Published online Oct 17, 2023. doi: 10.4331/wjbc.v14.i5.84
Peer-review started: July 19, 2023
First decision: August 31, 2023
Revised: September 8, 2023
Accepted: September 26, 2023
Article in press: September 26, 2023
Published online: October 17, 2023
Processing time: 85 Days and 18 Hours
Post-translational modifications play key roles in various biological processes. Protein arginine methyltransferases (PRMTs) transfer the methyl group to specific arginine residues. Both PRMT1 and PRMT6 have emerges as crucial factors in the development and progression of multiple cancer types. We posit that PRMT1 and PRMT6 might interplay directly or in-directly in multiple ways accounting for shared disease phenotypes.
The tumor-promoting roles of PRMT1 and PRMT6 in oncology are executed through their methylation of histone and non-histone substrates. Expression profile analysis suggests that PRMT1 and PRMT6 are both involved in multiple pathways which are fundamental for cell proliferation. We posit that PRMT1 and PRMT6 might interplay directly or in-directly for shared disease phenotypes. Thereby, neutralizing these enzymes’ activities or their interactions may interfere with tumor progression and lead to anticancer beneficial effects.
Understanding the role and function of PRMTs and how they interact with each other, identification of the methylation site (s) on PRMT6. Knowing the mechanism of this intercommunication will help develop inhibitor of tumor progression and increase cancer therapeutic effect. Knowing the interaction between PRMT1 and PRMT6 regulate the enzymatic activity of PRMT6.
Gel electrophoresis autoradiography was performed to test the methyltranferase activity of PRMTs and characterize the kinetics parameters of PRMTs. Liquid chromatography-tandem mass spectrometry analysis was performed to detect the PRMT6 methylation sites.
In this study we investigated the interaction between PRMT1 and PRMT6, and PRMT6 was shown to be a novel substrate of PRMT1. We identified specific arginine residues of PRMT6 that are methylated by PRMT1, with R106 being the major methylation site. Combined biochemical and cellular data showed that PRMT1 downregulates the enzymatic activity of PRMT6 in histone H3 methylation.
PRMT6 is methylated by PRMT1 and R106 is a major methylation site induced by PRMT1. PRMT1 methylation suppresses the activity of PRMT6.
Future research is warranted to elucidate whether and how various signaling pathways regulated by PRMT6 can be counteracted by PRMT1. Priority should be given on the examination of functional consequences of PRMT6 methylation mediated by PRMT1 on different protein substrates and in different biological contexts.