Autobiography of Editorial Board Members
Copyright ©2011 Baishideng Publishing Group Co., Limited. All rights reserved.
World J Biol Chem. Mar 26, 2011; 2(3): 48-58
Published online Mar 26, 2011. doi: 10.4331/wjbc.v2.i3.48
Protease expression by microorganisms and its relevance to crucial physiological/pathological events
André Luis Souza dos Santos
André Luis Souza dos Santos, Laboratory of Multidisciplinary Studies on Microbial Biochemistry, Department of General Microbiology, Institute of Microbiology Prof. Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
Author contributions: dos Santos ALS solely contributed to this paper.
Supported by Grants from the Brazilian Agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento Pessoal de Nível Superior and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ); the author was supported by CNPq and FAPERJ fellowships
Correspondence to: André Luis Souza dos Santos, Associate Professor, Laboratory of Multidisciplinary Studies on Microbial Biochemistry, Department of General Microbiology, Institute of Microbiology Prof. Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil. andre@micro.ufrj.br
Telephone: +55-21-25983035 Fax: +55-21-25608344
Received: January 8, 2011
Revised: February 21, 2011
Accepted: February 28, 2011
Published online: March 26, 2011
Abstract

The treatment of infections caused by fungi and trypanosomatids is difficult due to the eukaryotic nature of these microbial cells, which are similar in several biochemical and genetic aspects to host cells. Aggravating this scenario, very few antifungal and anti-trypanosomatidal agents are in clinical use and, therefore, therapy is limited by drug safety considerations and their narrow spectrum of activity, efficacy and resistance. The search for new bioactive agents against fungi and trypanosomatids has been expanded because progress in biochemistry and molecular biology has led to a better understanding of important and essential pathways in these microorganisms including nutrition, growth, proliferation, signaling, differentiation and death. In this context, proteolytic enzymes produced by these eukaryotic microorganisms are appointed and, in some cases, proven to be excellent targets for searching novel natural and/or synthetic pharmacological compounds, in order to cure or prevent invasive fungal/trypanosomatid diseases. With this task in mind, our research group and others have focused on aspartic-type proteases, since the activity of this class of hydrolytic enzymes is directly implicated in several facets of basic biological processes of both fungal and trypanosomatid cells as well as due to the participation in numerous events of interaction between these microorganisms and host structures. In the present paper, a concise revision of the beneficial effects of aspartic protease inhibitors, with emphasis on the aspartic protease inhibitors used in the anti-human immunodeficiency virus therapy, will be presented and discussed using our experience with the following microbial models: the yeast Candida albicans, the filamentous fungus Fonsecaea pedrosoi and the protozoan trypanosomatid Leishmania amazonensis.

Keywords: Protease; Aspartic protease inhibitors; Trypanosomatids; Fungi; Cell biology; Virulence; Chemotherapy