Review
Copyright ©2014 Baishideng Publishing Group Co., Limited. All rights reserved.
World J Biol Chem. Feb 26, 2014; 5(1): 1-11
Published online Feb 26, 2014. doi: 10.4331/wjbc.v5.i1.1
MicroRNA signature and function in retinal neovascularization
Saloni Agrawal, Brahim Chaqour
Saloni Agrawal, Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY 11203, United States
Brahim Chaqour, Department of Cell Biology and Ophthalmology, and SUNY Eye Institute Downstate Medical Center, Brooklyn, NY 11203, United States
Author contributions: Agrawal S and Chaqour B conceived and co-wrote this review.
Supported by A Grant from the National Eye Institute of the National Institutes of Health EY022091-01 to Chaqour B
Correspondence to: Brahim Chaqour, Professor, Department of Cell Biology and Ophthalmology, and SUNY Eye Institute Downstate Medical Center, 450 Clarkson Avenue 5, Brooklyn, NY 11203, United States. bchaqour@downstate.edu
Telephone: +1-718-2708285  Fax: +1-718-2703732
Received: November 11, 2013
Revised: December 25, 2013
Accepted: January 15, 2014
Published online: February 26, 2014
Processing time: 160 Days and 13.8 Hours
Core Tip

Core tip: This review examines the critical regulatory role of microRNAs (miRNAs) in the process of normal and pathological angiogenesis and the prospects that they provide for the development of new treatments. miRNAs are both upstream and downstream of multiple growth factors in regulating endothelial proliferation, migration, and vascular patterning, processes critical for normal and abnormal formation of blood vessels. Emphasis in this review is placed on how specific vascular-enriched miRNAs regulate cell responses to various cues by targeting several factors, receptors and/or signaling molecules in order to maintain either vascular function or dysfunction.