Published online Jan 27, 2022. doi: 10.4331/wjbc.v13.i1.1
Peer-review started: March 27, 2021
First decision: July 27, 2021
Revised: August 6, 2021
Accepted: December 22, 2021
Article in press: December 22, 2021
Published online: January 27, 2022
Processing time: 301 Days and 5.1 Hours
Immune system is a complex network that clears pathogens, toxic substrates, and cancer cells. Distinguishing self-antigens from non-self-antigens is critical for the immune cell-mediated response against foreign antigens. The innate immune system elicits an early-phase response to various stimuli, whereas the adaptive immune response is tailored to previously encountered antigens. During immune responses, B cells differentiate into antibody-secreting cells, while naïve T cells differentiate into functionally specific effector cells [T helper 1 (Th1), Th2, Th17, and regulatory T cells]. However, enhanced or prolonged immune responses can result in autoimmune disorders, which are characterized by lymphocyte-mediated immune responses against self-antigens. Signal transduction of cytokines, which regulate the inflammatory cascades, is dependent on the members of the Janus family of protein kinases. Tyrosine kinase 2 (Tyk2) is associated with receptor subunits of immune-related cytokines, such as type I interferon, interleukin (IL)-6, IL-10, IL-12, and IL-23. Clinical studies on the therapeutic effects and the underlying mechanisms of Tyk2 inhibitors in autoimmune or chronic inflammatory diseases are currently ongoing. This review summarizes the findings of studies examining the role of Tyk2 in immune and/or inflammatory responses using Tyk2-deficient cells and mice.
Core Tip: Studies on murine tyrosine kinase 2 (Tyk2)-deficient models were reviewed to examine the role of Tyk2 dysregulation in human diseases. Tyk2-deficient mice exhibit reduced responses in several interleukin-12 (IL-12)/Th1- and IL-23/Th17-mediated models of diseases, including rheumatoid arthritis, multiple sclerosis, inflammatory bowel diseases, psoriasis, sarcoidosis, and delayed-type hypersensitivity. These findings demonstrate a broad contribution of Tyk2 to immune responses. Tyk2 represents a candidate for drug development by targeting both the IL-12/Th1 and IL-23/Th17 axes.