Published online Feb 26, 2016. doi: 10.4331/wjbc.v7.i1.14
Peer-review started: August 27, 2015
First decision: October 27, 2015
Revised: November 25, 2015
Accepted: January 16, 2016
Article in press: January 19, 2016
Published online: February 26, 2016
Processing time: 185 Days and 3.3 Hours
Bioavailability of vitamin E is influenced by several factors, most are highlighted in this review. While gender, age and genetic constitution influence vitamin E bioavailability but cannot be modified, life-style and intake of vitamin E can be. Numerous factors must be taken into account however, i.e., when vitamin E is orally administrated, the food matrix may contain competing nutrients. The complex metabolic processes comprise intestinal absorption, vascular transport, hepatic sorting by intracellular binding proteins, such as the significant α-tocopherol-transfer protein, and hepatic metabolism. The coordinated changes involved in the hepatic metabolism of vitamin E provide an effective physiological pathway to protect tissues against the excessive accumulation of, in particular, non-α-tocopherol forms. Metabolism of vitamin E begins with one cycle of CYP4F2/CYP3A4-dependent ω-hydroxylation followed by five cycles of subsequent β-oxidation, and forms the water-soluble end-product carboxyethylhydroxychroman. All known hepatic metabolites can be conjugated and are excreted, depending on the length of their side-chain, either via urine or feces. The physiological handling of vitamin E underlies kinetics which vary between the different vitamin E forms. Here, saturation of the side-chain and also substitution of the chromanol ring system are important. Most of the metabolic reactions and processes that are involved with vitamin E are also shared by other fat soluble vitamins. Influencing interactions with other nutrients such as vitamin K or pharmaceuticals are also covered by this review. All these processes modulate the formation of vitamin E metabolites and their concentrations in tissues and body fluids. Differences in metabolism might be responsible for the discrepancies that have been observed in studies performed in vivo and in vitro using vitamin E as a supplement or nutrient. To evaluate individual vitamin E status, the analytical procedures used for detecting and quantifying vitamin E and its metabolites are crucial. The latest methods in analytics are presented.
Core tip: Several factors influence vitamin E bioavailability. Gender, age and genetic constitution cannot be modified but life-style and vitamin E intake can be. Physiological handling of vitamin E involves intestinal absorption, vascular transport, hepatic sorting by intracellular binding proteins, and hepatic metabolism. These processes involve kinetics which vary between the different vitamin E forms. The coordinated metabolism of vitamin E is an effective physiological pathway to prevent excessive accumulation of non-α-tocopherol forms. Interactions with other nutrients or pharmaceutics occur. To evaluate vitamin E status, analytical procedures to detect and quantify vitamin E and metabolites are crucial. Current state-of-the-art analytics are presented.