1
|
Han Y, Qian X, Xu T, Shi Y. Carcinoma-associated fibroblasts release microRNA-331-3p containing extracellular vesicles to exacerbate the development of pancreatic cancer via the SCARA5-FAK axis. Cancer Biol Ther 2022; 23:378-392. [PMID: 35510828 PMCID: PMC9090287 DOI: 10.1080/15384047.2022.2041961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/16/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
microRNA-331-3p (miR-331-3p) has been displayed as an oncogene in pancreatic cancer (PC). The current research set out to elucidate how miR-331-3p in carcinoma-associated fibroblasts (CAFs)-derived extracellular vesicles (EVs) facilitated the tumorigenesis in PC. First, a dual-luciferase reporter assay was adopted to investigate the relationship between miR-331-3p and SCARA5. In addition, EVs were isolated normal fibroblasts and CAFs, and these isolated EVs were co-cultured with PC cells. Cell proliferative and migrating/invasive potentials were further evaluated with the help of a CCK-8 and Transwell assays, respectively. Gain- and loss-of-function assays were also implemented to assess the role of miR-331-3p, SCARA5, and FAK pathway in PC cells. Lastly, xenograft nude mice were established to investigate the role of miR-331-3p in vivo. miR-331-3p negatively targeted SCARA5 and was highly expressed in CAFs-derived EVs, which accelerated the proliferative, migrating, and invasive potentials of PC cells. Meanwhile, over-expression of miR-331-3p enhanced the proliferative, migrating, and invasive properties of PC cells and promoted tumor growth in vivo by manipulating SCARA5/FAK axis, whereas SCARA5 countered the oncogenic effects of miR-331-3p. Overall, miR-331-3p in CAFs-derived EVs inhibits SCARA5 expression and activates the FAK pathway, thereby augmenting the progression of PC. Our study provides a potential therapeutic target for the treatment of PC.
Collapse
Affiliation(s)
- Yadong Han
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou , China
| | - Xu Qian
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Teng Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yang Shi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Tang L, Yuan Y, Zhai H, Wang J, Zhang D, Liang H, Shi Y, Duan L, Jiang X. MicroRNA-125b-5p Correlates With Prognosis and Lung Adenocarcinoma Progression. Front Mol Biosci 2022; 8:788690. [PMID: 35187068 PMCID: PMC8851393 DOI: 10.3389/fmolb.2021.788690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/23/2021] [Indexed: 01/20/2023] Open
Abstract
A growing number of studies have focused on investigating microRNAs as crucial regulators in the progression of multiple cancer types. Nevertheless, the biological effects and immunological role of miR-125b-5p in non-small cell lung cancer (lung adenocarcinoma, LUAD) have not been determined. The present study aimed to examine the function of miR-125b-5p on cell proliferation and the outcomes of LUAD patients. We utilized diverse public databases in the analysis of the expression, prognosis, diagnostic value, and immune role of miR-125b-5p in non-small cell lung cancer. The growth curve, colony formation, flow cytometry, and Transwell and invasion assays were utilized to determine the function of miR-125b-5p in LUAD progression. In this study, we found that miR-125b-5p was decreased in LUAD and correlated with poor prognosis. Pathway analyses revealed that miR-125b-5p was mainly involved in cell proliferation and immune regulation. Moreover, in vitro experiments indicated that the overexpression of miR-125b-5p significantly inhibited cell proliferation, migration, and invasion and induced cell apoptosis of LUAD. Finally, we discovered that miR-125b-5p correlated with immune cell infiltration. In summary, these results demonstrated that miR-125b-5p serves as a prognostic marker and a therapeutic target for LUAD.
Collapse
Affiliation(s)
- Lin Tang
- The Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Graduate School of Kunming Medical University, Kunming, China
| | - Yixiao Yuan
- The Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Graduate School of Kunming Medical University, Kunming, China
| | - Haoqing Zhai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Juan Wang
- The Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Graduate School of Kunming Medical University, Kunming, China
| | - Dahang Zhang
- The Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Graduate School of Kunming Medical University, Kunming, China
| | - Huasu Liang
- Department of Graduate School of Kunming Medical University, Kunming, China
| | - Yulin Shi
- Department of Graduate School of Kunming Medical University, Kunming, China
| | - Lincan Duan
- The Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Graduate School of Kunming Medical University, Kunming, China
- *Correspondence: Lincan Duan, ; Xiulin Jiang,
| | - Xiulin Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Lincan Duan, ; Xiulin Jiang,
| |
Collapse
|
3
|
Zhao P, Zhang J. Circ_0039569 Competes with MARCKS for miR-133b Binding Sites to Promote the Progression of Renal Cell Carcinoma. Nephron Clin Pract 2022; 146:404-417. [PMID: 35086110 DOI: 10.1159/000521493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The dysregulation of circular RNAs (circRNAs) has been shown to be correlated with the aggressiveness of renal cell carcinoma (RCC). Hence, this study investigated the role and mechanism of circ_0039569 in RCC progression. METHODS The levels of circ_0039569, miR-133b, and MARCKS (myristoylated alanine-rich protein kinase C substrate) were detected using quantitative real-time polymerase chain reaction and Western blot. In vitro experiments were conducted by using 5-ethynyl-2'-deoxyuridine assay, colony-formation assay, Transwell assay, flow cytometry, and Western blot. The direct interactions between miR-133b and circ_0039569 or MARCKS were verified by using dual-luciferase reporter and pull-down assays. Xenograft mice models were established to conduct in vivo analysis. RESULTS Circ_0039569 was highly expressed in RCC tissues and cells. Functionally, silencing of circ_0039569 suppressed cell proliferation, migration, and invasion, but induced cell apoptosis in RCC cells in vitro. Moreover, mice subcutaneous xenograft assay suggested that circ_0039569 knockdown impeded tumor growth in vivo. Mechanistically, circ_0039569 acted as a sponge for miR-133b to regulate the expression of its target MARCKS. Importantly, miR-133b inhibition or MARCKS knockdown attenuated the anticancer effects of circ_0039569 knockdown on RCC growth. CONCLUSION Diminished circ_0039569 restrains the growth and propagation of RCC cells via miR-133b/MARCKS axis, indicating an underlying effective therapeutic target for RCC patients.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Orthopedic Surgery, People's Hospital of Haiyang, Yantai, China
| | - Jing Zhang
- Department of Urology, People's Hospital of Haiyang, Yantai, China
| |
Collapse
|
4
|
Chen S, Shen Z, Gao L, Yu S, Zhang P, Han Z, Kang M. TPM3 mediates epithelial-mesenchymal transition in esophageal cancer via MMP2/MMP9. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1338. [PMID: 34532475 PMCID: PMC8422148 DOI: 10.21037/atm-21-4043] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022]
Abstract
Background Esophageal cancer (EC) is a malignant tumor with high mortality. Correlations have been found between the expression level of tropomyosin 3 (TPM3) and the depth of tumor invasion, lymph node metastasis, and the 5-year survival rate. However, the specific mechanisms underlying EC remain unclear. Methods Stably transfected TPM3-overexpresing and TPM3-knockdown esophageal squamous cell carcinoma (ESCC) cell lines (ECa109 and EC9706) were constructed, and the association between TPM3 and the proliferation, invasion, and migration of ESCC was investigated using molecular biology methods. The associations between TPM3 and matrix metalloproteinase (MMP)2/9 or epithelial-mesenchymal transition (EMT)-related proteins were verified, and the potential tumor-promoting mechanism was explored by Gelatin Zymography Experiment. Results TPM3 was found to promote the proliferation, migration, and metastatic potential of ESCC in vivo and in vitro, and stimulate the expression of MMP2/9 and certain EMT markers other than E-cadherin. The replenishment of MMP2/9 restored the malignant behavior of ESCC caused by TPM3. A gelatinase assay showed that the expression of TPM3 was related to the activity of MMP9. Conclusions TPM3 promoted proliferation, migration, and metastatic potential in EC cells. Additionally, TPM3 promoted the EMT process. This function may be achieved via the regulation the expression of MMP2/9.
Collapse
Affiliation(s)
- Sui Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhimin Shen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lei Gao
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shaobin Yu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ziyang Han
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, China
| |
Collapse
|
5
|
The Role of miRNA in the Pathophysiology of Neuroendocrine Tumors. Int J Mol Sci 2021; 22:ijms22168569. [PMID: 34445276 PMCID: PMC8395312 DOI: 10.3390/ijms22168569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
Neuroendocrine tumors (NETs) represent a tumor group that is both rare and heterogeneous. Prognosis is largely determined by the tumor grading and the site of the primary tumor and metastases. Despite intensive research efforts, only modest advances in diagnostic and therapeutic approaches have been achieved in recent years. For patients with non-respectable tumor stages, prognosis is poor. In this context, the development of novel diagnostic tools for early detection of NETs and prediction of tumor response to therapy as well as estimation of the overall prognosis would greatly improve the clinical management of NETs. However, identification of novel diagnostic molecules is hampered by an inadequate understanding of the pathophysiology of neuroendocrine malignancies. It has recently been demonstrated that microRNA (miRNA), a family of small RNA molecules with an established role in the pathophysiology of quite different cancer entities, may also play a role as a biomarker. Here, we summarize the available knowledge on the role of miRNAs in the development of NET and highlight their potential use as serum-based biomarkers in the context of this disease. We discuss important challenges currently preventing their use in clinical routine and give an outlook on future directions of miRNA research in NET.
Collapse
|
6
|
Han N, Li H, Wang H. MicroRNA-203 inhibits epithelial-mesenchymal transition, migration, and invasion of renal cell carcinoma cells via the inactivation of the PI3K/AKT signaling pathway by inhibiting CAV1. Cell Adh Migr 2021; 14:227-241. [PMID: 32990143 PMCID: PMC7714454 DOI: 10.1080/19336918.2020.1827665] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The present study aimed to evaluate the underlying mechanism of microRNA-203 (miR-203) in renal cell carcinoma (RCC) involving the PI3K/AKT signaling pathway. The results revealed downregulated miR-203 and upregulated CAV1 in RCC tissues. Upregulated miR-203 and downregulated CAV1 increased E-cadherin expression and cell apoptosis, decreased β-catenin and N-cadherin expression and cell proliferation, migration and invasion, and blocked cell cycle entry. CAV1, a target gene of miR-203, decreased by up-regulated miR-203, and silencing CAV1 led to the inactivation of PI3K/AKT signaling pathway. In conclusion, our findings suggested that miR-203-mediated direct suppression of CAV1 inhibits EMT of RCC cells via inactivation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Ning Han
- Department of Radiology, China-Japan Union Hospital of Jilin University , Changchun, P. R. China
| | - Hai Li
- Department of Urology Surgery, China-Japan Union Hospital of Jilin University , Changchun, P. R. China
| | - Hui Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University , Changchun, P. R. China
| |
Collapse
|
7
|
Supadmanaba IGP, Mantini G, Randazzo O, Capula M, Muller IB, Cascioferro S, Diana P, Peters GJ, Giovannetti E. Interrelationship between miRNA and splicing factors in pancreatic ductal adenocarcinoma. Epigenetics 2021; 17:381-404. [PMID: 34057028 PMCID: PMC8993068 DOI: 10.1080/15592294.2021.1916697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers because of diagnosis at late stage and inherent/acquired chemoresistance. Recent advances in genomic profiling and biology of this disease have not yet been translated to a relevant improvement in terms of disease management and patient’s survival. However, new possibilities for treatment may emerge from studies on key epigenetic factors. Deregulation of microRNA (miRNA) dependent gene expression and mRNA splicing are epigenetic processes that modulate the protein repertoire at the transcriptional level. These processes affect all aspects of PDAC pathogenesis and have great potential to unravel new therapeutic targets and/or biomarkers. Remarkably, several studies showed that they actually interact with each other in influencing PDAC progression. Some splicing factors directly interact with specific miRNAs and either facilitate or inhibit their expression, such as Rbfox2, which cleaves the well-known oncogenic miRNA miR-21. Conversely, miR-15a-5p and miR-25-3p significantly downregulate the splicing factor hnRNPA1 which acts also as a tumour suppressor gene and is involved in processing of miR-18a, which in turn, is a negative regulator of KRAS expression. Therefore, this review describes the interaction between splicing and miRNA, as well as bioinformatic tools to explore the effect of splicing modulation towards miRNA profiles, in order to exploit this interplay for the development of innovative treatments. Targeting aberrant splicing and deregulated miRNA, alone or in combination, may hopefully provide novel therapeutic approaches to fight the complex biology and the common treatment recalcitrance of PDAC.
Collapse
Affiliation(s)
- I Gede Putu Supadmanaba
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands.,Biochemistry Department, Faculty of Medicine, Universitas Udayana, Denpasar, Bali, Indonesia
| | - Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands.,Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| | - Ornella Randazzo
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands.,Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, Palermo, Italy
| | - Mjriam Capula
- Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy.,Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Ittai B Muller
- Department of Clinical Chemistry, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands
| | - Stella Cascioferro
- Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, Palermo, Italy
| | - Patrizia Diana
- Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, Palermo, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands.,Department of Biochemistry, Medical University of Gdansk, Poland
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands.,Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| |
Collapse
|
8
|
Poorly Differentiated Neuroendocrine Larynx Carcinoma: Clinical Features and miRNAs Signature-A New Goal for Early Diagnosis and Therapy? J Clin Med 2021; 10:jcm10092019. [PMID: 34066893 PMCID: PMC8125889 DOI: 10.3390/jcm10092019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/30/2022] Open
Abstract
Laryngeal neuroendocrine carcinomas (LNECs) are rare and highly heterogeneous malignancies presenting a wide range of pathological and clinical manifestations. Herein, we retrospectively characterize ten patients diagnosticated with LNEC, five of which were defined as well-moderately differentiated neuroendocrine carcinomas, and five that were defined as poorly differentiated neuroendocrine carcinomas, according to the latest WHO classification. Clinical features were analyzed and compared between the two subgroups together with a microRNA study which evidenced a peculiar signature likely related to poorly differentiated larynx neuroendocrine carcinomas. These findings may offer new useful insights for clinicians to improve diagnosis efficiency, therapy response, and patients' outcome for this aggressive neoplasm.
Collapse
|
9
|
Liu J, Song X, Ren Z. The effect of microRNA-330 replacement on inhibition of growth and migration in renal cancer cells. Biotechnol Appl Biochem 2021; 69:558-566. [PMID: 33605482 DOI: 10.1002/bab.2132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/06/2021] [Indexed: 12/26/2022]
Abstract
This study was conducted to scrutinize microRNA-330 (miR-330) role in growth, migration, and the expression of metastatic genes in renal cell carcinoma (RCC) in vitro. Following transfection of the cells with miR-330 mimic, cell proliferation using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, cell migration by wound healing assay, and apoptosis by flow cytometry were evaluated. Quantitative real-time PCR was conducted to assess expression levels of matrix metalloproteinase 2 (MMP2), MMP9, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), Kirsten rat sarcoma virus (K-Ras), cellular Myc (c-Myc), and C-X-C chemokine receptor type 4 (CXCR-4) as metastatic genes in the progression of RCC. Results showed that miR-330 was downregulated in the Caki-1 cells compared with HK-2 cells (p < 0.001). Upregulation of miR-330 obstructed in vitro expansion and migration, while it intensified apoptosis rate in the Caki-1 cells. Moreover, it was found that miR-330 transfection negatively modulated the expression of MMP2, MMP9, ADAMTS, K-Ras, c-Myc, and CXCR-4 in the Caki-1 cells. Our findings revealed that overexpression of miR-330 might provide an auxiliary treatment approach for overcoming invasion, progression, and metastasis in patients with RCC by enhancing cell apoptosis.
Collapse
Affiliation(s)
- Jun Liu
- Urology Department, Tianjin Hospital, Tianjin, People's Republic of China
| | - Xin Song
- Urology Department, Tianjin Hospital, Tianjin, People's Republic of China
| | - Zhongwei Ren
- Urology Department, Tianjin Hospital, Tianjin, People's Republic of China
| |
Collapse
|
10
|
Huang Z, Pang G, Huang YG, Li C. miR-133 inhibits proliferation and promotes apoptosis by targeting LASP1 in lupus nephritis. Exp Mol Pathol 2020; 114:104384. [PMID: 31987844 DOI: 10.1016/j.yexmp.2020.104384] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/26/2019] [Accepted: 01/23/2020] [Indexed: 01/30/2023]
Abstract
Lupus nephritis (LN) is a chronic autoimmune disease. Recently, microRNA (miR)-133 has been demonstrated to play an important role in renal cell carcinoma. Our current study was designed to test the role of miR-133 and its potential target in LN. First, significant correlation of LASP1 and miR-133 levels was observed in the human LN tissue. Modification of miR-133 level in the human mesangial cells (HMCs) by either overexpression or knockdown demonstrated a suppressive role of miR-133 in cell proliferation and an inductive role in cell apoptosis. Modification of LASP1 level in the HMCs demonstrated the opposing effects of LASP1 to miR-133 on proliferation and apoptosis. In addition, luciferase assay showed miR-133 directly regulates LASP1 expression through its binding site in the 3'UTR of LASP1. At last, our data showed that the changes in properties, such as suppression in proliferation and induction in apoptosis, induced by overexpression of miR-133 were restored by additional expression of LASP1. In summary, our obtained data demonstrated that miR-133 suppresses proliferation and promotes apoptosis through its binding with LASP1 in human mesangial cells. This study revealed a new mechanism involving the interaction of miR-133 and LASP1 in the pathogenesis of LN.
Collapse
Affiliation(s)
- Zhimin Huang
- Department of Pediatric, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province 524001, China
| | - Guozhen Pang
- VIP Inpatient Area, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, 524001, China.
| | - Yu Ge Huang
- Department of Pediatric, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province 524001, China
| | - Chengyan Li
- Department of Pediatric, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province 524001, China
| |
Collapse
|
11
|
Lv L, He L, Chen S, Yu Y, Che G, Tao X, Wang S, Jian Z, Zhang X. Long Non-coding RNA LINC00114 Facilitates Colorectal Cancer Development Through EZH2/DNMT1-Induced miR-133b Suppression. Front Oncol 2019; 9:1383. [PMID: 31921641 PMCID: PMC6928983 DOI: 10.3389/fonc.2019.01383] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/22/2019] [Indexed: 12/31/2022] Open
Abstract
This study aimed to identify the roles of the long non-coding RNA LINC00114 in colorectal cancer (CRC) development. The expression levels of LINC00114 and miR-133b in CRC were determined by reverse transcription (RT)-polymerase chain reaction (PCR) and the functions of LINC00114 in CRC were evaluated in vitro and in vivo. Methylation-specific PCR assay was performed to detect the miR-133b promoter methylation in CRC cells. Bioinformatics analysis, RNA immunoprecipitation, dual luciferase assay, RNA pull-down, co-immunoprecipitation (IP), and chromatin IP (ChIP) assays were used to elucidate whether LINC00114 could recruit EZH2/DNMT1 and bind to the miR-133b promoter region, leading to dysregulated methylation and the depression of miR-133b. The expression levels of DNA methyltransferases (DNMTs), EZH2, and nucleoporin 214(NUP214) were analyzed by western blotting. Data showed that LINC00114 was highly expressed, whereas miR-133b was downregulated in the CRC tissues and cells. In vitro, silencing LINC00114 inhibited cell proliferation and impeded cell cycle at the G1/S phase by upregulating miR-133b. In vivo, LINC00114 knockdown reduced tumor growth. Further analysis showed that the methylation in miR-133b promoter region was increased in the CRC and silencing LINC00114 increased miR-133b expression through depressing methylation of its promoter region. ChIP-PCR experiments demonstrated that EZH2 and DNMT1 could bind to the miR-133b promoter region and it was abolished by LINC00114 knockdown. sh-EZH2 reversed the overexpression of DNMTs and CRC cell cycle progression induced by the LINC00114 upregulation. LINC00114 could regulate the NUP214 protein expression by sponging miR-133b. These results demonstrated that LINC00114 suppressed miR-133b expression via EZH2/DNMT1-mediated methylation of its promoter region, indicating that LINC00114 might be a potential novel target for CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Lv Lv
- Department of Emergency and Trauma Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Liang He
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Shaohua Chen
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yaqun Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Guosong Che
- Department of Emergency and Trauma Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xuan Tao
- Department of Emergency and Trauma Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Shengtao Wang
- Department of Emergency and Trauma Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Zhiyuan Jian
- Gastrointestinal Surgery Department, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xuemei Zhang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
12
|
Chen YS, Hung TW, Su SC, Lin CL, Yang SF, Lee CC, Yeh CF, Hsieh YH, Tsai JP. MTA2 as a Potential Biomarker and Its Involvement in Metastatic Progression of Human Renal Cancer by miR-133b Targeting MMP-9. Cancers (Basel) 2019; 11:cancers11121851. [PMID: 31771219 PMCID: PMC6966675 DOI: 10.3390/cancers11121851] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Metastasis-associated protein 2 (MTA2) was previously known as a requirement to maintain malignant potentials in several human cancers. However, the role of MTA2 in the progression of renal cell carcinoma (RCC) has not yet been delineated. In this study, MTA2 expression was significantly increased in RCC tissues and cell lines. Increased MTA2 expression was significantly associated with tumour grade (p = 0.002) and was an independent prognostic factor for overall survival with a high RCC tumour grade. MTA2 knockdown inhibited the migration, invasion, and in vivo metastasis of RCC cells without effects on cell proliferation. Regarding molecular mechanisms, MTA2 knockdown reduced the activity, protein level, and mRNA expression of matrix metalloproteinase-9 (MMP-9) in RCC cells. Further analyses demonstrated that patients with lower miR-133b expression had poorer survival rates than those with higher expression from The Cancer Genome Atlas database. Moreover, miR-133b modulated the 3′untranslated region (UTR) of MMP-9 promoter activities and subsequently the migratory and invasive abilities of these dysregulated expressions of MTA2 in RCC cells. The inhibition of MTA2 could contribute to human RCC metastasis by regulating the expression of miR-133b targeting MMP-9 expression.
Collapse
Affiliation(s)
- Yong-Syuan Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-S.C.); (C.-L.L.); (C.-F.Y.)
| | - Tung-Wei Hung
- Division of Nephrology, Department of Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou 24451, Taiwan
| | - Chia-Liang Lin
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-S.C.); (C.-L.L.); (C.-F.Y.)
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Chu-Che Lee
- Department of Medicine Research, Buddhist Dalin Tzu Chi Hospital, Chiayi 62247, Taiwan;
| | - Chang-Fang Yeh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-S.C.); (C.-L.L.); (C.-F.Y.)
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-S.C.); (C.-L.L.); (C.-F.Y.)
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Clinical laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: (Y.-H.H.); (J.-P.T.); Tel.: +886-0424730022 (Y.-H.H.); +886-052648000 (J.-P.T.)
| | - Jen-Pi Tsai
- School of Medicine, Tzu Chi University, Hualien 97010, Taiwan
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
- Correspondence: (Y.-H.H.); (J.-P.T.); Tel.: +886-0424730022 (Y.-H.H.); +886-052648000 (J.-P.T.)
| |
Collapse
|
13
|
Braga EA, Fridman MV, Loginov VI, Dmitriev AA, Morozov SG. Molecular Mechanisms in Clear Cell Renal Cell Carcinoma: Role of miRNAs and Hypermethylated miRNA Genes in Crucial Oncogenic Pathways and Processes. Front Genet 2019; 10:320. [PMID: 31110513 PMCID: PMC6499217 DOI: 10.3389/fgene.2019.00320] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/22/2019] [Indexed: 12/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the third most common urological cancer, and it has the highest mortality rate. The increasing drug resistance of metastatic ccRCC has resulted in the search for new biomarkers. Epigenetic regulatory mechanisms, such as genome-wide DNA methylation and inhibition of protein translation by interaction of microRNA (miRNA) with its target messenger RNA (mRNA), are deeply involved in the pathogenesis of human cancers, including ccRCC, and may be used in its diagnosis and prognosis. Here, we review oncogenic and oncosuppressive miRNAs, their putative target genes, and the crucial pathways they are involved in. The contradictory behavior of a number of miRNAs, such as suppressive and anti-metastatic miRNAs with oncogenic potential (for example, miR-99a, miR-106a, miR-125b, miR-144, miR-203, miR-378), is examined. miRNAs that contribute mostly to important pathways and processes in ccRCC, for instance, PI3K/AKT/mTOR, Wnt-β, histone modification, and chromatin remodeling, are discussed in detail. We also separately consider their participation in crucial oncogenic processes, such as hypoxia and angiogenesis, metastasis, and epithelial-mesenchymal transition (EMT). The review also considers the interactions of long non-coding RNAs (lncRNAs) and miRNAs of significance in ccRCC. Recent advances in the understanding of the role of hypermethylated miRNA genes in ccRCC and their usefulness as biomarkers are reviewed based on our own data and those available in the literature. Finally, new data and perspectives concerning the clinical applications of miRNAs in the diagnosis, prognosis, and treatment of ccRCC are discussed.
Collapse
Affiliation(s)
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Research Center of Medical Genetics, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
14
|
Mukwaya A, Jensen L, Peebo B, Lagali N. MicroRNAs in the cornea: Role and implications for treatment of corneal neovascularization. Ocul Surf 2019; 17:400-411. [PMID: 30959113 DOI: 10.1016/j.jtos.2019.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
Abstract
With no safe and efficient approved therapy available for treating corneal neovascularization, the search for alternative and effective treatments is of great importance. Since the discovery of miRNAs as key regulators of gene expression, knowledge of their function in the eye has expanded continuously, facilitated by high throughput genomic tools such as microarrays and RNA sequencing. Recently, reports have emerged implicating miRNAs in pathological and developmental angiogenesis. This has led to the idea of targeting these regulatory molecules as a therapeutic approach for treating corneal neovascularization. With the growing volume of data generated from high throughput tools applied to study corneal neovascularization, we provide here a focused review of the known miRNAs related to corneal neovascularization, while presenting new experimental data and insights for future research and therapy development.
Collapse
Affiliation(s)
- Anthony Mukwaya
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linköping, Sweden
| | - Lasse Jensen
- Department of Medical and Health Sciences, Division of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - Beatrice Peebo
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linköping, Sweden
| | - Neil Lagali
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.
| |
Collapse
|
15
|
Liu H, Xiong W, Liu F, Lin F, He J, Liu C, Lin Y, Dong S. MicroRNA-133b regulates the growth and migration of vascular smooth muscle cells by targeting matrix metallopeptidase 9. Pathol Res Pract 2019; 215:1083-1088. [PMID: 30926224 DOI: 10.1016/j.prp.2019.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 12/25/2022]
Abstract
Atherosclerosis is a systemic disease affecting the whole arterial tree of the human body, and it is the leading cause of cardiovascular diseases.Vascular smooth muscle cells (VSMCs) have been identified to play a key role in the development of atherosclerosis. MicroRNAs (miRNAs) are a group of endogenous small non-coding RNAs, and they play a critical role in many biological processes including regulating cell proliferation, migration and apoptosis. However, till now, the expression and role of miR-133b in atherosclerosis remain largely unknown. Therefore, our purpose was to investigate the expression and role of miR-133b in atherosclerosis and to explore the underlying mechanism. The results showed that miR-133b was down-regulated in the blood and vascular plaque tissues of rabbits with atherosclerosis. Matrix metallopeptidase 9 (MMP-9) was a direct target of miR-133b. In addition, our data indicated that miR-133b mimic could significantly inhibit rVSMC cell proliferation activity, migration ability and induce cell apoptosis compared with the control group, and all these effects were reversed by MMP-9-plasmid. Taken together, these findings highlight an important role for miR-133b/MMP-9 axis in atherosclerosis. And miR-133b might be a valuable clinical marker and therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Huadong Liu
- Cardiovascular Department, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen Cardiovascular Minimal Invasive Engineering Center, Shenzhen 518000, China
| | - Wei Xiong
- Cardiovascular Department, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen Cardiovascular Minimal Invasive Engineering Center, Shenzhen 518000, China
| | - Feng Liu
- Cardiovascular Department, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen Cardiovascular Minimal Invasive Engineering Center, Shenzhen 518000, China
| | - Feng Lin
- Cardiovascular Department, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen Cardiovascular Minimal Invasive Engineering Center, Shenzhen 518000, China
| | - Junbo He
- Cardiovascular Department, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen Cardiovascular Minimal Invasive Engineering Center, Shenzhen 518000, China
| | - Cheng Liu
- Cardiovascular Department, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen Cardiovascular Minimal Invasive Engineering Center, Shenzhen 518000, China
| | - Yaowang Lin
- Cardiovascular Department, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen Cardiovascular Minimal Invasive Engineering Center, Shenzhen 518000, China
| | - Shaohong Dong
- Cardiovascular Department, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen Cardiovascular Minimal Invasive Engineering Center, Shenzhen 518000, China.
| |
Collapse
|
16
|
Micro-RNA-Regulated Proangiogenic Signaling in Arteriovenous Loops in Patients with Combined Vascular and Soft-Tissue Reconstructions: Revisiting the Nutrient Flap Concept. Plast Reconstr Surg 2019; 142:489e-502e. [PMID: 29979372 DOI: 10.1097/prs.0000000000004750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The placement of arteriovenous loops can enable microvascular anastomoses of free flaps when recipient vessels are scarce. In animal models, elevated fluid shear stress in arteriovenous loops promotes neoangiogenesis. Anecdotal reports in patients indicate that vein grafts used in free flap reconstructions of ischemic lower extremities are able to induce capillary formation. However, flow-stimulated angiogenesis has never been systematically investigated in humans, and it is unclear whether shear stress alters proangiogenic signaling pathways within the vascular wall of human arteriovenous loops. METHODS Eight patients with lower extremity soft-tissue defects underwent two-stage reconstruction with arteriovenous loop placement, and free flap anastomoses to the loops 10 to 14 days later. Micro-RNA (miRNA) and gene expression profiles were determined in tissue samples harvested from vein grafts of arteriovenous loops by microarray analysis and quantitative real-time polymerase chain reaction. Samples from untreated veins served as controls. RESULTS A strong deregulation of miRNA and gene expression was detected in arteriovenous loops, showing an overexpression of angiopoietic cytokines, oxygenation-associated genes, vascular growth factors, and connexin-43. The authors discovered inverse correlations along with validated and bioinformatically predicted interactions between angiogenesis-regulating genes and miRNAs in arteriovenous loops. CONCLUSIONS The authors' findings demonstrate that elevated shear stress triggers proangiogenic signaling pathways in human venous tissue, indicating that arteriovenous loops may have the ability to induce neoangiogenesis in humans. The authors' data corroborate the nutrient flap hypothesis and provide a molecular background for arteriovenous loop-based tissue engineering with potential clinical applications for soft-tissue defect reconstruction.
Collapse
|
17
|
Gao G, Tian Z, Zhu HY, Ouyang XY. miRNA-133b targets FGFR1 and presents multiple tumor suppressor activities in osteosarcoma. Cancer Cell Int 2018; 18:210. [PMID: 30574019 PMCID: PMC6299514 DOI: 10.1186/s12935-018-0696-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Background Osteosarcoma (OS) is the most common bone malignancy prevalent in children and young adults. MicroRNA-133b (miR-133b), through directly targeting the fibroblast growth factor receptor 1 (FGFR1), is increasingly recognized as a tumor suppressor in different types of cancers. However, little is known on the biological and functional significance of miR-133b/FGFR1 regulation in osteosarcoma. Methods The expressions of miR-133b and FGFR1 were examined by RT-qPCR and compared between 30 paired normal bone tissues and OS tissues, and also between normal osteoblasts and three OS cells lines, MG-63, U2OS, and SAOS-2. Using U2OS and MG-63 as the model system, the functional significance of miR-133b and FGFR1 was assessed on cell viability, proliferation, apoptosis, migration/invasion, and epithelial–mesenchymal transition (EMT) by overexpressing miR-133b and down-regulating FGFR1 expression, respectively. Furthermore, the signaling cascades controlled by miR-133b/FGFR1 were examined. Results miR-133b was significantly down-regulated while FGFR1 robustly up-regulated in OS tissues and OS cell lines, when compared to normal bone tissues and normal osteoblasts, respectively. Low miR-133b expression and high FGFR1 expression were associated with location of the malignant lesion, advanced clinical stage, and distant metastasis. FGFR1 was a direct target of miR-133b. Overexpressing miRNA-133b or knocking down FGFR1 significantly reduced the viability, proliferation, migration/invasion, and EMT, but promoted apoptosis of both MG-63 and U2OS cells. Both the Ras/MAPK and PI3K/Akt intracellular signaling cascades were inhibited in response to overexpressing miRNA-133b or knocking down FGFR1 in OS cells. Conclusion miR-133b, by targeting FGFR1, presents a plethora of tumor suppressor activities in OS cells. Boosting miR-133b expression or reducing FGFR1 expression may benefit OS therapy.
Collapse
Affiliation(s)
- Gan Gao
- Department of Orthopedics, Guizhou Provincial People's Hospital, No. 83, East Zhongshan Road, Guiyang, 550002 Guizhou People's Republic of China
| | - Zhen Tian
- Department of Orthopedics, Guizhou Provincial People's Hospital, No. 83, East Zhongshan Road, Guiyang, 550002 Guizhou People's Republic of China
| | - Huan-Ye Zhu
- Department of Orthopedics, Guizhou Provincial People's Hospital, No. 83, East Zhongshan Road, Guiyang, 550002 Guizhou People's Republic of China
| | - Xun-Yan Ouyang
- Department of Orthopedics, Guizhou Provincial People's Hospital, No. 83, East Zhongshan Road, Guiyang, 550002 Guizhou People's Republic of China
| |
Collapse
|
18
|
Musavi Shenas MH, Eghbal-Fard S, Mehrisofiani V, Abd Yazdani N, Rahbar Farzam O, Marofi F, Yousefi M. MicroRNAs and signaling networks involved in epithelial-mesenchymal transition. J Cell Physiol 2018; 234:5775-5785. [PMID: 30417364 DOI: 10.1002/jcp.27489] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a phenomenon in which epithelial cells lose their cell-to-cell connection and are detached from the base membrane. EMT is fundamental for many biological processes such as embryonic development and neurogenesis. It also plays a significant role in cancer progression and metastasis. EMT regulation occurs through a sophisticated network of transcription regulations that include many signaling pathways. The exact mechanism of cancer gene regulation has not been understood yet. However, it is interesting to study the role of microRNAs and epigenetics mechanism in the cancer development. In this review, the transcription regulation of EMT and the analysis of possible overlap between microRNAs and their targets which are involved in the cancer development are scrutinized.
Collapse
Affiliation(s)
| | - Shadi Eghbal-Fard
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Mehrisofiani
- Aging Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Abd Yazdani
- Aging Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Rahbar Farzam
- Aging Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Aging Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Prediction of potential disease-associated microRNAs by composite network based inference. Sci Rep 2018; 8:15813. [PMID: 30361693 PMCID: PMC6202421 DOI: 10.1038/s41598-018-34180-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/12/2018] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs (miRNAs) act a significant role in multiple biological processes and their associations with the development of all kinds of complex diseases are much close. In the research area of biology, medicine, and bioinformatics, prediction of potential miRNA-disease associations (MDAs) on the base of a variety of heterogeneous biological datasets in a short time is an important subject. Therefore, we proposed the model of Composite Network based inference for MiRNA-Disease Association prediction (CNMDA) through applying random walk to a multi-level composite network constructed by heterogeneous dataset of disease, long noncoding RNA (lncRNA) and miRNA. The results showed that CNMDA achieved an AUC of 0.8547 in leave-one-out cross validation and an AUC of 0.8533+/−0.0009 in 5-fold cross validation. In addition, we employed CNMDA to infer novel miRNAs for kidney neoplasms, breast neoplasms and lung neoplasms on the base of HMDD v2.0. Also, we employed the approach for lung neoplasms on the base of HMDD v1.0 and for breast neoplasms that have no known related miRNAs. It was found that CNMDA could be seen as an applicable tool for potential MDAs prediction.
Collapse
|
20
|
|
21
|
Differential miRNA expression profiling reveals miR-205-3p to be a potential radiosensitizer for low- dose ionizing radiation in DLD-1 cells. Oncotarget 2018; 9:26387-26405. [PMID: 29899866 PMCID: PMC5995186 DOI: 10.18632/oncotarget.25405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 04/28/2018] [Indexed: 12/12/2022] Open
Abstract
Enhanced radiosensitivity at low doses of ionizing radiation (IR) (0.2 to 0.6 Gy) has been reported in several cell lines. This phenomenon, known as low doses hyper-radiosensitivity (LDHRS), appears as an opportunity to decrease toxicity of radiotherapy and to enhance the effects of chemotherapy. However, the effect of low single doses IR on cell death is subtle and the mechanism underlying LDHRS has not been clearly explained, limiting the utility of LDHRS for clinical applications. To understand the mechanisms responsible for cell death induced by low-dose IR, LDHRS was evaluated in DLD-1 human colorectal cancer cells and the expression of 80 microRNAs (miRNAs) was assessed by qPCR array. Our results show that DLD-1 cells display an early DNA damage response and apoptotic cell death when exposed to 0.6 Gy. miRNA expression profiling identified 3 over-expressed (miR-205-3p, miR-1 and miR-133b) and 2 down-regulated miRNAs (miR-122-5p, and miR-134-5p) upon exposure to 0.6 Gy. This miRNA profile differed from the one in cells exposed to high-dose IR (12 Gy), supporting a distinct low-dose radiation-induced cell death mechanism. Expression of a mimetic miR-205-3p, the most overexpressed miRNA in cells exposed to 0.6 Gy, induced apoptotic cell death and, more importantly, increased LDHRS in DLD-1 cells. Thus, we propose miR-205-3p as a potential radiosensitizer to low-dose IR.
Collapse
|
22
|
miR-133b, a particular member of myomiRs, coming into playing its unique pathological role in human cancer. Oncotarget 2018; 8:50193-50208. [PMID: 28422730 PMCID: PMC5564843 DOI: 10.18632/oncotarget.16745] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/21/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs, a family of single-stranded and non-coding RNAs, play a crucial role in regulating gene expression at posttranscriptional level, by which it can mediate various types of physiological and pathological process in normal developmental progress and human disease, including cancer. The microRNA-133b originally defined as canonical muscle-specific microRNAs considering their function to the development and health of mammalian skeletal and cardiac muscles, but new findings coming from our group and others revealed that miR-133b have frequently abnormal expression in various kinds of human cancer and its complex complicated regulatory networks affects the tumorigenicity and development of malignant tumors. Very few existing reviews on miR-133b, until now, are principally about its role in homologous cluster (miR-1, −133 and -206s), however, most of constantly emerging new researches now are focused mainly on one of them, so In this article, to highlight the unique pathological role of miR-133b playing in tumor, we conduct a review to summarize the current understanding about one of the muscle-specific microRNAs, namely miR-133b, acting in human cancer. The review focused on the following four aspects: the overview of miR-133b, the target genes of miR-133b involved in human cancer, the expression of miR-133b and regulatory mechanisms leading to abnormal expression of miR-133b.
Collapse
|
23
|
Siriwardena SBSM, Tsunematsu T, Qi G, Ishimaru N, Kudo Y. Invasion-Related Factors as Potential Diagnostic and Therapeutic Targets in Oral Squamous Cell Carcinoma-A Review. Int J Mol Sci 2018; 19:ijms19051462. [PMID: 29758011 PMCID: PMC5983574 DOI: 10.3390/ijms19051462] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 01/06/2023] Open
Abstract
It is well recognized that the presence of cervical lymph node metastasis is the most important prognostic factor in oral squamous cell carcinoma (OSCC). In solid epithelial cancer, the first step during the process of metastasis is the invasion of cancer cells into the underlying stroma, breaching the basement membrane (BM)—the natural barrier between epithelium and the underlying extracellular matrix (ECM). The ability to invade and metastasize is a key hallmark of cancer progression, and the most complicated and least understood. These topics continue to be very active fields of cancer research. A number of processes, factors, and signaling pathways are involved in regulating invasion and metastasis. However, appropriate clinical trials for anti-cancer drugs targeting the invasion of OSCC are incomplete. In this review, we summarize the recent progress on invasion-related factors and emerging molecular determinants which can be used as potential for diagnostic and therapeutic targets in OSCC.
Collapse
Affiliation(s)
- Samadarani B S M Siriwardena
- Department of Oral Pathology, Faculty of Dental Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka.
| | - Takaaki Tsunematsu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan.
| | - Guangying Qi
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin 541004, China.
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan.
| | - Yasusei Kudo
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan.
| |
Collapse
|
24
|
Zhou H, Xu J, Wang S, Peng J. Role of cantharidin in the activation of IKKα/IκBα/NF‑κB pathway by inhibiting PP2A activity in cholangiocarcinoma cell lines. Mol Med Rep 2018; 17:7672-7682. [PMID: 29620225 PMCID: PMC5983964 DOI: 10.3892/mmr.2018.8860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 02/08/2018] [Indexed: 12/15/2022] Open
Abstract
Cantharidin (CAN), a potent inhibitor of serine/threonine‑protein phosphatase 2A (PP2A), is widely used in clinical practice, particularly in the treatment of advanced cancer due to its specific action on these types of cancer. In the present study, the inhibitory effect of CAN was examined in two cholangiocarcinoma cell lines (QBC939 and Hucc‑t1). Following treatment with CAN, cell viability was effectively reduced in QBC939 and Hucc‑t1 cells and normal human intrahepatic biliary epithelial cells. However, a slight increase in reactive oxygen species levels in QBC939 cells treated with CAN was observed post‑treatment. CAN significantly inhibited cell migration and invasion in a dose‑dependent manner. Western blot analysis demonstrated that the nuclear factor‑κB (NF‑κB) pathway was stimulated by CAN, which was confirmed by the upregulated phosphorylation levels of inhibitor of NF‑κB kinase subunit α (IKKα) and NF‑κB inhibitor α (IκBα) in cells, and an increased NF‑κB p65 subunit level in the nucleus. The expression levels of 72 kDa type IV collagenase (MMP2) and matrix metalloproteinase 9 (MMP9) were downregulated by CAN. Notably, there was a negative association between MMP2 and MMP9 expression levels, and NF‑κB p65, although NF‑κB p65 regulates the expression of MMP2 and MMP9 and has a positive association with these proteins in various types of cancer. Notably, it was observed that CAN exerted specific inhibition on PP2A activity and thereby resulted in the activation of the IKKα/IκBα/NF‑κB pathway. Therefore, CAN‑induced cell inhibition maybe partially dependent on the activation of the IKKα/IκBα/NF‑κB pathway. In conclusion, it was demonstrated that CAN selectively and effectively inhibited cholangiocarcinoma cell migration and invasion. The present study may provide a novel insight into the use of CAN as a therapeutic candidate in the treatment of cholangiocarcinoma.
Collapse
Affiliation(s)
- Huijiang Zhou
- Department of General Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, P.R. China
| | - Jiangfeng Xu
- Department of General Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, P.R. China
| | - Shuai Wang
- Department of General Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, P.R. China
| | - Jinfeng Peng
- Department of General Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, P.R. China
| |
Collapse
|
25
|
Pan JY, Sun CC, Bi ZY, Chen ZL, Li SJ, Li QQ, Wang YX, Bi YY, Li DJ. miR-206/133b Cluster: A Weapon against Lung Cancer? MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:442-449. [PMID: 28918043 PMCID: PMC5542379 DOI: 10.1016/j.omtn.2017.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/25/2017] [Accepted: 06/02/2017] [Indexed: 12/29/2022]
Abstract
Lung cancer is a deadly disease that ends numerous lives around the world. MicroRNAs (miRNAs) are a group of non-coding RNAs involved in a variety of biological processes, such as cell growth, organ development, and tumorigenesis. The miR-206/133b cluster is located on the human chromosome 6p12.2, which is essential for growth and rebuilding of skeletal muscle. The miR-206/133b cluster has been verified to be dysregulated and plays a crucial role in lung cancer. miR-206 and miR-133b participate in lung tumor cell apoptosis, proliferation, migration, invasion, angiogenesis, drug resistance, and cancer treatment. The mechanisms are sophisticated, involving various target genes and molecular pathways, such as MET, EGFR, and the STAT3/HIF-1α/VEGF signal pathway. Hence, in this review, we summarize the role and potential mechanisms of the miR-206/133b cluster in lung cancer.
Collapse
Affiliation(s)
- Jing-Yu Pan
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China
| | - Cheng-Cao Sun
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China.
| | - Zhuo-Yue Bi
- Hubei Provincial Key Laboratory for Applied Toxicology (Hubei Provincial Academy for Preventive Medicine), Wuhan 430079 Hubei, P.R. China
| | - Zhen-Long Chen
- Wuhan Hospital for the Prevention and Treatment of Occupational Diseases, Wuhan 430022 Hubei, P.R. China
| | - Shu-Jun Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China; Wuhan Hospital for the Prevention and Treatment of Occupational Diseases, Wuhan 430022 Hubei, P.R. China
| | - Qing-Qun Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China
| | - Yu-Xuan Wang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China
| | - Yong-Yi Bi
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China
| | - De-Jia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071 Hubei, P.R. China.
| |
Collapse
|
26
|
Ruan H, Liang X, Zhao W, Ma L, Zhao Y. The effects of microRNA-183 promots cell proliferation and invasion by targeting MMP-9 in endometrial cancer. Biomed Pharmacother 2017; 89:812-818. [PMID: 28273643 DOI: 10.1016/j.biopha.2017.02.091] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/23/2017] [Accepted: 02/23/2017] [Indexed: 01/12/2023] Open
Abstract
MiRNAs are known to play important roles in cancer cell development. However, the pattern and biological role of miR-183 in endometrial cancer (EC) have not been completely unexplored. Here, we found that miR-183 was upregulated in endometrial cancer cells. The purpose of the study was to evaluate the function of miR-183 in the endometrial cancer cell line and the mechanisms regulating its direct target protein in these processes. The mRNA and protein expressions were analyzed by quantitative RT-PCR and western blotting, respectively. The experiments about MTT assay, colony formation assay and transwell assay showed that miR-183 can positively regulate cell proliferation, migration and invasion in vitro. Furthermore, the in vivo experiments indicated that knockdown of miR-183 significantly attenuated EC cells growth. Mechanistically, luciferase reporter assay and western blotting assay was conducted to confirm target associations. The data analysis revealed that MMP-9 as a direct target of miR-183 in EC and there was a negatively relationship between miR-183 and MMP-9 expression in EC cells. Taken together, our results demonstrated that miR-183 plays a critical role in EC tumorigenesis and metastasis by suppressing MMP-9 expression, which may be an attractive therapeutic target for the treatment of endometrial cancer.
Collapse
Affiliation(s)
- Hongjie Ruan
- Department of Gynecology, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210000, China
| | - Xin Liang
- Department of Clinical Laboratory, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210000, China
| | - Wei Zhao
- Department of Clinical Laboratory, Nanjing Maternity and Child Health Care Hospital, Nanjing 210000, China
| | - Li Ma
- Department of Clinical Laboratory, Huai'an Hospital, Xuzhou Medical University, Huai'an 223002, China.
| | - Yibing Zhao
- Department of Gynecology, Jiangsu Cancer Hospital, Nanjing 210000, China.
| |
Collapse
|
27
|
Li H, Xiang Z, Liu Y, Xu B, Tang J. MicroRNA-133b Inhibits Proliferation, Cellular Migration, and Invasion via Targeting LASP1 in Hepatocarcinoma Cells. Oncol Res 2017; 25:1269-1282. [PMID: 28117027 PMCID: PMC7841022 DOI: 10.3727/096504017x14850151453092] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRs), a class of small noncoding RNAs, are key gene regulators through inducing translational repression or degradation of their target genes. However, the regulatory mechanism of miR-133b underlying hepatocellular carcinoma (HCC) growth and metastasis remains largely unclear. Here we found that miR-133b was significantly downregulated in HCC tissues and cell lines. Moreover, low miR-133b levels were significantly associated with the malignant progression of HCC. LASP1, upregulated in HCC tissues and cell lines, was then identified as a novel target of miR-133b in HCC HepG2 and Hep3B cells. Moreover, the increased expression of LASP1 was associated with HCC progression. An in vitro study showed that overexpression of miR-133b inhibited the proliferation, migration, and invasion of HepG2 and Hep3B cells. Similarly, knockdown of LASP1 reduced HepG2 and Hep3B cell proliferation, migration, and invasion. Furthermore, overexpression of LASP1 attenuated the suppressive effect of miR-133b on the malignant phenotypes of HepG2 and Hep3B cells, suggesting that miR-133b may inhibit HCC growth and metastasis via targeting LASP1. In addition, overexpression of miR-133b inhibits tumor growth of HepG2 and Hep3B cells in vivo. Therefore, the miR-133b/LASP1 axis may become a potential target for the treatment of HCC.
Collapse
|
28
|
Zhen Y, Liu J, Huang Y, Wang Y, Li W, Wu J. miR-133b Inhibits Cell Growth, Migration, and Invasion by Targeting MMP9 in Non-Small Cell Lung Cancer. Oncol Res 2016; 25:1109-1116. [PMID: 27938481 PMCID: PMC7840966 DOI: 10.3727/096504016x14800889609439] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Although increasing evidence indicates that the deregulation of microRNAs (miRNAs) contributes to tumorigenesis and invasion, little is known about the role of miR-133b in human non-small cell lung cancer (NSCLC). In the present study, we revealed that the introduction of miR-133b dramatically suppressed NSCLC cell growth, migration, and invasion in vitro. On the contrary, miR-133b inhibitors promoted cell growth, migration, and invasion in vitro. Further studies revealed that matrix metallopeptidase 9 (MMP9) is a direct target gene of miR-133b. Silencing MMP9 inhibited cell growth, migration, and invasion of NSCLC cells, which was consistent with the effect of miR-133b overexpression. In clinical specimens, reduced miR-133b was an unfavorable factor and negatively correlated with MMP9 expression. Our studies demonstrate that miR-133b inhibits cell growth, migration, and invasion by targeting MMP9 in NSCLC.
Collapse
|
29
|
Eissa S, Matboli M, Bekhet MM. Clinical verification of a novel urinary microRNA panal: 133b, -342 and -30 as biomarkers for diabetic nephropathy identified by bioinformatics analysis. Biomed Pharmacother 2016; 83:92-99. [PMID: 27470555 DOI: 10.1016/j.biopha.2016.06.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/03/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Because microvascular disease is one of the major drivers of diabetic complications, early detection of diabetic nephropathy (DN) by assessing the expression of exosomal microRNAs (miRNAs) in DN patients and healthy controls, may be of clinical value. The aim of this study wasto identify a novel miRNA panel of DN by combining bioinformatics analysis of miRNA databases and clinical verification to evaluate the significance of this panel as urine biomarkers for type 2 diabetic nephropathy (T2DN). PATIENTS AND METHODS Public miRNA databases e.g miro-Ontology and miRWalk were analyzed and a novel panel of 3 microRNAs was retrieved. Meanwhile, combinatorial target prediction algorithms were applied. Multiple case-matched normal were examined by quantative RT-PCR for differential expression in urine exosomes from 210 participants, and the three identified miRNAs were validated as DN biomarkers. RESULTS We found urinary exosomalmiR-133b, miR-342, and miR-30a were expressed at significantly elevated levels in T2DN patients (P<0.001) compared to normal. Furthermore, high-level expression of the 3 miRNAs was associated withHbA1c,systolic-diastolic blood pressure, LDL, serum creatinine, urinary albumin creatinine ratio and estimated glomerular filtration rate(eGFR). Moreover, 39.3%, 19.6% and 17.9% of patients with normo-albuminuria had positive (miR-133b, miR-342 and miR-30a, respectively); indicating the possibility of molecular changes in these patients before onset of albuminuria. CONCLUSION We have identified novel urinary exosomal miRNA biomarkers of DN which were altered not only in micro and macroalbuminuric groups but also in some normoalbuminuria cases prior to albuminuria.
Collapse
Affiliation(s)
- Sanaa Eissa
- Oncology Diagnostic Unit, Medical Biochemistry and Molecular biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, P.O. Box 11381, Egypt.
| | - Marwa Matboli
- Oncology Diagnostic Unit, Medical Biochemistry and Molecular biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, P.O. Box 11381, Egypt.
| | - Miram M Bekhet
- Diabetes and endocrinology Unit, Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
30
|
Li C, Liu Z, Yang K, Chen X, Zeng Y, Liu J, Li Z, Liu Y. miR-133b inhibits glioma cell proliferation and invasion by targeting Sirt1. Oncotarget 2016; 7:36247-36254. [PMID: 27166997 PMCID: PMC5094997 DOI: 10.18632/oncotarget.9198] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/16/2016] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRs) are a class of small non-coding RNAs that function as mediators of gene expression. Dysregulations of miRs have been implicated in the development and progression of glioma. In the present study, we investigated the role of miR-133b in mediating the proliferation and invasion of glioma cells, and the potential mechanism. Real-time RT-PCR results showed that miR-133b expression was significantly decreased in glioma tissues compared with normal brain tissues. Luciferase reporter assay further identified silent information regulator 1 (Sirt1) as a novel direct target of miR-133b in glioma U87 cells. Overexpression of miR-133b suppressed Sirt1 expression and reduced the proliferation and invasion of U87 cells, which could be partly rescued by forced expression of Sirt1. In addition, the Sirt1 mRNA level was significantly higher in glioma tissues than in normal brain tissues, and was inversely correlated with miR-133b level in glioma tissues. In summary, our study sheds light on the regulatory mechanism of miR-133b in glioma growth and metastasis via direct mediation of Sirt1 expression, and suggests that Sirt1 may serve as a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Chuntao Li
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008 Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008 Hunan, China
| | - Kui Yang
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008 Hunan, China
| | - Xin Chen
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008 Hunan, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008 Hunan, China
| | - Jinfang Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008 Hunan, China
| | - Zhenyan Li
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008 Hunan, China
| | - Yunsheng Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008 Hunan, China
| |
Collapse
|
31
|
Chen X, Wu B, Xu Z, Li S, Tan S, Liu X, Wang K. Downregulation of miR-133b predict progression and poor prognosis in patients with urothelial carcinoma of bladder. Cancer Med 2016; 5:1856-62. [PMID: 27292588 PMCID: PMC4971914 DOI: 10.1002/cam4.777] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 12/16/2022] Open
Abstract
We found microRNA-133b (miR-133b) was downregulated in urothelial carcinoma of the bladder (UCB) tissues, and it could inhibit the proliferation and induce apoptosis in UCB cells. Consequently, we intend to explore the clinical significance of miR-133b in UCB patients. Expression of miR-133b in 146 UCB specimens and matched adjacent non-neoplastic bladder tissues were measured by quantitative real-time polymerase chain reaction. The overall survival (OS) curve and progression-free survival (PFS) curve were plotted using the Kaplan-Meier method. Prognostic factors for OS and PFS were identified by univariate and multivariate analyses using the Cox proportional hazards regression model. The expression of miR-133b was significantly downregulated in UCB tissues compared with those in adjacent non-neoplastic bladder tissues (P < 0.001). Among UCB patients, low expression of miR-133b significantly correlated with aggressive clinicopathological features. Multivariate analysis indicated that the expression of miR-133b was the independent prognostic factors for predicting PFS (RR: 2.97; 95% CI: 1.78-6.44; P = 0.009) and OS (RR: 4.23; 95% CI: 1.51-11.8; P = 0.011) in patients with UCB. Our study demonstrated that downregulation of miR-133b associated with aggressive clinicopathological features and predicted unfavorable prognosis in patients with UCB, might serve as feasible biomarker for clinical outcome of UCB patients after surgery and potential therapeutic target in the future.
Collapse
Affiliation(s)
- Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Division of Nephrology and Cancer Center, University of California, Davis, CA, 95616
| | - Bin Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhenqun Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shutao Tan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xuefeng Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| |
Collapse
|
32
|
Li Y, Li J, Sun X, Chen J, Sun X, Zheng J, Chen R. MicroRNA-27a functions as a tumor suppressor in renal cell carcinoma by targeting epidermal growth factor receptor. Oncol Lett 2016; 11:4217-4223. [PMID: 27313769 DOI: 10.3892/ol.2016.4500] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 01/13/2016] [Indexed: 01/27/2023] Open
Abstract
Numerous studies have suggested that microRNAs (miRNAs) are vital in the development of various types of human cancers, including renal cell carcinoma (RCC), and the regulation of tumor progression and invasion. However, the effect of miRNA-27a (miR-27a) on the tumorigenesis of RCC is unclear. The aim of the present study was to investigate the function of miR-27a and identify its possible target genes in RCC cells. In the present study, cell proliferation, migration and invasion and the percentage of apoptotic cells were detected by methylthiazol tetrazolium assays, Annexin V analysis, wound-healing assays and Transwell invasion assays. Western blot analysis was performed to validate the protein expression level and assess whether the epidermal growth factor receptor (EGFR) was a target gene of miR-27a. A tumor xenograft animal model was used to detect the role of miR-27a on RCC cell growth in vivo. The present study demonstrated that miR-27a significantly suppressed human RCC 786-O cell proliferation and induced cell apoptosis. Restoration of miR-27 also resulted in 786-O cell migration and invasion inhibition. Furthermore, upregulated miR-27a attenuated RCC tumor growth in the tumor xenograft animal model. The present results suggested that miR-27a functions as a tumor suppressor in RCC. The western blot analysis assay revealed that EGFR was a novel target of miR-27a. The growth suppression of RCC cells was attributed partly to the downregulation of the cell cycle by ERFR inhibition. The present findings may aid in the understanding of the molecular mechanism of miR-27a in the tumorigenesis of RCC, and may provide novel diagnostic and therapeutic options for RCC.
Collapse
Affiliation(s)
- Yueyan Li
- Department of Urology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Jie Li
- Department of Urology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiaolei Sun
- Department of Urology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Jiacun Chen
- Department of Urology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiaoqing Sun
- Department of Urology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Junnian Zheng
- Department of Urology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Renfu Chen
- Department of Urology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
33
|
MicroRNAs in the Pathogenesis of Renal Cell Carcinoma and Their Diagnostic and Prognostic Utility as Cancer Biomarkers. Int J Biol Markers 2016; 31:e26-37. [DOI: 10.5301/jbm.5000174] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2015] [Indexed: 12/18/2022]
Abstract
Purpose To provide information about the role of microRNAs in the pathogenesis of renal cell carcinoma (RCC) and their diagnostic and prognostic utility as cancer biomarkers. Methods A literature search was performed in the PubMed and Web of Science databases using the keywords “renal cancer/renal cell carcinoma/kidney cancer” and “miR*/miRNA*/microRNA*”. Articles dealing with the role of miRNAs in the pathogenesis of RCC, diagnostic miRNAs and prognostic miRNAs were separated. Results MiRNAs act both as oncogenes and tumor suppressors. They regulate apoptosis, cell growth, migration, invasion, proliferation, colony formation and angiogenesis through target proteins involved in several signaling pathways, and they are involved in key pathogenetic mechanisms such as hypoxia (HIF/VHL dependent) and epithelial-to-mesenchymal transition. Differentially expressed miRNAs can discriminate either tumor tissue from healthy renal tissue or different RCC subtypes. Circulating miRNAs are promissing as diagnostic biomarkers of RCC. Information about urinary miRNAs associated with RCC is sparse. Detection of a relapse is another implication of diagnostic miRNAs. The expression profiles of several miRNAs correlate with the prognosis of RCC patients. Comparison between primary tumor tissue and metastasis may help identify high-risk primary tumors. Finally, response to target therapy can be estimated thanks to differences in miRNA expression in tissue and serum of therapy-resistant versus therapy-sensitive patients. Conclusions Our understanding of the role of microRNAs in RCC pathogenesis has been increasing dramatically. Identification and validation of their gene targets may have direct impact on developing microRNA-based anticancer therapy. Several microRNAs can serve as diagnostic and prognostic biomarkers.
Collapse
|
34
|
Amin M, Pushpakumar S, Muradashvili N, Kundu S, Tyagi SC, Sen U. Regulation and involvement of matrix metalloproteinases in vascular diseases. FRONT BIOSCI-LANDMRK 2016; 21:89-118. [PMID: 26709763 PMCID: PMC5462461 DOI: 10.2741/4378] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc dependent endopeptidases whose main function is to degrade and deposit structural proteins within the extracellular matrix (ECM). A dysregulation of MMPs is linked to vascular diseases. MMPs are classified into collagenases, gelatinases, membrane-type, metalloelastase, stromelysins, matrilysins, enamelysins, and unclassified subgroups. The production of MMPs is stimulated by factors such as oxidative stress, growth factors and inflammation which lead to its up- or down-regulation with subsequent ECM remodeling. Normally, excess activation of MMPs is controlled by their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs). An imbalance of MMPs and TIMPs has been implicated in hypertension, atherosclerotic plaque formation and instability, aortic aneurysms and varicose vein wall remodeling. Also, recent evidence suggests epigenetic regulation of some MMPs in angiogenesis and atherosclerosis. Over the years, pharmacological inhibitors of MMPs have been used to modify or prevent the development of the disease with some success. In this review, we discuss recent advances in MMP biology, and their involvement in the manifestation of vascular disease.
Collapse
Affiliation(s)
- Matthew Amin
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Sathnur Pushpakumar
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Nino Muradashvili
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Sourav Kundu
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Utpal Sen
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202,
| |
Collapse
|
35
|
Chen D, Li Y, Li Y, Jin L, Su Z, Yu Z, Yang S, Mao X, Lai Y. Tumor suppressive microRNA‑429 regulates cellular function by targeting VEGF in clear cell renal cell carcinoma. Mol Med Rep 2015; 13:1361-6. [PMID: 26647818 DOI: 10.3892/mmr.2015.4653] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 10/14/2015] [Indexed: 11/06/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the predominant and most aggressive type of kidney malignancy, however, the mechanism underlying its carcinogenesis remains to be elucidated. The present study aimed to determine the expression and function of microRNA (miR)‑429 in ccRCC carcinogenesis. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) was used to detect the expression of miR‑429 in ccRCC specimens. Following transfection of miR‑429 synthetic mimics, the expression of miR‑429 was examined and cell proliferation, cell migration, apoptosis and luciferase assays were conducted in ccRCC cell lines. The results demonstrated that expression of miR‑429 was decreased in ccRCC cells. In addition, upregulation of miR‑429 by transfection of mimics reduced cellular proliferation and migration, and induced apoptosis in ACHN and 786‑0 cell lines. Furthermore, miR‑429 decreased the 3'UTR luciferase activity of vascular endothelial growth factor (VEGF) and c‑MYC, and RT‑qPCR analysis demonstrated that the cancer cells transfected with miR‑429 mimics exhibited decreased expression of VEGF, but not c‑MYC. To the best of our knowledge, the present study was the first to reveal that downregulated miR‑429 functioned as a tumor suppressor by restraining cellular proliferation and migration, and inducing apoptosis, as well as targeting VEGF in ccRCC cells.
Collapse
Affiliation(s)
- Duqun Chen
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Yuchi Li
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Yifan Li
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Lu Jin
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Zhengming Su
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Zuhu Yu
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Shangqi Yang
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Xiangming Mao
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU‑HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
36
|
Chang L, Lei X, Qin YU, Zhang X, Jin H, Wang C, Wang X, Li G, Tan C, Su J. MicroRNA-133b inhibits cell migration and invasion by targeting matrix metalloproteinase 14 in glioblastoma. Oncol Lett 2015; 10:2781-2786. [PMID: 26722242 PMCID: PMC4665711 DOI: 10.3892/ol.2015.3657] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 08/17/2015] [Indexed: 11/12/2022] Open
Abstract
Increasing evidence has suggested that microRNA-133b (miR-133b) is important in regulating the genesis of different types of cancer. However, the effects and the underlying mechanisms of miR-133b in the development of glioblastoma (GBM) remain largely unknown. The aim of the present study was to investigate the role of miR-133b in GBM and to determine the molecular mechanisms underlying its action. Reverse transcription-quantitative polymerase chain reaction was used to measure the expression levels of miR-133b in 21 human GBM samples and 9 normal brain tissue samples. A wound healing assay, and Transwell migration and invasion assays were used to evaluate the effects of miR-133b on cell migration and invasion. Western blotting and a luciferase reporter assay were used to identify the target genes of miR-133b. It was found that miR-133b suppressed GBM cell migration and invasion, and matrix metalloproteinase 14 (MMP14) was identified as a direct target gene. In conclusion, miR-133b may suppress GBM migration and invasion through directly targeting MMP14, highlighting its potential as a novel agent for the treatment of GBM invasion.
Collapse
Affiliation(s)
- Liang Chang
- Department of Neurosurgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xuhui Lei
- Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Y U Qin
- Department of Pathology, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xuexin Zhang
- Department of Pathology, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hua Jin
- Department of Neurosurgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Chao Wang
- Department of Neurosurgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xin Wang
- Department of Neurosurgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Guofu Li
- Department of Neurosurgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Chunlei Tan
- Department of Neurosurgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jun Su
- Department of Neurosurgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
37
|
Mitchelson KR, Qin WY. Roles of the canonical myomiRs miR-1, -133 and -206 in cell development and disease. World J Biol Chem 2015; 6:162-208. [PMID: 26322174 PMCID: PMC4549760 DOI: 10.4331/wjbc.v6.i3.162] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 03/13/2015] [Accepted: 05/28/2015] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs are small non-coding RNAs that participate in different biological processes, providing subtle combinational regulation of cellular pathways, often by regulating components of signalling pathways. Aberrant expression of miRNAs is an important factor in the development and progression of disease. The canonical myomiRs (miR-1, -133 and -206) are central to the development and health of mammalian skeletal and cardiac muscles, but new findings show they have regulatory roles in the development of other mammalian non-muscle tissues, including nerve, brain structures, adipose and some specialised immunological cells. Moreover, the deregulation of myomiR expression is associated with a variety of different cancers, where typically they have tumor suppressor functions, although examples of an oncogenic role illustrate their diverse function in different cell environments. This review examines the involvement of the related myomiRs at the crossroads between cell development/tissue regeneration/tissue inflammation responses, and cancer development.
Collapse
|
38
|
WANG YUE, XIN HUA, HAN ZHIFENG, SUN HONGBING, GAO NAN, YU HAIXIANG. MicroRNA-374a promotes esophageal cancer cell proliferation via Axin2 suppression. Oncol Rep 2015; 34:1988-94. [DOI: 10.3892/or.2015.4182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/18/2015] [Indexed: 11/06/2022] Open
|
39
|
Abstract
Glutathione S-transferase P1 (GSTP1), an enzyme involved in detoxification process, is frequently inactivated in prostate cancer due to epigenetic modifications. Through in silico analysis we identified a subset of miRNAs that are putative targets in regulating GSTP1. miRNAs are small endogenous non-coding RNA that are critical regulators of various physiologic and pathologic processes and their level of expression may play a precise role in early diagnosis and prognosis of cancer. These small molecules have been detected in a wide variety of human biological specimens including blood, serum, urine, ejaculate and tissues, which could be utilized as clinically useful biomarker in early detection and prognosis of prostate cancer. The chapter summarizes the current knowledge about miRNA involved in GSTP1 regulation in prostate cancer and their potential as useful biomarkers of disease for early detection and prognosis, along with challenges and limitations in this development.
Collapse
|
40
|
Li M, Wang Y, Song Y, Bu R, Yin B, Fei X, Guo Q, Wu B. MicroRNAs in renal cell carcinoma: a systematic review of clinical implications (Review). Oncol Rep 2015; 33:1571-8. [PMID: 25682771 PMCID: PMC4358077 DOI: 10.3892/or.2015.3799] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/18/2014] [Indexed: 01/13/2023] Open
Abstract
Despite recent advances in the understanding of the biology of renal cell carcinoma (RCC), successful surgical treatment and implementation of novel-targeted therapies, the prognosis for RCC patients remains poor. Late presentation, tumor heterogeneity and in particular the lack of molecular biomarkers for early detection, classification and the surveillance of RCC treatments are major obstacles. The increasing knowledge regarding the functional role of microRNAs (miRNAs) in pathophysiological processes may provide an important link to the identification of suitable therapeutic targets and diagnostic/prognostic biomarkers for RCC. The aim of this review was to provide new insight into the function of miRNAs in the pathogenesis of RCC and to emphasize their potential as diagnostic and prognostic markers, as well as therapeutic targets.
Collapse
Affiliation(s)
- Ming Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ying Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yongsheng Song
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Renge Bu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Bo Yin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiang Fei
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qizhen Guo
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Bin Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|