
Affiliation(s)
- Zahra Shams
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Babak Akbari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Sarah Rajabi
- Department of Cell Engineering, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Nasser Aghdami
- Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
29
|
Clasky AJ, Watchorn JD, Chen PZ, Gu FX. From prevention to diagnosis and treatment: Biomedical applications of metal nanoparticle-hydrogel composites. Acta Biomater 2021; 122:1-25. [PMID: 33352300 DOI: 10.1016/j.actbio.2020.12.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Recent advances in biomaterials integrate metal nanoparticles with hydrogels to generate composite materials that exhibit new or improved properties. By precisely controlling the composition, arrangement and interactions of their constituents, these hybrid materials facilitate biomedical applications through myriad approaches. In this work we seek to highlight three popular frameworks for designing metal nanoparticle-hydrogel hybrid materials for biomedical applications. In the first approach, the properties of metal nanoparticles are incorporated into a hydrogel matrix such that the composite is selectively responsive to stimuli such as light and magnetic flux, enabling precisely activated therapeutics and self-healing biomaterials. The second approach mediates the dynamic reorganization of metal nanoparticles based on environment-directed changes in hydrogel structure, leading to chemosensing, microbial and viral detection, and drug-delivery capabilities. In the third approach, the hydrogel matrix spatially arranges metal nanoparticles to produce metamaterials or passively enhance nanoparticle properties to generate improved substrates for biomedical applications including tissue engineering and wound healing. This article reviews the construction, properties and biomedical applications of metal nanoparticle-hydrogel composites, with a focus on how they help to prevent, diagnose and treat diseases. Discussion includes how the composites lead to new or improved properties, how current biomedical research leverages these properties and the emerging directions in this growing field.
Collapse
|
30
|
Chandika P, Heo SY, Kim TH, Oh GW, Kim GH, Kim MS, Jung WK. Recent advances in biological macromolecule based tissue-engineered composite scaffolds for cardiac tissue regeneration applications. Int J Biol Macromol 2020; 164:2329-2357. [DOI: 10.1016/j.ijbiomac.2020.08.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022]
|
31
|
Patino-Guerrero A, Veldhuizen J, Zhu W, Migrino RQ, Nikkhah M. Three-dimensional scaffold-free microtissues engineered for cardiac repair. J Mater Chem B 2020; 8:7571-7590. [PMID: 32724973 PMCID: PMC8314954 DOI: 10.1039/d0tb01528h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases, including myocardial infarction (MI), persist as the leading cause of mortality and morbidity worldwide. The limited regenerative capacity of the myocardium presents significant challenges specifically for the treatment of MI and, subsequently, heart failure (HF). Traditional therapeutic approaches mainly rely on limiting the induced damage or the stress on the remaining viable myocardium through pharmacological regulation of remodeling mechanisms, rather than replacement or regeneration of the injured tissue. The emerging alternative regenerative medicine-based approaches have focused on restoring the damaged myocardial tissue with newly engineered functional and bioinspired tissue units. Cardiac regenerative medicine approaches can be broadly categorized into three groups: cell-based therapies, scaffold-based cardiac tissue engineering, and scaffold-free cardiac tissue engineering. Despite significant advancements, however, the clinical translation of these approaches has been critically hindered by two key obstacles for successful structural and functional replacement of the damaged myocardium, namely: poor engraftment of engineered tissue into the damaged cardiac muscle and weak electromechanical coupling of transplanted cells with the native tissue. To that end, the integration of micro- and nanoscale technologies along with recent advancements in stem cell technologies have opened new avenues for engineering of structurally mature and highly functional scaffold-based (SB-CMTs) and scaffold-free cardiac microtissues (SF-CMTs) with enhanced cellular organization and electromechanical coupling for the treatment of MI and HF. In this review article, we will present the state-of-the-art approaches and recent advancements in the engineering of SF-CMTs for myocardial repair.
Collapse
|
32
|
Xu C, Okpokwasili C, Huang Y, Shi X, Wu J, Liao J, Tang L, Hong Y. Optimizing Anisotropic Polyurethane Scaffolds to Mechanically Match with Native Myocardium. ACS Biomater Sci Eng 2020; 6:2757-2769. [PMID: 33313394 PMCID: PMC7725265 DOI: 10.1021/acsbiomaterials.9b01860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biodegradable cardiac patch is desirable to possess mechanical properties mimicking native myocardium for heart infarction treatment. We fabricated a series of anisotropic and biodegradable polyurethane porous scaffolds via thermally induced phase separation (TIPS) and tailored their mechanical properties by using various polyurethanes with different soft segments and varying polymer concentrations. The uniaxial mechanical properties, suture retention strength, ball-burst strength, and biaxial mechanical properties of the anisotropic porous scaffolds were optimized to mechanically match native myocardium. The optimal anisotropic scaffold had a ball burst strength (20.7 ± 1.5 N) comparable to that of native porcine myocardium (20.4 ± 6.0 N) and showed anisotropic behavior close to biaxial stretching behavior of the native porcine myocardium. Furthermore, the optimized porous scaffold was combined with a porcine myocardium-derived hydrogel to form a biohybrid scaffold. The biohybrid scaffold showed morphologies similar to the decellularized porcine myocardial matrix. This combination did not affect the mechanical properties of the synthetic scaffold alone. After in vivo rat subcutaneous implantation, the biohybrid scaffolds showed minimal immune response and exhibited higher cell penetration than the polyurethane scaffold alone. This biohybrid scaffold with biomimetic mechanics and good tissue compatibility would have great potential to be applied as a biodegradable acellular cardiac patch for myocardial infarction treatment.
Collapse
Affiliation(s)
- Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chuka Okpokwasili
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yihui Huang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaodan Shi
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinglei Wu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
33
|
Baei P, Hosseini M, Baharvand H, Pahlavan S. Electrically conductive materials for in vitro cardiac microtissue engineering. J Biomed Mater Res A 2020; 108:1203-1213. [DOI: 10.1002/jbm.a.36894] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Payam Baei
- Department of Stem Cells and Developmental BiologyCell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| | - Mahya Hosseini
- Department of Stem Cells and Developmental BiologyCell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental BiologyCell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
- Department of Developmental BiologyUniversity of Science and Culture Tehran Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental BiologyCell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR Tehran Iran
| |
Collapse
|
34
|
Pryjmaková J, Kaimlová M, Hubáček T, Švorčík V, Siegel J. Nanostructured Materials for Artificial Tissue Replacements. Int J Mol Sci 2020; 21:E2521. [PMID: 32260477 PMCID: PMC7178059 DOI: 10.3390/ijms21072521] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 02/04/2023] Open
Abstract
This paper review current trends in applications of nanomaterials in tissue engineering. Nanomaterials applicable in this area can be divided into two groups: organic and inorganic. Organic nanomaterials are especially used for the preparation of highly porous scaffolds for cell cultivation and are represented by polymeric nanofibers. Inorganic nanomaterials are implemented as they stand or dispersed in matrices promoting their functional properties while preserving high level of biocompatibility. They are used in various forms (e.g., nano- particles, -tubes and -fibers)-and when forming the composites with organic matrices-are able to enhance many resulting properties (biologic, mechanical, electrical and/or antibacterial). For this reason, this contribution points especially to such type of composite nanomaterials. Basic information on classification, properties and application potential of single nanostructures, as well as complex scaffolds suitable for 3D tissues reconstruction is provided. Examples of practical usage of these structures are demonstrated on cartilage, bone, neural, cardiac and skin tissue regeneration and replacements. Nanomaterials open up new ways of treatments in almost all areas of current tissue regeneration, especially in tissue support or cell proliferation and growth. They significantly promote tissue rebuilding by direct replacement of damaged tissues.
Collapse
Affiliation(s)
- Jana Pryjmaková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.P.); (M.K.); (V.Š.)
| | - Markéta Kaimlová
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.P.); (M.K.); (V.Š.)
| | - Tomáš Hubáček
- Soil & Water Research Infrastructure, Biology Centre CAS, Na Sádkách 7, 370 05 České Budějovice, Czech Republic;
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.P.); (M.K.); (V.Š.)
| | - Jakub Siegel
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.P.); (M.K.); (V.Š.)
| |
Collapse
|
35
|
Kuhnt T, Marroquín García R, Camarero-Espinosa S, Dias A, Ten Cate AT, van Blitterswijk CA, Moroni L, Baker MB. Poly(caprolactone-co-trimethylenecarbonate) urethane acrylate resins for digital light processing of bioresorbable tissue engineering implants. Biomater Sci 2020; 7:4984-4989. [PMID: 31667486 DOI: 10.1039/c9bm01042d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To exploit the usability of Digital Light Processing (DLP) in regenerative medicine, biodegradable, mechanically customizable and well-defined polyester urethane acrylate resins were synthesized based on poly(caprolactone-co-trimethlenecarbonate). By controlling the monomer ratio, the resultant fabricated constructs showed tunable mechanical properties, degradation and attached hMSC morphologies.
Collapse
Affiliation(s)
- Tobias Kuhnt
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Belviso I, Romano V, Sacco AM, Ricci G, Massai D, Cammarota M, Catizone A, Schiraldi C, Nurzynska D, Terzini M, Aldieri A, Serino G, Schonauer F, Sirico F, D’Andrea F, Montagnani S, Di Meglio F, Castaldo C. Decellularized Human Dermal Matrix as a Biological Scaffold for Cardiac Repair and Regeneration. Front Bioeng Biotechnol 2020; 8:229. [PMID: 32266249 PMCID: PMC7099865 DOI: 10.3389/fbioe.2020.00229] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
The complex and highly organized environment in which cells reside consists primarily of the extracellular matrix (ECM) that delivers biological signals and physical stimuli to resident cells. In the native myocardium, the ECM contributes to both heart compliance and cardiomyocyte maturation and function. Thus, myocardium regeneration cannot be accomplished if cardiac ECM is not restored. We hypothesize that decellularized human skin might make an easily accessible and viable alternate biological scaffold for cardiac tissue engineering (CTE). To test our hypothesis, we decellularized specimens of both human skin and human myocardium and analyzed and compared their composition by histological methods and quantitative assays. Decellularized dermal matrix was then cut into 600-μm-thick sections and either tested by uniaxial tensile stretching to characterize its mechanical behavior or used as three-dimensional scaffold to assess its capability to support regeneration by resident cardiac progenitor cells (hCPCs) in vitro. Histological and quantitative analyses of the dermal matrix provided evidence of both effective decellularization with preserved tissue architecture and retention of ECM proteins and growth factors typical of cardiac matrix. Further, the elastic modulus of the dermal matrix resulted comparable with that reported in literature for the human myocardium and, when tested in vitro, dermal matrix resulted a comfortable and protective substrate promoting and supporting hCPC engraftment, survival and cardiomyogenic potential. Our study provides compelling evidence that dermal matrix holds promise as a fully autologous and cost-effective biological scaffold for CTE.
Collapse
Affiliation(s)
- Immacolata Belviso
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Veronica Romano
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Anna Maria Sacco
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Diana Massai
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marcella Cammarota
- Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Angiolina Catizone
- Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Daria Nurzynska
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Mara Terzini
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Alessandra Aldieri
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Gianpaolo Serino
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Fabrizio Schonauer
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Felice Sirico
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Francesco D’Andrea
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Franca Di Meglio
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Clotilde Castaldo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
37
|
McMahan S, Taylor A, Copeland KM, Pan Z, Liao J, Hong Y. Current advances in biodegradable synthetic polymer based cardiac patches. J Biomed Mater Res A 2020; 108:972-983. [PMID: 31895482 DOI: 10.1002/jbm.a.36874] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 12/21/2022]
Abstract
The number of people affected by heart disease such as coronary artery disease and myocardial infarction increases at an alarming rate each year. Currently, the methods to treat these diseases are restricted to lifestyle change, pharmaceuticals, and eventually heart transplant if the condition is severe enough. While these treatment options are the standard for caring for patients who suffer from heart disease, limited regenerative ability of the heart restricts the effectiveness of treatment and may lead to other heart-related health problems in the future. Because of the increasing need for more effective therapeutic technologies for treating diseased heart tissue, cardiac patches are now a large focus for researchers. The cardiac patches are designed to be integrated into the patients' natural tissue to introduce mechanical support and healing to the damaged areas. As a promising alternative, synthetic biodegradable polymer based biomaterials can be easily manipulated to customize material properties, as well as possess certain desired characteristics for cardiac patch use. This comprehensive review summarizes recent works on synthetic biodegradable cardiac patches implanted into infarcted animal models. In addition, this review describes the basic requirements that should be met for cardiac patch development, and discusses the inspirations to designing new biomaterials and technologies for cardiac patches.
Collapse
Affiliation(s)
- Sara McMahan
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| | - Alan Taylor
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| | - Katherine M Copeland
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| | - Zui Pan
- College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
38
|
Gu H, Bertrand T, Boehler Q, Chautems C, Vasilyev NV, Nelson BJ. Magnetically Active Cardiac Patches as an Untethered, Non-Blood Contacting Ventricular Assist Device. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2000726. [PMID: 33437567 PMCID: PMC7788498 DOI: 10.1002/advs.202000726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/20/2020] [Indexed: 05/03/2023]
Abstract
Patients suffering from heart failure often require circulatory support using ventricular assist devices (VADs). However, most existing VADs provide nonpulsatile flow, involve direct contact between the blood flow and the device's lumen and moving components, and require a driveline to connect to an external power source. These design features often lead to complications such as gastrointestinal bleeding, device thrombosis, and driveline infections. Here, a concept of magnetically active cardiac patches (MACPs) that can potentially function as non-blood contacting, untethered pulsatile VADs inside a magnetic actuationsystem is reported. The MACPs, which are composed of permanent magnets and 3D-printed patches, are attached to the epicardial surfaces, thus avoiding direct contact with the blood flow. They provide powerful actuation assisting native heart pumping inside a magnetic actuation system. In ex vivo experiments on a healthy pig's heart, it is shown that the ventricular ejection fractions are as high as 37% in the left ventricle and 63% in the right ventricle. Non-blood contacting, untethered VADs can eliminate the risk of serious complications associated with existing devices, and provide an alternative solution for myocardial training and therapy for patients with heart failure.
Collapse
Affiliation(s)
- Hongri Gu
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| | - Thibaud Bertrand
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| | - Quentin Boehler
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| | - Christophe Chautems
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| | - Nikolay V. Vasilyev
- Department of Cardiac SurgeryBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Bradley J. Nelson
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| |
Collapse
|
39
|
Rosellini E, Lazzeri L, Maltinti S, Vanni F, Barbani N, Cascone MG. Development and characterization of a suturable biomimetic patch for cardiac applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:126. [PMID: 31728643 DOI: 10.1007/s10856-019-6327-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
3D scaffolds used to repair damaged tissues should be able to mimic both composition and functions of natural extracellular matrix, which is mainly composed of polysaccharides and proteins. In our previous research new biomimetic sponges, based on blends of alginate with gelatin, were produced and characterized for myocardial tissue engineering applications. It was observed that these scaffolds can potentially function as a promising cardiac extracellular matrix substitute, but a reinforcement is required to improve their suturing properties. Aim of the present work was the development of a suturable biomimetic patch by the inclusion of a synthetic mesh within an alginate/gelatin scaffold. The mesh, produced by dry spinning, was made of eight superimposed layers of polycaprolactone microfibers, each one rotated of 45° with respect to the adjacent one. Reinforced scaffolds were obtained through the use of a mold, specially designed to place the fibrous mesh exactly in the center of the sponge. Both the reinforcement mesh and the reinforced scaffold were characterized. A perfect integration between the mesh and the sponge was observed. The fibrous mesh reduced the capacity of the sponge to absorb water, but the degree of hydrophilicity of the material was still comparable with that of natural cardiac tissue. The reinforced system showed a suitable stability in aqueous environment and it resulted much more resistant to suturing than not reinforced scaffold and even than human arteries. Polycaprolactone mesh was not cytotoxic and the reinforced scaffold was able to support cardiomyocytes adhesion and proliferation. Overall, the obtained results confirmed that the choice to modify the alginate/gelatin sponges through the insertion of an appropriate reinforcement system turned out to be correct in view of their potential use in myocardial tissue engineering.
Collapse
Affiliation(s)
- Elisabetta Rosellini
- Department of Civil and Industrial Engineering (DICI), University of Pisa, Largo Lucio Lazzarino, 56126, Pisa, Italy
- Inter-University Center for the 3Rs Principles in Teaching & Research (Centro 3R), 56126, Pisa, Italy
| | - Luigi Lazzeri
- Department of Civil and Industrial Engineering (DICI), University of Pisa, Largo Lucio Lazzarino, 56126, Pisa, Italy
- Inter-University Center for the 3Rs Principles in Teaching & Research (Centro 3R), 56126, Pisa, Italy
| | - Simona Maltinti
- Department of Civil and Industrial Engineering (DICI), University of Pisa, Largo Lucio Lazzarino, 56126, Pisa, Italy
| | - Francesca Vanni
- Department of Civil and Industrial Engineering (DICI), University of Pisa, Largo Lucio Lazzarino, 56126, Pisa, Italy
| | - Niccoletta Barbani
- Department of Civil and Industrial Engineering (DICI), University of Pisa, Largo Lucio Lazzarino, 56126, Pisa, Italy
| | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering (DICI), University of Pisa, Largo Lucio Lazzarino, 56126, Pisa, Italy.
- Inter-University Center for the 3Rs Principles in Teaching & Research (Centro 3R), 56126, Pisa, Italy.
| |
Collapse
|
40
|
Mattapally S, Pawlik KM, Fast VG, Zumaquero E, Lund FE, Randall TD, Townes TM, Zhang J. Human Leukocyte Antigen Class I and II Knockout Human Induced Pluripotent Stem Cell-Derived Cells: Universal Donor for Cell Therapy. J Am Heart Assoc 2019; 7:e010239. [PMID: 30488760 PMCID: PMC6405542 DOI: 10.1161/jaha.118.010239] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background We aim to generate a line of “universal donor” human induced pluripotent stem cells (hiPSCs) that are nonimmunogenic and, therefore, can be used to derive cell products suitable for allogeneic transplantation. Methods and Results hiPSCs carrying knockout mutations for 2 key components (β2 microglobulin and class II major histocompatibility class transactivator) of major histocompatibility complexes I and II (ie, human leukocyte antigen [HLA] I/II knockout hiPSCs) were generated using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated protein 9 (Cas9) gene‐editing system and differentiated into cardiomyocytes. Pluripotency‐gene expression and telomerase activity in wild‐type (WT) and HLAI/II knockout hiPSCs, cardiomyocyte marker expression in WT and HLAI/II knockout hiPSC‐derived cardiomyocytes, and assessments of electrophysiological properties (eg, conduction velocity, action‐potential and calcium transient half‐decay times, and calcium transient increase times) in spheroid‐fusions composed of WT and HLAI/II knockout cardiomyocytes, were similar. However, the rates of T‐cell activation before (≈21%) and after (≈24%) exposure to HLAI/II knockout hiPSC‐derived cardiomyocytes were nearly indistinguishable and dramatically lower than after exposure to WT hiPSC‐derived cardiomyocytes (≈75%), and when WT and HLAI/II knockout hiPSC‐derived cardiomyocyte spheroids were cultured with human peripheral blood mononuclear cells, the WT hiPSC‐derived cardiomyocyte spheroids were smaller and displayed contractile irregularities. Finally, expression of HLA‐E and HLA‐F was inhibited in HLAI/II knockout cardiomyocyte spheroids after coculture with human peripheral blood mononuclear cells, although HLA‐G was not inhibited; these results are consistent with the essential role of class II major histocompatibility class transactivator in transcriptional activation of the HLA‐E and HLA‐F genes, but not the HLA‐G gene. Expression of HLA‐G is known to inhibit natural killer cell recognition and killing of cells that lack other HLAs. Conclusions HLAI/II knockout hiPSCs can be differentiated into cardiomyocytes that induce little or no activity in human immune cells and, consequently, are suitable for allogeneic transplantation.
Collapse
Affiliation(s)
- Saidulu Mattapally
- 1 Department of Biomedical Engineering School of Medicine School of Engineering The University of Alabama at Birmingham AL
| | - Kevin M Pawlik
- 2 Department of Biochemistry and Molecular Genetics School of Medicine The University of Alabama at Birmingham AL
| | - Vladimir G Fast
- 1 Department of Biomedical Engineering School of Medicine School of Engineering The University of Alabama at Birmingham AL
| | - Esther Zumaquero
- 3 Department of Microbiology School of Medicine The University of Alabama at Birmingham AL
| | - Frances E Lund
- 3 Department of Microbiology School of Medicine The University of Alabama at Birmingham AL
| | - Troy D Randall
- 4 Department of Medicine/Rheumatology School of Medicine The University of Alabama at Birmingham AL
| | - Tim M Townes
- 2 Department of Biochemistry and Molecular Genetics School of Medicine The University of Alabama at Birmingham AL
| | - Jianyi Zhang
- 1 Department of Biomedical Engineering School of Medicine School of Engineering The University of Alabama at Birmingham AL
| |
Collapse
|
41
|
Simon LR, Masters KS. Disease-inspired tissue engineering: Investigation of cardiovascular pathologies. ACS Biomater Sci Eng 2019; 6:2518-2532. [PMID: 32974421 DOI: 10.1021/acsbiomaterials.9b01067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Once focused exclusively on the creation of tissues to repair or replace diseased or damaged organs, the field of tissue engineering has undergone an important evolution in recent years. Namely, tissue engineering techniques are increasingly being applied to intentionally generate pathological conditions. Motivated in part by the wide gap between 2D cultures and animal models in the current disease modeling continuum, disease-inspired tissue-engineered platforms have numerous potential applications, and may serve to advance our understanding and clinical treatment of various diseases. This review will focus on recent progress toward generating tissue-engineered models of cardiovascular diseases, including cardiac hypertrophy, fibrosis, and ischemia reperfusion injury, atherosclerosis, and calcific aortic valve disease, with an emphasis on how these disease-inspired platforms can be used to decipher disease etiology. Each pathology is discussed in the context of generating both disease-specific cells as well as disease-specific extracellular environments, with an eye toward future opportunities to integrate different tools to yield more complex and physiologically relevant culture platforms. Ultimately, the development of effective disease treatments relies upon our ability to develop appropriate experimental models; as cardiovascular diseases are the leading cause of death worldwide, the insights yielded by improved in vitro disease modeling could have substantial ramifications for public health and clinical care.
Collapse
Affiliation(s)
- LaTonya R Simon
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705
| | - Kristyn S Masters
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705.,Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
42
|
|
43
|
Biomimetic dense lamellar scaffold based on a colloidal complex of the polyaniline (PANi) and biopolymers for electroactive and physiomechanical stimulation of the myocardial. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123650] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Vogt L, Rivera LR, Liverani L, Piegat A, El Fray M, Boccaccini AR. Poly(ε-caprolactone)/poly(glycerol sebacate) electrospun scaffolds for cardiac tissue engineering using benign solvents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109712. [DOI: 10.1016/j.msec.2019.04.091] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/19/2019] [Accepted: 04/29/2019] [Indexed: 11/30/2022]
|
45
|
Alonzo M, AnilKumar S, Roman B, Tasnim N, Joddar B. 3D Bioprinting of cardiac tissue and cardiac stem cell therapy. Transl Res 2019; 211:64-83. [PMID: 31078513 PMCID: PMC6702075 DOI: 10.1016/j.trsl.2019.04.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
Cardiovascular tissue engineering endeavors to repair or regenerate damaged or ineffective blood vessels, heart valves, and cardiac muscle. Current strategies that aim to accomplish such a feat include the differentiation of multipotent or pluripotent stem cells on appropriately designed biomaterial scaffolds that promote the development of mature and functional cardiac tissue. The advent of additive manufacturing 3D bioprinting technology further advances the field by allowing heterogenous cell types, biomaterials, and signaling factors to be deposited in precisely organized geometries similar to those found in their native counterparts. Bioprinting techniques to fabricate cardiac tissue in vitro include extrusion, inkjet, laser-assisted, and stereolithography with bioinks that are either synthetic or naturally-derived. The article further discusses the current practices for postfabrication conditioning of 3D engineered constructs for effective tissue development and stability, then concludes with prospective points of interest for engineering cardiac tissues in vitro. Cardiovascular three-dimensional bioprinting has the potential to be translated into the clinical setting and can further serve to model and understand biological principles that are at the root of cardiovascular disease in the laboratory.
Collapse
Affiliation(s)
- Matthew Alonzo
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas
| | - Shweta AnilKumar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas
| | - Brian Roman
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas
| | - Nishat Tasnim
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas
| | - Binata Joddar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, Texas; Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas.
| |
Collapse
|
46
|
Talebian S, Mehrali M, Taebnia N, Pennisi CP, Kadumudi FB, Foroughi J, Hasany M, Nikkhah M, Akbari M, Orive G, Dolatshahi‐Pirouz A. Self-Healing Hydrogels: The Next Paradigm Shift in Tissue Engineering? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801664. [PMID: 31453048 PMCID: PMC6702654 DOI: 10.1002/advs.201801664] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 03/04/2019] [Indexed: 05/18/2023]
Abstract
Given their durability and long-term stability, self-healable hydrogels have, in the past few years, emerged as promising replacements for the many brittle hydrogels currently being used in preclinical or clinical trials. To this end, the incompatibility between hydrogel toughness and rapid self-healing remains unaddressed, and therefore most of the self-healable hydrogels still face serious challenges within the dynamic and mechanically demanding environment of human organs/tissues. Furthermore, depending on the target tissue, the self-healing hydrogels must comply with a wide range of properties including electrical, biological, and mechanical. Notably, the incorporation of nanomaterials into double-network hydrogels is showing great promise as a feasible way to generate self-healable hydrogels with the above-mentioned attributes. Here, the recent progress in the development of multifunctional and self-healable hydrogels for various tissue engineering applications is discussed in detail. Their potential applications within the rapidly expanding areas of bioelectronic hydrogels, cyborganics, and soft robotics are further highlighted.
Collapse
Affiliation(s)
- Sepehr Talebian
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityUniversity of WollongongNSW2522Australia
- Illawarra Health and Medical Research InstituteUniversity of WollongongWollongongNSW2522Australia
| | - Mehdi Mehrali
- DTU NanotechCenter for Intestinal Absorption and Transport of BiopharmaceuticalsTechnical University of DenmarkLyngby2800KgsDenmark
| | - Nayere Taebnia
- DTU NanotechCenter for Intestinal Absorption and Transport of BiopharmaceuticalsTechnical University of DenmarkLyngby2800KgsDenmark
| | - Cristian Pablo Pennisi
- Laboratory for Stem Cell ResearchDepartment of Health Science and TechnologyAalborg UniversityFredrik Bajers vej 3B9220AalborgDenmark
| | - Firoz Babu Kadumudi
- DTU NanotechCenter for Intestinal Absorption and Transport of BiopharmaceuticalsTechnical University of DenmarkLyngby2800KgsDenmark
| | - Javad Foroughi
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityUniversity of WollongongNSW2522Australia
- Illawarra Health and Medical Research InstituteUniversity of WollongongWollongongNSW2522Australia
| | - Masoud Hasany
- DTU NanotechCenter for Intestinal Absorption and Transport of BiopharmaceuticalsTechnical University of DenmarkLyngby2800KgsDenmark
| | - Mehdi Nikkhah
- School of Biological Health and Systems Engineering (SBHSE)Arizona State UniversityTempeAZ85287USA
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
- Center for Biomedical ResearchUniversity of Victoria3800VictoriaCanada
- Center for Advanced Materials and Related TechnologiesUniversity of Victoria3800VictoriaCanada
| | - Gorka Orive
- NanoBioCel GroupLaboratory of PharmaceuticsSchool of PharmacyUniversity of the Basque Country UPV/EHUPaseo de la Universidad 701006Vitoria‐GasteizSpain
- Biomedical Research Networking Centre in BioengineeringBiomaterials, and Nanomedicine (CIBER‐BBN)Vitoria‐Gasteiz28029Spain
- University Institute for Regenerative Medicine and Oral Implantology – UIRMI (UPV/EHU‐Fundación Eduardo Anitua)Vitoria01007Spain
- BTI Biotechnology InstituteVitoria01007Spain
| | - Alireza Dolatshahi‐Pirouz
- DTU NanotechCenter for Intestinal Absorption and Transport of BiopharmaceuticalsTechnical University of DenmarkLyngby2800KgsDenmark
- Department of Dentistry‐Regenerative BiomaterialsRadboud University Medical CenterPhilips van Leydenlaan 25Nijmegen6525EXThe Netherlands
| |
Collapse
|
47
|
KC P, Hong Y, Zhang G. Cardiac tissue-derived extracellular matrix scaffolds for myocardial repair: advantages and challenges. Regen Biomater 2019; 6:185-199. [PMID: 31404421 PMCID: PMC6683951 DOI: 10.1093/rb/rbz017] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/04/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
Decellularized extracellular matrix (dECM) derived from myocardium has been widely explored as a nature scaffold for cardiac tissue engineering applications. Cardiac dECM offers many unique advantages such as preservation of organ-specific ECM microstructure and composition, demonstration of tissue-mimetic mechanical properties and retention of biochemical cues in favor of subsequent recellularization. However, current processes of dECM decellularization and recellularization still face many challenges including the need for balance between cell removal and extracellular matrix preservation, efficient recellularization of dECM for obtaining homogenous cell distribution, tailoring material properties of dECM for enhancing bioactivity and prevascularization of thick dECM. This review summarizes the recent progresses of using dECM scaffold for cardiac repair and discusses its major advantages and challenges for producing biomimetic cardiac patch.
Collapse
Affiliation(s)
- Pawan KC
- Department of Biomedical Engineering, The University of Akron, Olson Research Center, Room 301L, 260 S Forge Street, Akron, OH, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Room 240, Arlington, TX, USA
| | - Ge Zhang
- Department of Biomedical Engineering, The University of Akron, Olson Research Center, Room 301L, 260 S Forge Street, Akron, OH, USA
| |
Collapse
|
48
|
Soltan N, Ning L, Mohabatpour F, Papagerakis P, Chen X. Printability and Cell Viability in Bioprinting Alginate Dialdehyde-Gelatin Scaffolds. ACS Biomater Sci Eng 2019; 5:2976-2987. [PMID: 33405600 DOI: 10.1021/acsbiomaterials.9b00167] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three-dimensional (3D) bioprinting is a promising technique used to fabricate scaffolds from hydrogels with living cells. However, the printability of hydrogels in bioprinting has not been adequately studied. The aim of this study was to quantitatively characterize the printability and cell viability of alginate dialdehyde (ADA)-gelatin (Gel) hydrogels for bioprinting. ADA-Gel hydrogels of various concentrations were synthesized and characterized using Fourier transform infrared spectroscopy, along with rheological tests for measuring storage and loss moduli. Scaffolds (with an area of 11 × 11 mm) of 1, 2, and 13 layers were fabricated from ADA-Gel hydrogels using a 3D-bioplotter under printing conditions with and without the use of cross-linker, respectively, at room temperature and at 4 °C. Scaffolds were then quantitatively assessed in terms of the minimum printing pressure, quality of strands and pores, and structural integrity, which were combined together for the characterization of ADA-Gel printability. For the assessment of cell viability, scaffolds were bioprinted from ADA-Gel hydrogels with human umbilical vein endothelial cells (HUVECs) and rat Schwann cells and were then examined at day 7 with live/dead assay. HUVECs and Schwann cells were used as models to demonstrate biocompatibility for potential angiogenesis and nerve repair applications, respectively. Our results illustrated that ADA-Gel hydrogels with a loss tangent (ratio of loss modulus over storage modulus) between 0.24 and 0.28 could be printed in cross-linker with the best printability featured by uniform strands, square pores, and good structural integrity. Additionally, our results revealed that ADA-Gel hydrogels with an appropriate printability could maintain cell viability over 7 days. Combined together, this study presents a novel method to characterize the printability of hydrogels in bioprinting and illustrates that ADA-Gel hydrogels can be synthesized and bioprinted with good printability and cell viability, thus demonstrating their suitability for bioprinting scaffolds in tissue engineering applications.
Collapse
Affiliation(s)
| | | | | | - Petros Papagerakis
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, Saskatchewan S7N5E4, Canada
| | | |
Collapse
|
49
|
Zeglinski MR, Moghadam AR, Ande SR, Sheikholeslami K, Mokarram P, Sepehri Z, Rokni H, Mohtaram NK, Poorebrahim M, Masoom A, Toback M, Sareen N, Saravanan S, Jassal DS, Hashemi M, Marzban H, Schaafsma D, Singal P, Wigle JT, Czubryt MP, Akbari M, Dixon IM, Ghavami S, Gordon JW, Dhingra S. Myocardial Cell Signaling During the Transition to Heart Failure. Compr Physiol 2018; 9:75-125. [DOI: 10.1002/cphy.c170053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Wang L, Neumann M, Fu T, Li W, Cheng X, Su BL. Porous and responsive hydrogels for cell therapy. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.10.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|