Review
Copyright ©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Biol Chem. Sep 27, 2020; 11(2): 30-51
Published online Sep 27, 2020. doi: 10.4331/wjbc.v11.i2.30
Targeting the phosphoinositide-3-kinase/protein kinase B pathway in airway innate immunity
Indiwari Gopallawa, Robert J Lee
Indiwari Gopallawa, Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
Robert J Lee, Department of Otorhinolaryngology and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
Author contributions: Gopallawa I drafted and wrote the entire paper; Lee RJ revised and edited the manuscript.
Supported by The United States National Institutes of Health, No. R01DC016309; The United States Cystic Fibrosis Foundation, No. GOPALL19F0.
Conflict-of-interest statement: Authors declare no conflict of interests for this article.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Corresponding author: Robert J Lee, PhD, Assistant Professor, Department of Otorhinolaryngology and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, 5th Floor Ravdin, Suite A, Philadelphia, PA 19104, United States. rjl@pennmedicine.upenn.edu
Received: June 17, 2020
Peer-review started: June 17, 2020
First decision: July 21, 2020
Revised: July 24, 2020
Accepted: August 25, 2020
Article in press: August 25, 2020
Published online: September 27, 2020
Processing time: 98 Days and 17.5 Hours
Core Tip

Core Tip: The human respiratory epithelium is continuously exposed to pathogens during each inhalation. Protection of the lung depends on complex signaling networks that activate host defense mechanisms. The kinase protein kinase B (Akt) interacts with numerous cellular proteins involved in airway innate immunity. In this review, we discuss the Akt pathway and known downstream targets involved in airway innate immunity.