Minireviews
Copyright ©2013 Baishideng Publishing Group Co., Limited. All rights reserved.
World J Biol Chem. Nov 26, 2013; 4(4): 102-110
Published online Nov 26, 2013. doi: 10.4331/wjbc.v4.i4.102
Lipidomic mass spectrometry and its application in neuroscience
Mabel Enriquez-Algeciras, Sanjoy K Bhattacharya
Mabel Enriquez-Algeciras, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, United States
Sanjoy K Bhattacharya, Bascom Palmer Eye Institute, Department of Biochemistry and Molecular Biology and Neuroscience Program, University of Miami, Miami, FL 33136, United States
Author contributions: Enriquez-Algeciras M and Bhattacharya SK contributed to this paper.
Correspondence to: Sanjoy K Bhattacharya, MTech, PhD, Bascom Palmer Eye Institute, Department of Biochemistry and Molecular Biology and Neuroscience Program, University of Miami, 1638 NW 10th Avenue, Suite 707A, Miami, FL 33136, United States. sbhattacharya@med.miami.edu
Telephone: +1-305-4824103 Fax: +1-305-3266547
Received: August 10, 2013
Revised: September 11, 2013
Accepted: October 17, 2013
Published online: November 26, 2013
Processing time: 118 Days and 15.2 Hours
Abstract

Central and peripheral nervous systems are lipid rich tissues. Lipids, in the context of lipid-protein complexes, surround neurons and provide electrical insulation for transmission of signals allowing neurons to remain embedded within a conducting environment. Lipids play a key role in vesicle formation and fusion in synapses. They provide means of rapid signaling, cell motility and migration for astrocytes and other cell types that surround and play supporting roles neurons. Unlike many other signaling molecules, lipids are capable of multiple signaling events based on the different fragments generated from a single precursor during each event. Lipidomics, until recently suffered from two major disadvantages: (1) level of expertise required an overwhelming amount of chemical detail to correctly identify a vast number of different lipids which could be close in their chemical reactivity; and (2) high amount of purified compounds needed by analytical techniques to determine their structures. Advances in mass spectrometry have enabled overcoming these two limitations. Mass spectrometry offers a great degree of simplicity in identification and quantification of lipids directly extracted from complex biological mixtures. Mass spectrometers can be regarded to as mass analyzers. There are those that separate and analyze the product ion fragments in space (spatial) and those which separate product ions in time in the same space (temporal). Databases and standardized instrument parameters have further aided the capabilities of the spatial instruments while recent advances in bioinformatics have made the identification and quantification possible using temporal instruments.

Keywords: Mass spectrometry, Lipidomics, Phospholipids, Serial signaling, Neuroscience

Core tip: Mass spectrometry offers a degree of simplicity and sophistication to the biological sciences. In this review we are focusing on its application towards the analysis of lipids in neuroscience. Lipids have a variety of functions, they surround neurons, provide insulation for transmission of signals, an environment for facilitating motility and migration of astrocytes and other cell types, among many other functions. Recent advances in mass spectrometry have enabled quantification of lipids directly extracted from complex biological mixtures in the neuronal system with the help of databases, standardized instrument parameters and bioinformatics. In this review, we intend to highlight all recent efforts with an emphasis on its application to neuroscience.