Review
Copyright ©2014 Baishideng Publishing Group Inc. All rights reserved.
World J Biol Chem. Aug 26, 2014; 5(3): 346-354
Published online Aug 26, 2014. doi: 10.4331/wjbc.v5.i3.346
FoxO3a and disease progression
Richard Seonghun Nho, Polla Hergert
Richard Seonghun Nho, Polla Hergert, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, United States
Author contributions: Nho RS and Hergert P both contributed to this paper.
Supported by the National Institutes of Health R01 HL 114662 to Nho R
Correspondence to: Richard Seonghun Nho, PhD, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Minnesota, Box 276, 420 Delaware Street SE., Minneapolis, Minneapolis, MN 55455, United States. nhoxx002@umn.edu
Telephone: +1-612-6250686 Fax: +1-612-6252174
Received: November 29, 2013
Revised: April 21, 2014
Accepted: May 16, 2014
Published online: August 26, 2014
Processing time: 286 Days and 8.6 Hours
Abstract

The Forkhead box O (FoxO) family has recently been highlighted as an important transcriptional regulator of crucial proteins associated with the many diverse functions of cells. So far, FoxO1, FoxO3a, FoxO4 and FoxO6 proteins have been identified in humans. Although each FoxO family member has its own role, unlike the other FoxO families, FoxO3a has been extensively studied because of its rather unique and pivotal regulation of cell proliferation, apoptosis, metabolism, stress management and longevity. FoxO3a alteration is closely linked to the progression of several types of cancers, fibrosis and other types of diseases. In this review, we will examine the function of FoxO3a in disease progression and also explore FoxO3a’s regulatory mechanisms. We will also discuss FoxO3a as a potential target for the treatment of several types of disease.

Keywords: Forkhead box O; Cell proliferation; Apoptosis; Stress; Aging

Core tip: Forkhead box O (FoxO)3a has recently been highlighted as a critical protein that regulates numerous cell functions from proliferation/apoptosis to stress-resistance and aging. FoxO3a has been found to be deregulated in several diseases and FoxO3a targeting approaches are currently underway to treat various types of cancers. This review will describe the current concept of FoxO3a’s pathological role in various diseases and elucidate the regulatory mechanisms involved. It will also provide the clinical significance and strategies to target FoxO3a to limit the progression of human diseases.