Published online Nov 26, 2015. doi: 10.4331/wjbc.v6.i4.324
Peer-review started: January 20, 2015
First decision: April 10, 2015
Revised: August 24, 2015
Accepted: September 1, 2015
Article in press: September 2, 2015
Published online: November 26, 2015
Processing time: 306 Days and 20.6 Hours
Signal transducers and activators of transcription (STATs) mediate essential signals for various biological processes, including immune responses, hematopoiesis, and neurogenesis. STAT3, for example, is involved in the pathogenesis of various human diseases, including cancers, autoimmune and inflammatory disorders. STAT3 activation is therefore tightly regulated at multiple levels to prevent these pathological conditions. A number of proteins have been reported to associate with STAT3 and regulate its activity. These STAT3-interacting proteins function to modulate STAT3-mediated signaling at various steps and mediate the crosstalk of STAT3 with other cellular signaling pathways. This article reviews the roles of novel STAT3 binding partners such as DAXX, zipper-interacting protein kinase, Krüppel-associated box-associated protein 1, Y14, PDZ and LIM domain 2 and signal transducing adaptor protein-2, in the regulation of STAT3-mediated signaling.
Core tip: Signal transducer and activator of transcription 3 (STAT3) has been proposed its physiological and pathological significance in malignant and inflammatory diseases; therefore, the targeting of the STAT3 pathways is likely to be suitable for clinical application. In this review, we introduced novel regulatory molecules of STAT3 binding partners, such as DAXX, zipper-interacting protein kinase, Krüppel-associated box-associated protein 1, Y14, PDZ and LIM domain 2 and signal transducing adaptor protein-2. These proteins positively or negatively regulate critical steps of STAT3-mediated signals via individually unique mechanism. We hope that the information described here will help to develop a new strategy to clinically control the STAT3 activities.