1
|
Kawabata S, Iijima H, Kanemura N, Murata K. Genome-Wide Network Analysis of DRG-Sciatic Nerve Network-Inferred Cellular Senescence and Senescence Phenotype in Peripheral Sensory Neurons. Mol Neurobiol 2025; 62:6112-6127. [PMID: 39714525 DOI: 10.1007/s12035-024-04666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Accumulation of senescent neurons in the dorsal root ganglion (DRG) is an important tissue phenotype that causes age-related degeneration of peripheral sensory nerves. Senescent neurons are neurons with arrested cell cycle that have undergone cellular senescence but remain in the tissue and play various biological roles. To understand the accumulation of senescent neurons in the DRG during aging, we aimed to elucidate the mechanism that induces cellular senescence in DRG neurons and the role of senescent DRG neurons. We integrated multiple public transcriptome datasets for DRGs, which include cell bodies in neurons, and the sciatic nerve, which includes axons in neurons, using network medicine-based bioinformatics analysis. We thus inferred the molecular mechanisms involved in cellular senescence of DRG neurons, from molecular responses to senescence, in the DRG-sciatic nerve network. Network medicine-based bioinformatics analysis revealed that age-related Mapk3 decline leads to impaired cholesterol metabolism and biosynthetic function in axons, resulting in compensatory upregulation of Srebf1, a transcription factor involved in lipid and cholesterol metabolism. This in turn leads to CDKN2A-mediated cellular senescence. Furthermore, our analysis revealed that senescent DRG neurons develop a senescence phenotype characterized by activation of antigen-presenting cells via upregulation of Ctss as a hub gene. B cells were inferred as antigen-presenting cells activated by Ctss, and CD8-positive T cells were inferred as cells that receive antigen presentation from B cells.
Collapse
Affiliation(s)
- Sora Kawabata
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hirotaka Iijima
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, USA
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Naohiko Kanemura
- Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, 820 San-Nomiya, Koshigaya-Shi, Saitama, 343-8540, Japan
| | - Kenji Murata
- Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, 820 San-Nomiya, Koshigaya-Shi, Saitama, 343-8540, Japan.
| |
Collapse
|
2
|
Mukherjee AG, Mishra S, Gopalakrishnan AV, Kannampuzha S, Murali R, Wanjari UR, B S, Vellingiri B, Madhyastha H, Kanagavel D, Vijayan M. Unraveling the mystery of citrate transporters in Alzheimer's disease: An updated review. Ageing Res Rev 2025; 107:102726. [PMID: 40073978 DOI: 10.1016/j.arr.2025.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/26/2024] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
A key molecule in cellular metabolism, citrate is essential for lipid biosynthesis, energy production, and epigenetic control. The etiology of Alzheimer's disease (AD), a progressive neurodegenerative illness marked by memory loss and cognitive decline, may be linked to dysregulated citrate transport, according to recent research. Citrate transporters, which help citrate flow both inside and outside of cells, are becoming more and more recognized as possible participants in the molecular processes underlying AD. Citrate synthase (CS), a key enzyme in the tricarboxylic acid (TCA) cycle, supports mitochondrial function and neurotransmitter synthesis, particularly acetylcholine (ACh), essential for cognition. Changes in CS activity affect citrate availability, influencing energy metabolism and neurotransmitter production. Choline, a precursor for ACh, is crucial for neuronal function. Lipid metabolism, oxidative stress reactions, and mitochondrial function can all be affected by aberrant citrate transport, and these changes are linked to dementia. Furthermore, the two main pathogenic characteristics of AD, tau hyperphosphorylation and amyloid-beta (Aβ) aggregation, may be impacted by disturbances in citrate homeostasis. The goal of this review is to clarify the complex function of citrate transporters in AD and provide insight into how they contribute to the development and course of the illness. We aim to provide an in-depth idea of which particular transporters are dysregulated in AD and clarify the functional implications of these dysregulated transporters in brain cells. To reduce neurodegenerative processes and restore metabolic equilibrium, we have also discussed the therapeutic potential of regulating citrate transport. Gaining insight into the relationship between citrate transporters and the pathogenesis of AD may help identify new indicators for early detection and creative targets for treatment. This study offers hope for more potent ways to fight this debilitating illness and is a crucial step in understanding the metabolic foundations of AD.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Shatakshi Mishra
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, VIT, Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Stany B
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, VIT, Vellore 632014, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda, Punjab 151401, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Deepankumar Kanagavel
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, VIT, Vellore 632014, India
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
3
|
Manavi Z, Melchor GS, Bullard MR, Gross PS, Ray S, Gaur P, Baydyuk M, Huang JK. Senescent cell reduction does not improve recovery in mice under experimental autoimmune encephalomyelitis (EAE) induced demyelination. J Neuroinflammation 2025; 22:101. [PMID: 40197319 PMCID: PMC11974124 DOI: 10.1186/s12974-025-03425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/21/2025] [Indexed: 04/10/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by immune cell-driven demyelination and progressive neurodegeneration. Senescent cells (SCs) have recently been observed in chronic MS lesions indicating their possible involvement in disease progression. However, the role of SCs and the potential therapeutic benefit of their reduction through senolytic therapy remains to be determined in experimental autoimmune encephalomyelitis (EAE), a widely used preclinical model of MS. Here, we show that senescent-like myeloid cells accumulate in the spinal cord parenchyma and meninges in mice after myelin oligodendrocyte glycoprotein (MOG33-55) EAE induction. Treatment with the senolytic cocktail, Dasatinib and Quercetin (DQ), effectively reduces the senescent-like myeloid cells, but this does not translate into improved clinical outcomes in EAE mice. Increasing DQ dosage or using INK-ATTAC transgenic mice also failed to ameliorate EAE severity. Additionally, histopathological analysis shows no significant differences in demyelination or axonal degeneration between treated and control groups. Our findings indicate that senescent-like myeloid cells are present in an immune-mediated demyelinating model of MS and can be reduced through senolytic therapy with Dasatinib and Quercetin. However, their reduction through DQ does not significantly impact inflammation or recovery, suggesting that the therapeutic potential of senolytics as disease-modifying drugs in MS may be limited.
Collapse
Affiliation(s)
- Zeeba Manavi
- Department of Biology, Georgetown University, Washington, DC, USA
| | - George S Melchor
- Department of Biology, Georgetown University, Washington, DC, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
| | - Meghan R Bullard
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Phillip S Gross
- Department of Biology, Georgetown University, Washington, DC, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
| | - Shinjini Ray
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Pankaj Gaur
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - Maryna Baydyuk
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Jeffrey K Huang
- Department of Biology, Georgetown University, Washington, DC, USA.
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA.
| |
Collapse
|
4
|
Wu W, Mi Y, Meng Q, Li N, Li W, Wang P, Hou Y. Natural polyphenols as novel interventions for aging and age-related diseases: Exploring efficacy, mechanisms of action and implications for future research. CHINESE HERBAL MEDICINES 2025; 17:279-291. [PMID: 40256718 PMCID: PMC12009074 DOI: 10.1016/j.chmed.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 09/02/2024] [Indexed: 01/03/2025] Open
Abstract
Natural polyphenols are a group of components widely found in traditional Chinese medicines and have been demonstrated to delay or prevent the development of aging and age-related diseases in recent years. As far as we know, the studies of natural polyphenols in aging and aging-related diseases have never been extensively reviewed. In the present paper, we reviewed recent advances of natural polyphenols in aging and common age-related diseases and the current technological methods to improve the bioavailability of natural polyphenols. The results showed that natural polyphenols have the potential to prevent or treat aging and common age-related diseases through multiple mechanisms. Nanotechnology, structural modifications, and matrix processing could provide strong technical support for the development of natural polyphenols to prevent or treat aging and age-related diseases. In conclusion, natural polyphenols have important potential in the prevention and treatment of aging and age-related diseases.
Collapse
Affiliation(s)
- Wenze Wu
- Liaoning Key Laboratory of Bioresource Research and Development, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Yan Mi
- Liaoning Key Laboratory of Bioresource Research and Development, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Qingqi Meng
- Liaoning Key Laboratory of Bioresource Research and Development, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Ning Li
- Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 117004, China
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan
| | - Pu Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Yue Hou
- Liaoning Key Laboratory of Bioresource Research and Development, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| |
Collapse
|
5
|
Lu Y, Yang J, Wu Q, Wang X. The Role and Molecular Pathways of SIRT6 in Senescence and Age-related Diseases. Adv Biol (Weinh) 2025; 9:e2400469. [PMID: 39913122 DOI: 10.1002/adbi.202400469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/10/2024] [Indexed: 02/07/2025]
Abstract
SIRT6 is a NAD+-dependent histone deacetylase with crucial roles in controlling DNA damage repair, telomere homeostasis, oxidative stress, autophagy, and other cellular processes, and it has long been recognized as a longevity-associated protein. This review details its anti-aging-related mechanisms. First, SIRT6 facilitates DNA repair pathways and maintains genome stability by deacetylating histone H3 at K56, K9, and K18 residues, in addition to participating in DNA damage repair through mono-ADP-ribosylation and other mechanisms. Second, SIRT6 preserves telomere integrity and mitigates cellular senescence by reducing oxidative stress-induced damage through the regulation of reactive oxygen species (ROS), inhibition of inflammation, and other pathways. Furthermore, SIRT6 promotes autophagy, slowing cellular senescence via the modulation of various signaling pathways, including AMPK, IGF-Akt-mTOR, H133Y, IL-1β, and mitochondrial autophagy-related proteins. Finally, SIRT6 regulates multiple signaling pathways, such asNF-κB, FOXO, and AMPK, to counteract the aging process. This review particularly delves into the interplay between SIRT6 and various diseases, including tumors, cardiovascular diseases (e.g., atherosclerosis, heart failure), metabolic diseases (e.g., type 2 diabetes, dyslipidemia, gluconeogenesis, osteoporosis), and neurodegenerative diseases (e.g., Alzheimer's disease). Moreover, recent advancements in SIRT6-regulated compounds (e.g., C3G, BZBS, Fisetin, FNDC5, Lycorine hydrochloride, and Ergothioneine) are discussed as potential therapeutic agents for these mediated diseases.
Collapse
Affiliation(s)
- Yi Lu
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Junye Yang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Qiuju Wu
- College of General Education, Guangxi Vocational University of Agriculture, Nanning, Guangxi, 530007, China
| | - Xiaobo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| |
Collapse
|
6
|
Ding Y, Jiang C, Chen L, Liu X, Shao B. Astragaloside IV confers neuroprotection against radiation-induced neuronal senescence via the ERK pathway. Exp Neurol 2025; 386:115135. [PMID: 39746463 DOI: 10.1016/j.expneurol.2024.115135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Various factors and mechanisms, including radiation, initiate cellular senescence and are concurrent with the progression of various neurodegenerative diseases. Radiation-induced chromosomal aberrations and DNA integrity damage impact the processes of cellular growth, maturation, and aging. Astragaloside IV (AS-IV) has been documented to display significant neuroprotective effects on inflammation, oxidative stress, and cellular apoptosis; however, the precise neuroprotective mechanism of AS-IV against neuronal aging remains unclear. In this study, radiation-induced senescence models in C57BL/6 mice, PC12 cells, and primary neuronal cells were established. SA-β-gal histochemistry, flow cytometric analysis, immunofluorescence technique, and Western blotting analysis were employed to investigate the underlying mechanism of AS-IV in mitigating the aging of the brain cells caused by exposure to radiation. Our findings revealed that radiation exposure may activate the ERK pathway, leading to an increase in SA-β-gal-positive cells, elevated p21 levels, and the arrest of neuronal cells in the G1/S phase. However, AS-IV has been observed to mitigate the radiation-driven proliferation of senescent cells, by downregulating p-ERK and CDK2 expression and upregulating p21 and RB expression in treatment, thereby alleviating the aging and cognitive impairment caused by radiation. Additionally, evidence of U0126 treatment further supports these findings. In summary, our study showed that AS-IV could protect mice from radiation-induced cognitive impairment and reduce cellular senescence by regulating the ERK pathway.
Collapse
Affiliation(s)
- Yanping Ding
- School of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu Province, China
| | - Chenxin Jiang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Lili Chen
- School of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu Province, China
| | - Xin Liu
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Baoping Shao
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
7
|
Senatore E, Avolio R, Rinaldi L, Chiuso F, Oliva MA, D'Ambrosio C, Bianco AG, Dalla E, Pagnotta SM, Flammia R, Ambrosino C, Memoli D, Turacchio G, Mimoune SI, Toiron Y, Audebert S, Camoin L, Lignitto L, Scaloni A, Arcella A, Feliciello A. Praja2 controls P-body assembly and translation in glioblastoma by non-proteolytic ubiquitylation of DDX6. EMBO Rep 2025:10.1038/s44319-025-00425-5. [PMID: 40148504 DOI: 10.1038/s44319-025-00425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/17/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Glioblastoma multiforme (GBM) is the most lethal form of malignant brain tumor in adults. Dysregulation of protein synthesis contributes to cancer cell plasticity, driving GBM cell heterogeneity, metastatic behavior, and drug resistance. Understanding the complex network and signaling pathways governing protein translation, is therefore an important goal for GBM treatment. Here we identify a novel signaling network centered on the E3 ubiquitin ligase praja2 that controls protein translation in GBM. Praja2 forms a multimeric complex with the RNA helicase DDX6, which inhibits translation of target RNAs within processing bodies (P-bodies). Stimulation of cAMP signaling through activation of G-protein-coupled receptors induces P-body assembly through praja2-mediated non-proteolytic polyubiquitylation of DDX6. Genetic inactivation of praja2 reshapes DDX6/mRNA complexes and translating polysomes and promotes cellular senescence and GBM growth arrest. Expression of an ubiquitylation-defective DDX6 mutant suppresses the assembly of P-bodies and sustains GBM growth. Taken together, our findings identify a cAMP-driven network that controls translation in P-bodies and GBM growth.
Collapse
Affiliation(s)
- Emanuela Senatore
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Rosario Avolio
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Francesco Chiuso
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | | | - Chiara D'Ambrosio
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Naples, Italy
| | - Antonio Giuseppe Bianco
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Emiliano Dalla
- Department of Medicine, University of Udine, Udine, Italy
| | | | - Raffaella Flammia
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Domenico Memoli
- Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
| | - Gabriele Turacchio
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Sonia Ines Mimoune
- Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille University, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Yves Toiron
- Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille University, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Stephane Audebert
- Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille University, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Luc Camoin
- Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille University, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Luca Lignitto
- Cancer Research Center of Marseille (CRCM), CNRS, Aix Marseille University, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Naples, Italy
| | | | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy.
| |
Collapse
|
8
|
Zhang W, Huang C, Yao H, Yang S, Jiapaer Z, Song J, Wang X. Retrotransposon: an insight into neurological disorders from perspectives of neurodevelopment and aging. Transl Neurodegener 2025; 14:14. [PMID: 40128823 PMCID: PMC11934714 DOI: 10.1186/s40035-025-00471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 01/21/2025] [Indexed: 03/26/2025] Open
Abstract
Neurological disorders present considerable challenges in diagnosis and treatment due to their complex and diverse etiology. Retrotransposons are a type of mobile genetic element that are increasingly revealed to play a role in these diseases. This review provides a detailed overview of recent developments in the study of retrotransposons in neurodevelopment, neuroaging, and neurological diseases. Retrotransposons, including long interspersed nuclear elements-1, Alu, SINE-VNTR-Alu, and endogenous retrovirus, play important regulatory roles in the development and aging of the nervous system. They have also been implicated in the pathological processes of several neurological diseases, including Alzheimer's disease, X-linked dystonia-parkinsonism, amyotrophic lateral sclerosis, autism spectrum disorder, and schizophrenia. Retrotransposons provide a new perspective for understanding the molecular mechanisms underlying neurological diseases and provide insights into diagnostic and therapeutic strategies of these diseases.
Collapse
Affiliation(s)
- Wenchuan Zhang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenxuan Huang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyang Yao
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shangzhi Yang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zeyidan Jiapaer
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Xinjiang, China.
| | - Juan Song
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Panda P, Ferreira CR, Cooper BR, Schaser AJ, Aryal UK. Multiplatform Lipid Analysis of the Brain of Aging Mice by Mass Spectrometry. J Proteome Res 2025; 24:1077-1091. [PMID: 39921647 DOI: 10.1021/acs.jproteome.4c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Lipids are critical to brain structure and function, accounting for approximately 50% of its dry weight. However, the impact of aging on brain lipids remains poorly characterized. To address this, here we applied three complementary mass spectrometry techniques: multiple reaction monitoring (MRM) profiling, untargeted liquid chromatography tandem mass spectrometry (LC-MS/MS), and desorption electrospray ionization-MS imaging (DESI-MSI). We used brains from mice of three age groups: adult (3-4 months), middle-aged (10 months), and old (19-21 months). Phospholipids such as phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol were more abundant, while phosphatidylinositol and phosphatidylserine were reduced in old mice compared to adults or middle-aged mice. Key lipids such as polyunsaturated fatty acids, including DHA, AA, HexCer, SHexCer, and SM, were among the most abundant lipids in aged brains. DESI-MSI revealed spatial lipid distribution patterns consistent with findings from MRM profiling and LC-MS/MS. Integration of lipidomic data with the recently published proteomics data from the same tissues highlighted changes in proteins and phosphorylation levels of several proteins associated with Cer, HexCer, FA, PI, SM, and SHexCer metabolism, aligning with the multiplatform lipid surveillance. These findings shed insight into age-dependent brain lipid changes and their potential contribution to age-related cognitive decline.
Collapse
Affiliation(s)
- Punyatoya Panda
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christina R Ferreira
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bruce R Cooper
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Allison J Schaser
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
10
|
de Rezende VL, de Aguiar da Costa M, Martins CD, Mathias K, Gonçalves CL, Barichello T, Petronilho F. Systemic Rejuvenating Interventions: Perspectives on Neuroinflammation and Blood-Brain Barrier Integrity. Neurochem Res 2025; 50:112. [PMID: 40035979 DOI: 10.1007/s11064-025-04361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
The aging process results in structural, functional, and immunological changes in the brain, which contribute to cognitive decline and increase vulnerability to neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and stroke-related complications. Aging leads to cognitive changes and also affect executive functions. Additionally, it causes neurogenic and neurochemical alterations, such as a decline in dopamine and acetylcholine levels, which also impact cognitive performance. The chronic inflammation caused by aging contributes to the impairment of the blood-brain barrier (BBB), contributing to the infiltration of immune cells and exacerbating neuronal damage. Therefore, rejuvenating therapies such as heterochronic parabiosis, cerebrospinal fluid (CSF) administration, plasma, platelet-rich plasma (PRP), and stem cell therapy have shown potential to reverse these changes, offering new perspectives in the treatment of age-related neurological diseases. This review focuses on highlighting the effects of rejuvenating interventions on neuroinflammation and the BBB.
Collapse
Affiliation(s)
- Victória Linden de Rezende
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Maiara de Aguiar da Costa
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Carla Damasio Martins
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
- Laboratory of Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, Mcgovern Medical School, The University of Texas Health Science Center at Houston (Uthealth), Houston, TX, USA
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil.
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, 1105, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
11
|
Chantachotikul P, Liu S, Furukawa K, Deguchi S. AP2A1 modulates cell states between senescence and rejuvenation. Cell Signal 2025; 127:111616. [PMID: 39848456 DOI: 10.1016/j.cellsig.2025.111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/31/2024] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Aging proceeds with the accumulation of senescent cells in multiple organs. These cells exhibit increased size compared to young cells, which promotes further senescence and age-related diseases. Currently, the molecular mechanism behind the maintenance of such huge cell architecture undergoing senescence remains poorly understood. Here we focus on the reorganization of actin stress fibers induced upon replicative senescence in human fibroblasts, widely used as a senescent cell model. We identified, together with our previous proteomic study, that AP2A1 (alpha 1 adaptin subunit of the adaptor protein 2) is upregulated in senescent cells along the length of enlarged stress fibers. Knockdown of AP2A1 reversed senescence-associated phenotypes, exhibiting features of cellular rejuvenation, while its overexpression in young cells advanced senescence phenotypes. Similar functions of AP2A1 were identified in UV- or drug-induced senescence and were observed in epithelial cells as well. Furthermore, we found that AP2A1 is colocalized with integrin β1, and both proteins move linearly along stress fibers. With the observations that focal adhesions are enlarged in senescent cells and that this coincides with strengthened cell adhesion to the substrate, these results suggest that senescent cells maintain their large size by reinforcing their effective anchorage through integrin β1 translocation along stress fibers. This mechanism may work efficiently in senescent cells, compared with a case relying on random diffusion of integrin β1, given the enlarged cell size and resulting increase in travel time and distance for endocytosed vesicle transportation.
Collapse
Affiliation(s)
- Pirawan Chantachotikul
- Division of Bioengineering, Graduate School of Engineering Science, The University of Osaka, Japan
| | - Shiyou Liu
- Division of Bioengineering, Graduate School of Engineering Science, The University of Osaka, Japan
| | - Kana Furukawa
- Division of Bioengineering, Graduate School of Engineering Science, The University of Osaka, Japan; R(3) Institute for Newly-Emerging Science Design, The University of Osaka, Japan
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, The University of Osaka, Japan; R(3) Institute for Newly-Emerging Science Design, The University of Osaka, Japan; Global Center for Medical Engineering and Informatics, The University of Osaka, Japan.
| |
Collapse
|
12
|
Villa-Cedillo SA, Acosta-Espinoza EJ, Soto-Domínguez A, Rodríguez-Rocha H, Montes-de-Oca-Saucedo CR, García-García A, Loera-Arias MDJ, Ríos-Vazquez CS, Sánchez-Torres G, Valdés J, Saucedo-Cárdenas O. Antioxidant PRDX3 gene therapy protects brain cells and prevents neurodegeneration in an animal model of Parkinson's disease. Neuropeptides 2025; 110:102494. [PMID: 39736192 DOI: 10.1016/j.npep.2024.102494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/06/2024] [Accepted: 12/22/2024] [Indexed: 01/01/2025]
Abstract
Neurodegenerative diseases, including Parkinson's Disease (PD), are a significant global health challenge with no effective therapies to counteract neurodegeneration. Genetic and environmental factors lead to mitochondrial dysfunction and increased reactive oxygen species (ROS), resulting in oxidative stress. This stress reduces levels of Peroxiredoxin 3 (PRDX3), a key protein for maintaining ROS balance at the mitochondrial level, increasing the substantia nigra's susceptibility to damage. To investigate the protective role of antioxidant gene therapy in a PD model, we overexpressed the PRDX3 enzyme using a cell-penetrating peptide-based delivery system (mRVG9R-PRDX3 complex). The mRVG9R peptide was combined with a green fluorescent protein (GFP) reporter plasmid expressing PRDX3 to create the complex. Overexpression of the PRDX3 gene in neuronal phenotype cells was confirmed in vitro using dopaminergic SH-SY5Y cells. Following successful in vitro expression, the mRVG9R-PRDX3 complex was stereotaxically injected into the striatum of male C57BL/6 mice. The PD model was induced by administering paraquat (PQ) twice a week for 6 weeks. After the final PQ injection, motor and cognitive functions were evaluated, followed by histological analysis. Animals treated with the mRVG9R-PRDX3 complex showed a clear reduction in PQ-induced PD symptomatology and prevented cellular senescence in the substantia nigra's neuronal population. The mRVG9R-PRDX3 gene therapy improved motor and cognitive functions in the PD animal model and demonstrated potential in protecting substantia nigra dopaminergic neurons from PQ-induced death.
Collapse
Affiliation(s)
- Sheila Adela Villa-Cedillo
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Histología, Monterrey, Nuevo León, Mexico
| | - Esrom Jared Acosta-Espinoza
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Histología, Monterrey, Nuevo León, Mexico
| | - Adolfo Soto-Domínguez
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Histología, Monterrey, Nuevo León, Mexico
| | - Humberto Rodríguez-Rocha
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Histología, Monterrey, Nuevo León, Mexico
| | | | - Aracely García-García
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Histología, Monterrey, Nuevo León, Mexico
| | - María de Jesús Loera-Arias
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Histología, Monterrey, Nuevo León, Mexico
| | - Cristina Sarahi Ríos-Vazquez
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Histología, Monterrey, Nuevo León, Mexico
| | - Guillermo Sánchez-Torres
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Histología, Monterrey, Nuevo León, Mexico
| | - Jesús Valdés
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Bioquímica, México City, Mexico
| | - Odila Saucedo-Cárdenas
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de Histología, Monterrey, Nuevo León, Mexico.
| |
Collapse
|
13
|
Santos M, Moreira JAF, Santos SS, Solá S. Sustaining Brain Youth by Neural Stem Cells: Physiological and Therapeutic Perspectives. Mol Neurobiol 2025:10.1007/s12035-025-04774-z. [PMID: 39985708 DOI: 10.1007/s12035-025-04774-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
In the last two decades, stem cells (SCs) have attracted considerable interest for their research value and therapeutic potential in many fields, namely in neuroscience. On the other hand, the discovery of adult neurogenesis, the process by which new neurons are generated in the adult brain, challenged the traditional view that the brain is a static structure after development. The recent findings showing that adult neurogenesis has a significant role in brain plasticity, learning and memory, and emotional behavior, together with the fact that it is strongly dependent on several external and internal factors, have sparked more interest in this area. The mechanisms of adult neural stem cell (NSC) regulation, the physiological role of NSC-mediated neuroplasticity throughout life, and the most recent NSC-based therapeutic applications will be concisely reviewed. Noteworthy, due to their multipotency, self-renewal potential, and ability to secrete growth and immunomodulatory factors, NSCs have been mainly suggested for (1) transplantation, (2) neurotoxicology tests, and (3) drug screening approaches. The clinical trials of NSC-based therapy for different neurologic conditions are, nonetheless, mostly in the early phases and have not yet demonstrated conclusive efficacy or safety. Here, we provide an outlook of the major challenges and limitations, as well as some promising directions that could help to move toward stem cell widespread use in the treatment and prevention of several neurological disorders.
Collapse
Affiliation(s)
- Matilde Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - João A Ferreira Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Sónia Sá Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal.
| |
Collapse
|
14
|
Sun YR, Lv QK, Liu JY, Wang F, Liu CF. New perspectives on the glymphatic system and the relationship between glymphatic system and neurodegenerative diseases. Neurobiol Dis 2025; 205:106791. [PMID: 39778750 DOI: 10.1016/j.nbd.2025.106791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
Neurodegenerative diseases (ND) are characterized by the accumulation of aggregated proteins. The glymphatic system, through its rapid exchange mechanisms between cerebrospinal fluid (CSF) and interstitial fluid (ISF), facilitates the movement of metabolic substances within the brain, serving functions akin to those of the peripheral lymphatic system. This emerging waste clearance mechanism offers a novel perspective on the removal of pathological substances in ND. This article elucidates recent discoveries regarding the glymphatic system and updates relevant concepts within its model. It discusses the potential roles of the glymphatic system in ND, including Alzheimer's disease (AD), Parkinson's disease (PD), and multiple system atrophy (MSA), and proposes the glymphatic system as a novel therapeutic target for these conditions.
Collapse
Affiliation(s)
- Yan-Rui Sun
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Qian-Kun Lv
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Jun-Yi Liu
- Department of Neurology, Dushu Lake hospital affilicated to Soochow University, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| |
Collapse
|
15
|
Papadopoulos D, Magliozzi R, Bandiera S, Cimignolo I, Barusolo E, Probert L, Gorgoulis V, Reynolds R, Nicholas R. Accelerated Cellular Senescence in Progressive Multiple Sclerosis: A Histopathological Study. Ann Neurol 2025. [PMID: 39891488 DOI: 10.1002/ana.27195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/29/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025]
Abstract
OBJECTIVE The neurodegenerative processes driving the build-up of disability in progressive multiple sclerosis (P-MS) have not been fully elucidated. Recent data link cellular senescence (CS) to neurodegeneration. We investigated for evidence of CS in P-MS and sought to determine its pattern. METHODS We used 53BP1, p16, and lipofuscin as markers of CS in white matter lesions (WMLs), normal appearing white matter (NAWM), normal appearing cortical gray matter (NAGM), control white matter (CWM), and control gray matter (CGM) on autopsy material from patient with P-MS and healthy controls. Senescence-associated secretory phenotype (SASP) factors were quantified in cerebrospinal fluid (CSF). RESULTS P16+ cell counts were significantly increased in WMLs and GMLs, compared with NAWM, CWM, NAGM, and CGM and lipofuscin+ cells were significantly increased in WMLs, compared with NAWM and CWM, indicating more abundant CS in demyelinated lesions. The 53BP1+ cells in WMLs were significantly increased compared with NAWM and CWM. The 53BP1+ and p16+ cells were found significantly more abundant in acute active WMLs and GMLs, compared with chronic inactive lesions. Co-localization studies showed evidence of CS in neurons, astrocytes, oligodendrocytes, microglia, and macrophages. Among the quantified CSF SASP factors, IL-6, MIF, and MIP1a levels correlated with 53BP1+ cell counts in NAGM, whereas IL-10 levels correlated with p16+ cell counts in NAWM. P16+ cell counts in WMLs exhibited an inverse correlation with time to requiring a wheelchair and with age at death. INTERPRETATION Our data indicates that CS primarily affects actively demyelinating gray and WMLs. A higher senescent cell load in P-MS is associated with faster disability progression and death. ANN NEUROL 2025.
Collapse
Affiliation(s)
- Dimitrios Papadopoulos
- School of Medicine, European University, Nicosia, Cyprus
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Roberta Magliozzi
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Sara Bandiera
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Ilaria Cimignolo
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Elena Barusolo
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Lesley Probert
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Richard Reynolds
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Richard Nicholas
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
16
|
Guo D, Wu J, Shen C, Zhang A, Zou T, Chen K, Huang W, Pan Y, Shen Y, Ji P, Zhong Y, Wen Q, Kong B, Xiang M, Ye B. Upregulation of LXRβ/ABCA1 pathway alleviates cochlear hair cell senescence of C57BL/6 J mice via reducing lipid droplet accumulation. Biogerontology 2025; 26:49. [PMID: 39890652 DOI: 10.1007/s10522-025-10192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
Senescence and loss of cochlear hair cells is an important pathologic basis of age-related hearing loss. Lipid droplet accumulation has previously been shown to play an important role in neurodegeneration; however, its role in age-related hearing loss has not yet been investigated. LXRβ/ABCA1 is a key pathway that regulates lipid metabolism, while its dysfunction can cause abnormal accumulation of lipid droplets in neurons, leading to neurodegeneration. In this study, we found that decreased expression of LXRβ/ABCA1, elevated levels of lipid droplet accumulation, and increased activation of the NLRP3 inflammasome were demonstrated in senescent cochlear hair cells in both animal and cellular models of age-related hearing loss. We then manipulated the LXRβ/ABCA1 pathway transduction of cochlear hair cells. Upregulation of LXRβ/ABCA1 in senescent hair cells was found to reduce the accumulation of lipid droplets, inhibit NLRP3 inflammasome activation, and ultimately alleviate cochlear hair cell senescence. In our study, we also found that NLRP3 inflammasome activation can abrogate the alleviated effect of LXRβ/ABCA1 pathway on the senescence of cochlear hair cells but did not affect the expression of LXRβ/ABCA1.Our study are the first to demonstrate that abnormal lipid droplet accumulation and decreased LXRβ/ABCA1 pathway are observed in cochlear hair cells following the occurrence of age-related hearing loss. Upregulation of LXRβ/ABCA1 in senescent cochlear hair cells can reduce lipid droplet accumulation in cochlear hair cells and alleviate their senescence, which may be related to the inhibition of NLRP3 inflammasome activation. These findings provide potential targets for the treatment of age-related hearing loss.
Collapse
Affiliation(s)
- Dongye Guo
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jichang Wu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenling Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andi Zhang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyuan Zou
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaili Chen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiyi Huang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Pan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peilin Ji
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiming Zhong
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Audiology & Speech-Language Pathology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Wen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Kong
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Audiology & Speech-Language Pathology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Audiology & Speech-Language Pathology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
17
|
Maupin EA, Adams KL. Cellular Senescence in Glial Cells: Implications for Multiple Sclerosis. J Neurochem 2025; 169:e16301. [PMID: 39831743 PMCID: PMC11745082 DOI: 10.1111/jnc.16301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Aging is the most common risk factor for Multiple Sclerosis (MS) disease progression. Cellular senescence, the irreversible state of cell cycle arrest, is the main driver of aging and has been found to accumulate prematurely in neurodegenerative diseases, including Alzheimer's and Parkinson's disease. Cellular senescence in the central nervous system of MS patients has recently gained attention, with several studies providing evidence that demyelination induces cellular senescence, with common hallmarks of p16INK4A and p21 expression, oxidative stress, and senescence-associated secreted factors. Here we discuss the current evidence of cellular senescence in animal models of MS and different glial populations in the central nervous system, highlighting the major gaps in the field that still remain. As premature senescence in MS may exacerbate demyelination and inflammation, resulting in inhibition of myelin repair, it is critical to increase understanding of cellular senescence in vivo, the functional effects of senescence on glial cells, and the impact of removing senescent cells on remyelination and MS. This emerging field holds promise for opening new avenues of treatment for MS patients.
Collapse
Affiliation(s)
- Elizabeth A. Maupin
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Katrina L. Adams
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
- The Center for Stem Cells and Regenerative MedicineUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
18
|
Goyal K, Afzal M, Altamimi ASA, Babu MA, Ballal S, Kaur I, Kumar S, Kumar MR, Chauhan AS, Ali H, Shahwan M, Gupta G. Chronic kidney disease and aging: dissecting the p53/p21 pathway as a therapeutic target. Biogerontology 2024; 26:32. [PMID: 39725742 DOI: 10.1007/s10522-024-10173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
Chronic kidney diseases (CKD) are a group of multi-factorial disorders that markedly impair kidney functions with progressive renal deterioration. Aging contributes to age-specific phenotypes in kidneys, which undergo several structural and functional alterations, such as a decline in regenerative capacity and increased fibrosis, inflammation, and tubular atrophy, all predisposing them to disease and increasing their susceptibility to injury while impeding their recovery. A central feature of these age-related processes is the activation of the p53/p21 pathway signaling. The pathway is a key player in cellular senescence, apoptosis, and cell cycle regulation, which are all key to maintaining the health of the kidney. P53 is a transcription factor and a tumor suppressor protein that responds to cell stress and damage. Persistent activation of cell p53 can lead to the expression of p21, an inhibitor of the cell cycle known as a cyclin-dependent kinase. This causes cells to cease dividing and leads to senescence, where cells can no longer increase. The accumulation of senescent cells in the aging kidney impairs kidney function by altering the microenvironment. As the number of senescent cells increases, the capacity of the kidney to recover from injury decreases, accelerating the progression of end-stage renal disease. This article review extensively explores the relationship between the p53/p21 pathway and cellular senescence within an aging kidney and the emerging therapeutic strategies that target it to overcome the impacts of cellular senescence on CKD.
Collapse
Affiliation(s)
- Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | | | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - M Ravi Kumar
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, Punjab, 140307, India
| | - Ashish Singh Chauhan
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Haider Ali
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Moyad Shahwan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
19
|
Huang Z, Xu P, Hess DC, Zhang Q. Cellular senescence as a key contributor to secondary neurodegeneration in traumatic brain injury and stroke. Transl Neurodegener 2024; 13:61. [PMID: 39668354 PMCID: PMC11636056 DOI: 10.1186/s40035-024-00457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
Traumatic brain injury (TBI) and stroke pose major health challenges, impacting millions of individuals globally. Once considered solely acute events, these neurological conditions are now recognized as enduring pathological processes with long-term consequences, including an increased susceptibility to neurodegeneration. However, effective strategies to counteract their devastating consequences are still lacking. Cellular senescence, marked by irreversible cell-cycle arrest, is emerging as a crucial factor in various neurodegenerative diseases. Recent research further reveals that cellular senescence may be a potential driver for secondary neurodegeneration following brain injury. Herein, we synthesize emerging evidence that TBI and stroke drive the accumulation of senescent cells in the brain. The rationale for targeting senescent cells as a therapeutic approach to combat neurodegeneration following TBI/stroke is outlined. From a translational perspective, we emphasize current knowledge and future directions of senolytic therapy for these neurological conditions.
Collapse
Affiliation(s)
- Zhihai Huang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Peisheng Xu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC, 29208, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
20
|
Zhu F, Yin S, Wang Y, Zhong Y, Ji Q, Wu J. Effects of Probiotics on Neurodegenerative Disease-Related Symptoms and Systemic Inflammation: A Systematic Review. Int J Gen Med 2024; 17:5941-5958. [PMID: 39678681 PMCID: PMC11645901 DOI: 10.2147/ijgm.s499406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024] Open
Abstract
In recent years, probiotics, as a class of biologically active microorganisms, have increasingly attracted attention for their potential in treating neurodegenerative diseases (NDDs). To comprehensively assess the effects of probiotics on clinical symptoms and systemic inflammation regulation in various NDDs, this systematic review conducted a detailed search of the Cochrane Library, Embase, PubMed, and Web of Science databases, ultimately including 22 eligible randomized controlled trials (RCTs), with 4 RCTs for Alzheimer's Disease (AD), 10 RCTs for Parkinson's Disease (PD), 2 RCTs for Multiple Sclerosis (MS), and 2 RCTs for Mild Cognitive Impairment (MCI), and intervention durations ranging from 4 to 16 weeks. The comprehensive analysis indicates that probiotics help improve clinical symptoms related to NDDs, including gastrointestinal function, cognitive function, quality of life, and mental health. Additionally, probiotics generally have a positive effect on reducing systemic inflammation and enhancing antioxidant capacity in patients. In conclusion, existing evidence supports the promising potential of probiotics in treating NDDs. However, further large-scale, high-quality studies are needed to explore specific differences in efficacy among various probiotic strains, dosages, and modes of administration. Moreover, considering that lifestyle and dietary habits may modulate the effects of probiotics, these external factors should also be included in research considerations to gain a more comprehensive understanding of the mechanisms and application strategies of probiotics in NDDs treatment.
Collapse
Affiliation(s)
- Fengya Zhu
- Traditional Chinese Medicine Department, Zigong First People’s Hospital, Zigong, People’s Republic of China
| | - Shao Yin
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yuan Wang
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yue Zhong
- Traditional Chinese Medicine Department, Zigong First People’s Hospital, Zigong, People’s Republic of China
| | - Qiang Ji
- Traditional Chinese Medicine Department, Zigong First People’s Hospital, Zigong, People’s Republic of China
| | - Jie Wu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
21
|
Huang M, Ye A, Zhang H, Ru Y, Bai Z, Zhang Y, Gao Y, Ma Z. Siwu decoction mitigates radiation-induced immune senescence by attenuating hematopoietic damage. Chin Med 2024; 19:167. [PMID: 39639367 PMCID: PMC11622653 DOI: 10.1186/s13020-024-01036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND To investigate the long term effects of ionizing radiation (IR) on hematopoietic stem/progenitor cells (HSPCs), immune tissues and cells, and the effects of Siwu decoction (SWD) on immune senescence mice. METHODS C57BL/6 J mice were exposed to 6.0 Gy 60Co γ irradiation. After 8-weeks of IR, SWD (5, 10, 20 g/kg/d) was administered for 30 days. The changes of HSPCs in bone marrow (BM) and T, B type lymphocyte and natural killer (NK) cells in spleen were detected by flow cytometry. The changes of peripheral blood cells were also examined. Hematoxylin-eosin staining were used to detect the pathological lesions of hippocampus, spleen and thymus tissues. Absolute mouse telomere length quantification qPCR assay kit was used to measure the telomere length of BM cells. The expression of factors associated with inflammation and aging such as p16, β-galactosidase in spleen, thymus and BM was determined. RESULTS Administration of SWD could increase the proportion of LSK (Lin-, Sca-1 + , c-Kit-), multipotent progenitor cells and multipotent progenitor cells and decrease the proportion of common myeloid progenitors and granulocyte-macrophage progenitors in BM. The proportion of B cells and NK cells in spleen and the content of white blood cells, red blood cells, hemoglobin, lymphocytes and eosinophils in peripheral blood were increased, at the same time, the proportion of neutrophils and monocytes was reduced by SWD. The pathological lesions of hippocampus, spleen and thymus were improved. The expression of p16 and β-galactosidase in spleen, thymus and BM was reduced and shortening of the telomere of BM cells was inhibited after administration. In addition, SWD could reduce the content of Janus activated kinase (JAK) 1, JAK2 and signal transducer and activator of transcription 3 (STAT3) in BM and spleen. CONCLUSIONS SWD could slow down IR-induced immune senescence by improving hematopoietic and immunologic injury. SWD might reduce the inflammation level of BM hematopoietic microenvironment by acting on JAK/STAT signaling pathway, while the immune damage of mice was improved by affecting the differentiation of HSPCs. The remission of hematopoietic and immunologic senescence was further demonstrated at the overall level.
Collapse
Affiliation(s)
- Mingyue Huang
- Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine, Beijing, China
| | - Anping Ye
- Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine, Beijing, China
- Department of Pharmaceutical Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Haoyu Zhang
- Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine, Beijing, China
| | - Yi Ru
- Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhijie Bai
- Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine, Beijing, China
| | - Yanyan Zhang
- China Shineway Pharmaceutical Group Limited, Shijiazhuang, Hebei, China
| | - Yue Gao
- Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine, Beijing, China.
| | - Zengchun Ma
- Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine, Beijing, China.
| |
Collapse
|
22
|
Wang X, Hu J, Xie S, Li W, Zhang H, Huang L, Qian Z, Zhao C, Zhang L. Hidden role of microglia during neurodegenerative disorders and neurocritical care: A mitochondrial perspective. Int Immunopharmacol 2024; 142:113024. [PMID: 39217875 DOI: 10.1016/j.intimp.2024.113024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The incidence of aging-related neurodegenerative disorders and neurocritical care diseases is increasing worldwide. Microglia, the main inflammatory cells in the brain, could be potential viable therapeutic targets for treating neurological diseases. Interestingly, mitochondrial functions, including energy metabolism, mitophagy and transfer, fission and fusion, and mitochondrial DNA expression, also change in activated microglia. Notably, mitochondria play an active and important role in the pathophysiology of neurodegenerative disorders and neurocritical care diseases. This review briefly summarizes the current knowledge on mitochondrial dysfunction in microglia in neurodegenerative disorders and neurocritical care diseases and comprehensively discusses the prospects of the application of neurological injury prevention and treatment targets by mitochondria.
Collapse
Affiliation(s)
- Xinrun Wang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Jiyun Hu
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Shucai Xie
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Wenchao Li
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Haisong Zhang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Li Huang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Zhaoxin Qian
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Chunguang Zhao
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China.
| | - Lina Zhang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China.
| |
Collapse
|
23
|
Thapa R, Moglad E, Afzal M, Gupta G, Bhat AA, Hassan Almalki W, Kazmi I, Alzarea SI, Pant K, Singh TG, Singh SK, Ali H. The role of sirtuin 1 in ageing and neurodegenerative disease: A molecular perspective. Ageing Res Rev 2024; 102:102545. [PMID: 39423873 DOI: 10.1016/j.arr.2024.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Sirtuin 1 (SIRT1), an NAD+-dependent deacetylase, has emerged as a key regulator of cellular processes linked to ageing and neurodegeneration. SIRT1 modulates various signalling pathways, including those involved in autophagy, oxidative stress, and mitochondrial function, which are critical in the pathogenesis of neurodegenerative diseases. This review explores the therapeutic potential of SIRT1 in several neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic Lateral Sclerosis (ALS). Preclinical studies have demonstrated that SIRT1 activators, such as resveratrol, SRT1720, and SRT2104, can alleviate disease symptoms by reducing oxidative stress, enhancing autophagic flux, and promoting neuronal survival. Ongoing clinical trials are evaluating the efficacy of these SIRT1 activators, providing hope for future therapeutic strategies targeting SIRT1 in neurodegenerative diseases. This review explores the role of SIRT1 in ageing and neurodegenerative diseases, with a particular focus on its molecular mechanisms, therapeutic potential, and clinical applications.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| |
Collapse
|
24
|
Rodríguez-Fernández L, Zorzo C, Arias JL. Photobiomodulation in the aging brain: a systematic review from animal models to humans. GeroScience 2024; 46:6583-6623. [PMID: 38861125 PMCID: PMC11493890 DOI: 10.1007/s11357-024-01231-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
Aging is a multifactorial biological process that may be associated with cognitive decline. Photobiomodulation (PBM) is a non-pharmacological therapy that shows promising results in the treatment or prevention of age-related cognitive impairments. The aim of this review is to compile the preclinical and clinical evidence of the effect of PBM during aging in healthy and pathological conditions, including behavioral analysis and neuropsychological assessment, as well as brain-related modifications. 37 studies were identified by searching in PubMed, Scopus, and PsycInfo databases. Most studies use wavelengths of 800, 810, or 1064 nm but intensity and days of application were highly variable. In animal studies, it has been shown improvements in spatial memory, episodic-like memory, social memory, while different results have been found in recognition memory. Locomotor activity improved in Parkinson disease models. In healthy aged humans, it has been outlined improvements in working memory, cognitive inhibition, and lexical/semantic access, while general cognition was mainly enhanced on Alzheimer disease or mild cognitive impairment. Anxiety assessment is scarce and shows mixed results. As for brain activity, results outline promising effects of PBM in reversing metabolic alterations and enhancing mitochondrial function, as evidenced by restored CCO activity and ATP levels. Additionally, PBM demonstrated neuroprotective, anti-inflammatory, immunomodulatory and hemodynamic effects. The findings suggest that PBM holds promise as a non-invasive intervention for enhancing cognitive function, and in the modulation of brain functional reorganization. It is necessary to develop standardized protocols for the correct, beneficial, and homogeneous use of PBM.
Collapse
Affiliation(s)
| | - Candela Zorzo
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain.
| | - Jorge L Arias
- ISPA, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
25
|
Singh M, Ali H, Renuka Jyothi S, Kaur I, Kumar S, Sharma N, Siva Prasad GV, Pramanik A, Hassan Almalki W, Imran M. Tau proteins and senescent Cells: Targeting aging pathways in Alzheimer's disease. Brain Res 2024; 1844:149165. [PMID: 39155034 DOI: 10.1016/j.brainres.2024.149165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by abnormal accumulation of tau proteins and amyloid-β, leading to neuronal death and cognitive impairment. Recent studies have implicated aging pathways, including dysregulation of tau and cellular senescence in AD pathogenesis. In AD brains, tau protein, which normally stabilizes microtubules, becomes hyperphosphorylated and forms insoluble neurofibrillary tangles. These tau aggregates impair neuronal function and are propagated across the brain's neurocircuitry. Meanwhile, the number of senescent cells accumulating in the aging brain is rising, releasing a pro-inflammatory SASP responsible for neuroinflammation and neurodegeneration. This review explores potential therapeutic interventions for AD targeting tau protein and senescent cells, and tau -directed compounds, senolytics, eliminating senescent cells, and agents that modulate the SASP-senomodulators. Ultimately, a combined approach that incorporates tau-directed medications and targeted senescent cell-based therapies holds promise for reducing the harmful impact of AD's shared aging pathways.
Collapse
Affiliation(s)
- Mahaveer Singh
- School of Pharmacy and Technology Management, SVKMs NMIMS University, Shirpur campus, Maharastra India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali 140307, Punjab, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
26
|
Venkataraman A, Kordic I, Li J, Zhang N, Bharadwaj NS, Fang Z, Das S, Coskun AF. Decoding senescence of aging single cells at the nexus of biomaterials, microfluidics, and spatial omics. NPJ AGING 2024; 10:57. [PMID: 39592596 PMCID: PMC11599402 DOI: 10.1038/s41514-024-00178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Aging has profound effects on the body, most notably an increase in the prevalence of several diseases. An important aging hallmark is the presence of senescent cells that no longer multiply nor die off properly. Another characteristic is an altered immune system that fails to properly self-surveil. In this multi-player aging process, cellular senescence induces a change in the secretory phenotype, known as senescence-associated secretory phenotype (SASP), of many cells with the intention of recruiting immune cells to accelerate the clearance of these damaged senescent cells. However, the SASP phenotype results in inducing secondary senescence of nearby cells, resulting in those cells becoming senescent, and improper immune activation resulting in a state of chronic inflammation, called inflammaging, in many diseases. Senescence in immune cells, termed immunosenescence, results in further dysregulation of the immune system. An interdisciplinary approach is needed to physiologically assess aging changes of the immune system at the cellular and tissue level. Thus, the intersection of biomaterials, microfluidics, and spatial omics has great potential to collectively model aging and immunosenescence. Each of these approaches mimics unique aspects of the body undergoes as a part of aging. This perspective highlights the key aspects of how biomaterials provide non-cellular cues to cell aging, microfluidics recapitulate flow-induced and multi-cellular dynamics, and spatial omics analyses dissect the coordination of several biomarkers of senescence as a function of cell interactions in distinct tissue environments. An overview of how senescence and immune dysregulation play a role in organ aging, cancer, wound healing, Alzheimer's, and osteoporosis is included. To illuminate the societal impact of aging, an increasing trend in anti-senescence and anti-aging interventions, including pharmacological interventions, medical procedures, and lifestyle changes is discussed, including further context of senescence.
Collapse
Affiliation(s)
- Abhijeet Venkataraman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Ivan Kordic
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - JiaXun Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nivik Sanjay Bharadwaj
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Machine Learning Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sandip Das
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
27
|
Zhu J, Wu C, Yang L. Cellular senescence in Alzheimer's disease: from physiology to pathology. Transl Neurodegener 2024; 13:55. [PMID: 39568081 PMCID: PMC11577763 DOI: 10.1186/s40035-024-00447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/12/2024] [Indexed: 11/22/2024] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, characterized by the accumulation of Aβ and abnormal tau hyperphosphorylation. Despite substantial efforts in development of drugs targeting Aβ and tau pathologies, effective therapeutic strategies for AD remain elusive. Recent attention has been paid to the significant role of cellular senescence in AD progression. Mounting evidence suggests that interventions targeting cellular senescence hold promise in improving cognitive function and ameliorating hallmark pathologies in AD. This narrative review provides a comprehensive summary and discussion of the physiological roles, characteristics, biomarkers, and commonly employed in vivo and in vitro models of cellular senescence, with a particular focus on various cell types in the brain, including astrocytes, microglia, oligodendrocyte precursor cells, neurons, and endothelial cells. The review further delves into factors influencing cellular senescence in AD and emphasizes the significance of targeting cellular senescence as a promising approach for AD treatment, which includes the utilization of senolytics and senomorphics.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
28
|
Yao M, Su Y, Xiong R, Zhang X, Zhu X, Chen YC, Ao P. Deciphering the topological landscape of glioma using a network theory framework. Sci Rep 2024; 14:26724. [PMID: 39496747 PMCID: PMC11535471 DOI: 10.1038/s41598-024-77856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
Glioma stem cells have been recognized as key players in glioma recurrence and therapeutic resistance, presenting a promising target for novel treatments. However, the limited understanding of the role glioma stem cells play in the glioma hierarchy has drawn controversy and hindered research translation into therapies. Despite significant advances in our understanding of gene regulatory networks, the dynamics of these networks and their implications for glioma remain elusive. This study employs a systemic theoretical perspective to integrate experimental knowledge into a core endogenous network model for glioma, thereby elucidating its energy landscape through network dynamics computation. The model identifies two stable states corresponding to astrocytic-like and oligodendrocytic-like tumor cells, connected by a transition state with the feature of high stemness, which serves as one of the energy barriers between astrocytic-like and oligodendrocytic-like states, indicating the instability of glioma stem cells in vivo. We also obtained various stable states further supporting glioma's multicellular origins and uncovered a group of transition states that could potentially induce tumor heterogeneity and therapeutic resistance. This research proposes that the transition states linking both glioma stable states are central to glioma heterogeneity and therapy resistance. Our approach may contribute to the advancement of glioma therapy by offering a novel perspective on the complex landscape of glioma biology.
Collapse
Affiliation(s)
- Mengchao Yao
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
| | - Yang Su
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
| | - Ruiqi Xiong
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
| | - Xile Zhang
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China
- Shanghai Shibei High School, Shanghai, China
| | - Xiaomei Zhu
- Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yong-Cong Chen
- Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai, China.
| | - Ping Ao
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
29
|
Tan Yi Shean L, Milne EM, Shaw DJ, Maxwell S, Del-Pozo J. Lipofuscin accumulates in ganglionic neurons in chronic equine dysautonomia. J Vet Diagn Invest 2024; 36:864-869. [PMID: 39113499 PMCID: PMC11529066 DOI: 10.1177/10406387241265715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Lipofuscin is a complex mixture of highly oxidized, cross-linked macromolecules that accumulates in neurons with age and some neurodegenerative diseases. Equine dysautonomia (ED) is a polyneuropathy that mainly affects autonomic and enteric nervous systems, resulting in alimentary tract dysfunction. Our main aim was to determine whether neuronal lipofuscin increased with increasing duration of ED. We investigated the prevalence of lipofuscin in cranial cervical ganglia of horses with acute (AED), subacute (SED), and chronic ED (CED), young controls (of similar age to ED cases), and aged controls (n = 8 per group). We used Schmorl stain for histologic detection of lipofuscin and assessed its accumulation in neurons using image analysis software. The percentage of neurons positive for lipofuscin increased with age in individual groups and all groups combined (p < 0.001). There were fewer positive neurons in AED and SED compared to aged controls (p < 0.001) and more in CED than AED cases (p = 0.042) and young controls (p = 0.012). We found a strong positive correlation between percentage positive neurons and percentage positive area of the neuron containing lipofuscin for combined groups (p < 0.001). Although neuronal lipofuscin increased in cranial cervical ganglion in CED cases, it remains to be determined whether this is a cause or consequence of neuronal degeneration.
Collapse
Affiliation(s)
- Lydia Tan Yi Shean
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Roslin, Midlothian, UK
| | - Elspeth M. Milne
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Roslin, Midlothian, UK
| | - Darren J. Shaw
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Roslin, Midlothian, UK
| | - Scott Maxwell
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Roslin, Midlothian, UK
| | - Jorge Del-Pozo
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Roslin, Midlothian, UK
| |
Collapse
|
30
|
Zhao T, Xue X, Liu P, Hu H, Wang K, Wang Y, Wu L. Queen Bee Larva, an Edible By-Product of Royal Jelly, Alleviate D-Galactose-Induced Aging in Mouse by Regulating Gut Microbiota Structure and Amino Acid Metabolism. Antioxidants (Basel) 2024; 13:1275. [PMID: 39594417 PMCID: PMC11591118 DOI: 10.3390/antiox13111275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024] Open
Abstract
Queen bee larva (QBL), as a by-product of royal jelly, is a kind of protein-rich edible insect. However, the development and utilization of QBL have been very limited for an extended period, resulting in considerable economic waste. Notably, QBL has substantial potential for anti-aging treatments; however, systematic studies have been scarce. The present study aimed to analyze the effects of freeze-dried QBL powder (QBLP) treatment in a D-galactose (D-gal)-induced-aging mouse and to explore the mechanisms. A behavioral test indicated that QBLP-treated mice had improved cognitive function and memory decline caused by aging compared to untreated aged mice. Furthermore, QBLP treatment improved organ index in aged mice and prevented pathological damage to the brain tissue. Concomitantly, treatment of D-gal-induced-aging mice with QBLP significantly reduced the oxidative damage of serum and increased the skin moisture content of aging mice. Finally, integrated analyses of the gut microbiota and the serum metabolome showed that QBLP supplementation altered the composition of the gut microbiota, enriched biochemical pathways associated with amino acid metabolism, and adjusted serum concentrations of beneficial free amino acids. Overall, QBLP can improve symptoms related to D-gal-induced aging in mice by regulating gut microbiota structure and amino acid metabolism.
Collapse
Affiliation(s)
- Tong Zhao
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (T.Z.); (P.L.)
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China; (X.X.); (H.H.); (K.W.)
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China; (X.X.); (H.H.); (K.W.)
| | - Pingxiang Liu
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (T.Z.); (P.L.)
| | - Han Hu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China; (X.X.); (H.H.); (K.W.)
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China; (X.X.); (H.H.); (K.W.)
| | - Yutao Wang
- Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (T.Z.); (P.L.)
- Cooperative of Vegetable and Grain Cultivation, Liaocheng Yifeng Bloc, Liaocheng 252000, China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, China; (X.X.); (H.H.); (K.W.)
| |
Collapse
|
31
|
Chen L, Zhang J, Ding L, Gu T, Andoh V, Ma A, Yao C. Transcriptomics analyses combined with intestinal microorganism survey suggest Resveratrol (RSV) anti-aging and anti-oxidant effects in silkworm (Bombyx mori). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101344. [PMID: 39426068 DOI: 10.1016/j.cbd.2024.101344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
The growing elderly population presents a significant concern, with the prolongation of life expectancy, aging diseases are becoming increasingly common. Resveratrol (RSV) has emerged as a promising compound for disease prevention. However, the effect of RSV on lifespan extension in different organisms, particularly the model organism silkworm, remains inconsistent. We conducted aging experiments using silkworm (B. mori) and employed transcriptomics to investigate the therapeutic effects of RSV on lifespan extension and healthy lifespan in silkworms. RSV increased the survival rate by 8.57 %-12.12 % and enhanced the antioxidant capacity of silkworms. Transcriptomic analysis demonstrated that genes in signaling pathways such as AMPK and FoxO were significantly upregulated. 16SrRNA sequencing of gut contents showed an increase in beneficial bacterial strains under the action of RSV. This study aims to enhance our understanding of lifespan regulation mechanisms using the silkworm model and provide new targets for anti-aging antioxidants research to delay the onset of age-related diseases.
Collapse
Affiliation(s)
- Liang Chen
- School of Life Sciences, Jiangsu University, 212013 Zhenjiang, China.
| | - Jiaxin Zhang
- School of Life Sciences, Jiangsu University, 212013 Zhenjiang, China
| | - Lei Ding
- School of Life Sciences, Jiangsu University, 212013 Zhenjiang, China
| | - Tongyu Gu
- School of Life Sciences, Jiangsu University, 212013 Zhenjiang, China
| | - Vivian Andoh
- School of Life Sciences, Jiangsu University, 212013 Zhenjiang, China
| | - Aiqin Ma
- Qingdao Vland Animal Health Group Co., Ltd., Qingdao 266100, China
| | - Chun Yao
- Department of Stomatology, Zhenjiang First People's Hospital, Department of Stomatology, People's Hospital Affiliated to Jiangsu University, Zhenjiang 212002, China.
| |
Collapse
|
32
|
Wang J, Wang S, Li Q, Liu F, Wan Y, Liang H. Bibliometric and visual analysis of single-cell multiomics in neurodegenerative disease arrest studies. Front Neurol 2024; 15:1450663. [PMID: 39440247 PMCID: PMC11493674 DOI: 10.3389/fneur.2024.1450663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Background Neurodegenerative diseases are progressive disorders that severely diminish the quality of life of patients. However, research on neurodegenerative diseases needs to be refined and deepened. Single-cell polyomics is a technique for obtaining transcriptomic, proteomic, and other information from a single cell. In recent years, the heat of single-cell multiomics as an emerging research tool for brain science has gradually increased. Therefore, the aim of this study was to analyze the current status and trends of studies related to the application of single-cell multiomics in neurodegenerative diseases through bibliometrics. Result A total of 596 publications were included in the bibliometric analysis. Between 2015 and 2022, the number of publications increased annually, with the total number of citations increasing significantly, exhibiting the fastest rate of growth between 2019 and 2022. The country/region collaboration map shows that the United States has the most publications and cumulative citations, and that China and the United States have the most collaborations. The institutions that produced the greatest number of articles were Harvard Medical School, Skupin, Alexander, and Wiendl. Among the authors, Heinz had the highest output. Mathys, H accumulated the most citations and was the authoritative author in the field. The journal Nature Communications has published the most literature in this field. A keyword analysis reveals that neurodegenerative diseases and lesions (e.g., Alzheimer's disease, amyloid beta) are the core and foundation of the field. Conversely, single-cell multiomics related research (e.g., single-cell RNA sequencing, bioinformatics) and brain nerve cells (e.g., microglia, astrocytes, neural stem cells) are the hot frontiers of this specialty. Among the references, the article "Single-cell transcriptomic analysis of Alzheimer's disease" is the most frequently cited (1,146 citations), and the article "Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq" was the most cited article in the field. Conclusion The objective of this study is to employ bibliometric methods to visualize studies related to single-cell multiomics in neurodegenerative diseases. This will enable us to summarize the current state of research and to reveal key trends and emerging hotspots in the field.
Collapse
Affiliation(s)
- Jieyan Wang
- Department of Urology, People’s Hospital of Longhua, Shenzhen, China
| | - Shuqing Wang
- First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Qingyu Li
- First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Fei Liu
- First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Yantong Wan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hui Liang
- Department of Urology, People’s Hospital of Longhua, Shenzhen, China
| |
Collapse
|
33
|
Bhat AA, Moglad E, Afzal M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Ali H, Pant K, Singh TG, Dureja H, Singh SK, Dua K, Gupta G, Subramaniyan V. Therapeutic approaches targeting aging and cellular senescence in Huntington's disease. CNS Neurosci Ther 2024; 30:e70053. [PMID: 39428700 PMCID: PMC11491556 DOI: 10.1111/cns.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disease that is manifested by a gradual loss of physical, cognitive, and mental abilities. As the disease advances, age has a major impact on the pathogenic signature of mutant huntingtin (mHTT) protein aggregation. This review aims to explore the intricate relationship between aging, mHTT toxicity, and cellular senescence in HD. Scientific data on the interplay between aging, mHTT, and cellular senescence in HD were collected from several academic databases, including PubMed, Google Scholar, Google, and ScienceDirect. The search terms employed were "AGING," "HUNTINGTON'S DISEASE," "MUTANT HUNTINGTIN," and "CELLULAR SENESCENCE." Additionally, to gather information on the molecular mechanisms and potential therapeutic targets, the search was extended to include relevant terms such as "DNA DAMAGE," "OXIDATIVE STRESS," and "AUTOPHAGY." According to research, aging leads to worsening HD pathophysiology through some processes. As a result of the mHTT accumulation, cellular senescence is promoted, which causes DNA damage, oxidative stress, decreased autophagy, and increased inflammatory responses. Pro-inflammatory cytokines and other substances are released by senescent cells, which may worsen the neuronal damage and the course of the disease. It has been shown that treatments directed at these pathways reduce some of the HD symptoms and enhance longevity in experimental animals, pointing to a new possibility of treating the condition. Through their amplification of the harmful effects of mHTT, aging and cellular senescence play crucial roles in the development of HD. Comprehending these interplays creates novel opportunities for therapeutic measures targeted at alleviating cellular aging and enhancing HD patients' quality of life.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl KharjSaudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy ProgramBatterjee Medical CollegeJeddahSaudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of PharmacyUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of PharmacyJouf UniversitySakakaAl‐JoufSaudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Department of PharmacologyKyrgyz State Medical CollegeBishkekKyrgyzstan
| | - Kumud Pant
- Graphic Era (Deemed to be University), Dehradun, India
| | | | - Harish Dureja
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of PharmacyChitkara UniversityRajpuraPunjabIndia
- Centre of Medical and Bio‐Allied Health Sciences ResearchAjman UniversityAjmanUnited Arab Emirates
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash UniversityBandar SunwaySelangor Darul EhsanMalaysia
- Department of Medical SciencesSchool of Medical and Life Sciences Sunway UniversityBandar SunwaySelangor Darul EhsanMalaysia
| |
Collapse
|
34
|
LeVine SM. The Azalea Hypothesis of Alzheimer Disease: A Functional Iron Deficiency Promotes Neurodegeneration. Neuroscientist 2024; 30:525-544. [PMID: 37599439 PMCID: PMC10876915 DOI: 10.1177/10738584231191743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Chlorosis in azaleas is characterized by an interveinal yellowing of leaves that is typically caused by a deficiency of iron. This condition is usually due to the inability of cells to properly acquire iron as a consequence of unfavorable conditions, such as an elevated pH, rather than insufficient iron levels. The causes and effects of chlorosis were found to have similarities with those pertaining to a recently presented hypothesis that describes a pathogenic process in Alzheimer disease. This hypothesis states that iron becomes sequestered (e.g., by amyloid β and tau), causing a functional deficiency of iron that disrupts biochemical processes leading to neurodegeneration. Additional mechanisms that contribute to iron becoming unavailable include iron-containing structures not undergoing proper recycling (e.g., disrupted mitophagy and altered ferritinophagy) and failure to successfully translocate iron from one compartment to another (e.g., due to impaired lysosomal acidification). Other contributors to a functional deficiency of iron in patients with Alzheimer disease include altered metabolism of heme or altered production of iron-containing proteins and their partners (e.g., subunits, upstream proteins). A review of the evidence supporting this hypothesis is presented. Also, parallels between the mechanisms underlying a functional iron-deficient state in Alzheimer disease and those occurring for chlorosis in plants are discussed. Finally, a model describing the generation of a functional iron deficiency in Alzheimer disease is put forward.
Collapse
Affiliation(s)
- Steven M. LeVine
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, US
| |
Collapse
|
35
|
Karabag D, Heneka MT, Ising C. The putative contribution of cellular senescence to driving tauopathies. Trends Immunol 2024; 45:837-848. [PMID: 39306559 DOI: 10.1016/j.it.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 10/13/2024]
Abstract
During mammalian aging, senescent cells accumulate in the body. Recent evidence suggests that senescent cells potentially contribute to age-related neurodegenerative diseases in the central nervous system (CNS), including tauopathies such as Alzheimer's disease (AD). Senescent cells undergo irreversible cell cycle arrest and release an inflammatory 'senescence-associated secretory profile' (SASP), which can exert devastating effects on surrounding cells. Senescent markers and SASP factors have been detected in multiple brain cells in tauopathies, including microglia, astrocytes, and perhaps even post-mitotic neurons, possibly contributing to the initiation as well as progression of these diseases. Here, we discuss the implications of presenting a senescent phenotype in tauopathies and highlight a potential role for the NOD-like receptor protein 3 (NLRP3) inflammasome as a newfound mechanism implicated in senescence and SASP formation.
Collapse
Affiliation(s)
- Deniz Karabag
- Department for Neuroimmunology, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Cologne, Germany
| | - Michael T Heneka
- Department for Neuroimmunology, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg; Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Christina Ising
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Cologne, Germany.
| |
Collapse
|
36
|
Wall RV, Basavarajappa D, Klistoner A, Graham S, You Y. Mechanisms of Transsynaptic Degeneration in the Aging Brain. Aging Dis 2024; 15:2149-2167. [PMID: 39191395 PMCID: PMC11346400 DOI: 10.14336/ad.2024.03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/19/2024] [Indexed: 08/29/2024] Open
Abstract
A prominent feature in many neurodegenerative diseases involves the spread of the pathology from the initial site of damage to anatomically and functionally connected regions of the central nervous system (CNS), referred to as transsynaptic degeneration (TSD). This review covers the possible mechanisms of both retrograde and anterograde TSD in various age-related neurodegenerative diseases, including synaptically and glial mediated changes contributing to TDS and their potential as therapeutic targets. This phenomenon is well documented in clinical and experimental studies spanning various neurodegenerative diseases and their respective models, with a significant emphasis on the visual pathway, to be explored herein. With the increase in the aging population and subsequent rise in age-related neurodegenerative diseases, it is crucial to understand the underlying mechanisms of.
Collapse
Affiliation(s)
- Roshana Vander Wall
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Alexander Klistoner
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Stuart Graham
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia
| | - Yuyi You
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia
| |
Collapse
|
37
|
Jurcau MC, Jurcau A, Cristian A, Hogea VO, Diaconu RG, Nunkoo VS. Inflammaging and Brain Aging. Int J Mol Sci 2024; 25:10535. [PMID: 39408862 PMCID: PMC11476611 DOI: 10.3390/ijms251910535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Progress made by the medical community in increasing lifespans comes with the costs of increasing the incidence and prevalence of age-related diseases, neurodegenerative ones included. Aging is associated with a series of morphological changes at the tissue and cellular levels in the brain, as well as impairments in signaling pathways and gene transcription, which lead to synaptic dysfunction and cognitive decline. Although we are not able to pinpoint the exact differences between healthy aging and neurodegeneration, research increasingly highlights the involvement of neuroinflammation and chronic systemic inflammation (inflammaging) in the development of age-associated impairments via a series of pathogenic cascades, triggered by dysfunctions of the circadian clock, gut dysbiosis, immunosenescence, or impaired cholinergic signaling. In addition, gender differences in the susceptibility and course of neurodegeneration that appear to be mediated by glial cells emphasize the need for future research in this area and an individualized therapeutic approach. Although rejuvenation research is still in its very early infancy, accumulated knowledge on the various signaling pathways involved in promoting cellular senescence opens the perspective of interfering with these pathways and preventing or delaying senescence.
Collapse
Affiliation(s)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Alexander Cristian
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Vlad Octavian Hogea
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | | | | |
Collapse
|
38
|
Yang L, Song S, Li X, Wang J, Bao Y, Wang X, Lian L, Liu X, Ma W. Neuroprotective Effect of Codonopsis pilosula Polysaccharide on Aβ 25-35-Induced Damage in PC12 Cells via the p38MAPK Signaling Pathways. Pharmaceuticals (Basel) 2024; 17:1231. [PMID: 39338393 PMCID: PMC11435206 DOI: 10.3390/ph17091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVES Plant polysaccharides have attracted increasing attention due to their high efficiency and low toxicity. Codonopsis pilosula polysaccharide (CPP) is an essential substance extracted from Codonopsis pilosula, known for its excellent antioxidant and neuroprotective effects. However, it is still unclear how CPP improves nerve protection and what its underlying molecular mechanisms are. This study aimed to investigate the neuroprotective effect of CPP on Aβ25-35-induced damage in PC12 cells and its underlying molecular mechanisms. METHODS The neuroprotective effect of CPP was evaluated using Aβ25-35-induced damage in pheochFfromocytoma (PC12) cells as an in vitro cell model. The cells were treated with CPP alone or in combination with SB203580 (an inhibitor of p38MAPK) in Aβ25-35 culture. The cell viability was assessed using a 3-(4,5-Dimethylthiazol-2-yl)-2,diphenyltetrazolium (MTT) assay. Furthermore, reactive oxygen species (ROS) were detected using flow cytometry. The production levels of intracellular superoxide dismutase (SOD), dismutase (SOD), glutathione (GSH), catalase (CAT), and malondialdehyFde (MDA) were determined using the colorimetric method. Annexin V-FITC and propidium iodide (PI) staining, as well as 33258 were performed using fluorescence microscopy. Moreover, the effect of adding SB203580 was studied to determine the changes in cell apoptosis induced by CPP treatment and Aβ25-35 induction. RESULTS The CPP markedly inhibited Aβ25-35-induced reduction in the viability and apoptosis of PC12 cells. CPP also reduced the Aβ25-35-induced increase in the expression of the apoptosis factors and the levels of free radicals (ROS and MDA) and reversed the Aβ25-35-induced suppression of antioxidant activity. Additionally, inhibition of p38MAPK via the addition of their antagonists reversed the observed anti-apoptosis effects of CPP. CONCLUSIONS CPP can efficiently provide neuroprotection against Aβ25-35-induced damage in PC12 cells brought about via oxidation and apoptosis reactions, and the underlying mechanisms involve the p38MAPK pathways. Therefore, CPP could potentially be useful as a neuroprotective agent in natural medicine, pharmacy, and the food industry.
Collapse
Affiliation(s)
- Liu Yang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (L.Y.); (S.S.)
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi 154007, China; (X.L.); (J.W.); (Y.B.); (X.W.); (L.L.)
| | - Shiyi Song
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (L.Y.); (S.S.)
| | - Xinlu Li
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi 154007, China; (X.L.); (J.W.); (Y.B.); (X.W.); (L.L.)
| | - Jinquan Wang
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi 154007, China; (X.L.); (J.W.); (Y.B.); (X.W.); (L.L.)
| | - Yanan Bao
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi 154007, China; (X.L.); (J.W.); (Y.B.); (X.W.); (L.L.)
| | - Xinxin Wang
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi 154007, China; (X.L.); (J.W.); (Y.B.); (X.W.); (L.L.)
| | - Liwei Lian
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi 154007, China; (X.L.); (J.W.); (Y.B.); (X.W.); (L.L.)
| | - Xiubo Liu
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi 154007, China; (X.L.); (J.W.); (Y.B.); (X.W.); (L.L.)
| | - Wei Ma
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (L.Y.); (S.S.)
| |
Collapse
|
39
|
Ye J, Sun X, Jiang Q, Gui J, Feng S, Qin B, Xie L, Guo A, Dong J, Sang M. Umbilical cord blood-derived exosomes attenuate dopaminergic neuron damage of Parkinson's disease mouse model. J Nanobiotechnology 2024; 22:567. [PMID: 39277761 PMCID: PMC11401276 DOI: 10.1186/s12951-024-02773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/14/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Umbilical cord blood (UCB) is a rich source of multifunctional stem cells characterized by low immunogenicity. Recent research in the fields of aging and regenerative medicine has revealed the potential of human umbilical cord blood-derived exosomes (UCB-Exos) in promoting wound healing, anti-aging, and regeneration. However, their role in neurodegenerative diseases, specifically Parkinson's disease (PD), remains unexplored. This study investigates the potential therapeutic effects and underlying mechanisms of UCB-Exos on PD. METHODS Large extracellular vesicles (LEv), Exos, and soluble fractions (SF) of human UCB plasma were extracted to investigate their effects on motor dysfunction of the MPTP-induced PD mouse model and identify the key components that improve PD symptoms. UCB-Exos were administered by the caudal vein to prevent or treat the PD mouse model. The motor function and pathological markers were detected. Differentially expressed gene and KEGG enrichment pathways were screened by transcriptome sequence. MN9D and SH-SY5Y cells were cultured and evaluated for cell viability, oxidative stress, cell cycle, and aging-related indexes by qRT-PCR, western blot, immunofluorescence, and flow cytometry. The protein expression level of the MAPK p38 and ERK1/2 signaling pathway was detected by western blot. RESULTS We observed that LEv, Exos, and SF all exhibited potential in ameliorating motor dysfunction in MPTP-induced PD model mice, with UCB-Exos demonstrating the most significant effect. UCB-Exos showed comparable efficacy in preventing and treating motor dysfunction, cognitive decline, and substantia nigra pathological damage in PD mice. Further investigations revealed that UCB-Exos could potentially alleviate oxidative damage, aging and degeneration, and energy metabolism disorders in neurons. Transcriptome sequencing results corroborated that genes differentially expressed due to UCB-Exos were primarily enriched in the neuroactive ligand-receptor interaction, Dopaminergic synapse, and MAPK signaling pathway. We also observed that UCB-Exos significantly inhibited the hyperphosphorylation of the MAPK p38 and ERK1/2 signaling pathways both in vitro and in vivo. CONCLUSIONS Our study provides a comprehensive evaluation of UCB-Exos on the neuroprotective effects and suggests that inhibition of hyperphosphorylation of MAPK p38 and ERK 1/2 signaling pathways by regulating transcription levels of HspB1 and Ppef2 may be the key mechanism for UCB-Exos to improve PD-related pathological features.
Collapse
Affiliation(s)
- Junjie Ye
- Research Center for Translational Medicine, Department of Anesthesiology, Department of Obstetrics, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei University of Medicine, 15 Jiefang Road, Xiangyang, 441000, China
- Clinical Laboratory, Wuhan Asia Heart Hospital, Wuhan, 430022, China
| | - Xiaodong Sun
- Research Center for Translational Medicine, Department of Anesthesiology, Department of Obstetrics, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei University of Medicine, 15 Jiefang Road, Xiangyang, 441000, China
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Qi Jiang
- Research Center for Translational Medicine, Department of Anesthesiology, Department of Obstetrics, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei University of Medicine, 15 Jiefang Road, Xiangyang, 441000, China
| | - Jianjun Gui
- Research Center for Translational Medicine, Department of Anesthesiology, Department of Obstetrics, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei University of Medicine, 15 Jiefang Road, Xiangyang, 441000, China
| | - Shenglan Feng
- Research Center for Translational Medicine, Department of Anesthesiology, Department of Obstetrics, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei University of Medicine, 15 Jiefang Road, Xiangyang, 441000, China
| | - Bingqing Qin
- Research Center for Translational Medicine, Department of Anesthesiology, Department of Obstetrics, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei University of Medicine, 15 Jiefang Road, Xiangyang, 441000, China
| | - Lixia Xie
- Research Center for Translational Medicine, Department of Anesthesiology, Department of Obstetrics, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei University of Medicine, 15 Jiefang Road, Xiangyang, 441000, China
| | - Ai Guo
- Research Center for Translational Medicine, Department of Anesthesiology, Department of Obstetrics, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei University of Medicine, 15 Jiefang Road, Xiangyang, 441000, China
| | - Jinju Dong
- Research Center for Translational Medicine, Department of Anesthesiology, Department of Obstetrics, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei University of Medicine, 15 Jiefang Road, Xiangyang, 441000, China.
| | - Ming Sang
- Research Center for Translational Medicine, Department of Anesthesiology, Department of Obstetrics, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei University of Medicine, 15 Jiefang Road, Xiangyang, 441000, China.
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
40
|
Jin Y, Yuan H, Liu Y, Zhu Y, Wang Y, Liang X, Gao W, Ren Z, Ji X, Wu D. Role of hydrogen sulfide in health and disease. MedComm (Beijing) 2024; 5:e661. [PMID: 39156767 PMCID: PMC11329756 DOI: 10.1002/mco2.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
In the past, hydrogen sulfide (H2S) was recognized as a toxic and dangerous gas; in recent years, with increased research, we have discovered that H2S can act as an endogenous regulatory transmitter. In mammals, H2S-catalyzing enzymes, such as cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, are differentially expressed in a variety of tissues and affect a variety of biological functions, such as transcriptional and posttranslational modification of genes, activation of signaling pathways in the cell, and metabolic processes in tissues, by producing H2S. Various preclinical studies have shown that H2S affects physiological and pathological processes in the body. However, a detailed systematic summary of these roles in health and disease is lacking. Therefore, this review provides a thorough overview of the physiological roles of H2S in different systems and the diseases associated with disorders of H2S metabolism, such as ischemia-reperfusion injury, hypertension, neurodegenerative diseases, inflammatory bowel disease, and cancer. Meanwhile, this paper also introduces H2S donors and novel release modes, as well as the latest preclinical experimental results, aiming to provide researchers with new ideas to discover new diagnostic targets and therapeutic options.
Collapse
Affiliation(s)
- Yu‐Qing Jin
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Ya‐Fang Liu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Yi‐Wen Zhu
- School of Clinical MedicineHenan UniversityKaifengHenanChina
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xiao‐Yi Liang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Zhi‐Guang Ren
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xin‐Ying Ji
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- Faculty of Basic Medical SubjectsShu‐Qing Medical College of ZhengzhouZhengzhouHenanChina
| | - Dong‐Dong Wu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- School of StomatologyHenan UniversityKaifengHenanChina
- Department of StomatologyHuaihe Hospital of Henan UniversityKaifengHenanChina
| |
Collapse
|
41
|
Parandavar E, Shafizadeh M, Ahmadian S, Javan M. Long-term demyelination and aging-associated changes in mice corpus callosum; evidence for the role of accelerated aging in remyelination failure in a mouse model of multiple sclerosis. Aging Cell 2024; 23:e14211. [PMID: 38804500 PMCID: PMC11488340 DOI: 10.1111/acel.14211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disorder affecting the central nervous system. Evidence suggests that age-related neurodegeneration contributes to disability progression during the chronic stages of MS. Aging is characterized by decreased regeneration potential and impaired myelin repair in the brain. It is hypothesized that accelerated cellular aging contributes to the functional decline associated with neurodegenerative diseases. We assessed the impact of aging on myelin content in the corpus callosum (CC) and compared aging with the long-term demyelination (LTD) consequents induced by 12 weeks of feeding with a cuprizone (CPZ) diet. Initially, evaluating myelin content in 2-, 6-, and 18-month-old mice revealed a reduction in myelin content, particularly at 18 months. Myelin thickness was decreased and the g-ratio increased in aged mice. Although a lower myelin content and higher g-ratio were observed in LTD model mice, compared to the normally aged mice, both aging and LTD exhibited relatively similar myelin ultrastructure. Our findings provide evidence that LTD exhibits the hallmarks of aging such as elevated expression of senescence-associated genes, mitochondrial dysfunction, and high level of oxidative stress as observed following normal aging. We also investigated the senescence-associated β-galactosidase activity in O4+ late oligodendrocyte progenitor cells (OPCs). The senescent O4+/β-galactosidase+ cells were elevated in the CPZ diet. Our data showed that the myelin degeneration in CC occurs throughout the lifespan, and LTD induced by CPZ accelerates the aging process which may explain the impairment of myelin repair in patients with progressive MS.
Collapse
Affiliation(s)
- Elham Parandavar
- Institute of Biochemistry and BiophysicsUniversity of TehranTehranIran
| | | | - Shahin Ahmadian
- Institute of Biochemistry and BiophysicsUniversity of TehranTehranIran
| | - Mohammad Javan
- Department of Physiology, School of Medical SciencesTarbiat Modares UniversityTehranIran
- Institute for Brain and CognitionTarbiat Modares UniversityTehranIran
| |
Collapse
|
42
|
Yan X, Zeng R, Cao Y. Astragaloside IV confronts amyloid-beta-induced astrocyte senescence via hsp90aa1. J Appl Biomed 2024; 22:129-135. [PMID: 39434509 DOI: 10.32725/jab.2024.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/21/2024] [Indexed: 10/23/2024] Open
Abstract
Cell senescence is intensively related to aging and neurodegenerative diseases. This study aimed to explore the effect and targets of Astragaloside IV against amyloid-beta-induced astrocyte senescence. Oligomerized amyloid-beta was prepared to culture with human astrocytes. The effects of Astragaloside IV were assessed based on SA-β-gal staining analysis, senescence markers (p53, p16INK4, and p21WAF1), neurotrophic growth factor levels (qRT-PCR), and cell proliferation (CCK-8 kit). The targets for Astragaloside IV were predicted, and hsp90aa1 protein was verified using molecular docking. After hsp90aa1 overexpression, the effects of Astragaloside IV on amyloid-beta-induced astrocytes were assessed. Treatment of human amyloid-beta-induced astrocytes with Astragaloside IV can decrease the percentage of SA-β-gal positive cells, downregulate the p53, p16INK4, and p21WAF1 levels, and increase the levels of neurotrophic growth factors (IGF-1 and NGF mRNA) and cell proliferation. Based on target prediction, hsp90aa1 was found to be a potential target of Astragaloside IV. Moreover, cellular experiments demonstrated that exogenously enhanced expression of hsp90aa1 overexpression suppressed the protective effect of Astragaloside IV on amyloid-beta-induced human astrocytes. The results presented here demonstrate that Astragaloside IV could confront amyloid-beta-induced astrocyte senescence via hsp90aa1, possibly opening new therapeutic avenues.
Collapse
Affiliation(s)
- Xia Yan
- Xiangyang Hospital of Traditional Chinese Medicine (Xiangyang Institute of Traditional Chinese Medicine), Institute of Traditional Chinese Medicine, Xiangyang 441000, China
| | - Rongxiang Zeng
- Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, China
| | - Yajun Cao
- Xiangyang Hospital of Traditional Chinese Medicine (Xiangyang Institute of Traditional Chinese Medicine), Department of Anesthesiology, Xiangyang 441000, China
| |
Collapse
|
43
|
Li M, Xu X, Jia Y, Yuan Y, Na G, Zhu L, Xiao X, Zhang Y, Ye H. Transformation of mulberry polyphenols by Lactobacillus plantarum SC-5: Increasing phenolic acids and enhancement of anti-aging effect. Food Res Int 2024; 192:114778. [PMID: 39147466 DOI: 10.1016/j.foodres.2024.114778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
Fermentation can transform bioactive compounds in food and improve their biological activity. This study aims to explore the transformation of polyphenols in mulberry juice and the improvement of its anti-aging effect. The results demonstrated that Lactobacillus plantarum SC-5 transformed anthocyanin in mulberry juice into more phenolic acids, especially improved 2-hydroxy-3-(4-hydroxyphenyl) propanoic acid from 4.16 ± 0.06 to 10.07 ± 0.03. In the D-gal-induced mouse model, fermented mulberry juice significantly raised the abundance of Bifidobacteriaceae (303.7 %) and Lactobacillaceae (237.2 %) and Short-chain fatty acids (SCFAs) in intestine, further reducing the level of oxidative stress (12.3 %). Meanwhile, the expression of Sirtuin 1 (SIRT1) and Brain-derived neurotrophic factor (BDNF) increased, which protected the integrity of hippocampal tissue. Morris water maze results approved that fermented mulberry juice improved cognitive ability in aging mice (30.3 %). This study provides theoretical support for the view that fermentation is an effective means of developing functional foods.
Collapse
Affiliation(s)
- Mengyao Li
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Xiangxiu Xu
- Changchun City Market Supervision Comprehensive Administrative Law Enforcement Detachment, 1150a-1 Wanfu Road, Changchun 130062, China
| | - Yifan Jia
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Yuan Yuan
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Guo Na
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Ling Zhu
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Xiaowei Xiao
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Yamin Zhang
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| |
Collapse
|
44
|
Jones EJ, Skinner BM, Parker A, Baldwin LR, Greenman J, Carding SR, Funnell SGP. An in vitro multi-organ microphysiological system (MPS) to investigate the gut-to-brain translocation of neurotoxins. BIOMICROFLUIDICS 2024; 18:054105. [PMID: 39280192 PMCID: PMC11401645 DOI: 10.1063/5.0200459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024]
Abstract
The death of dopamine-producing neurons in the substantia nigra in the base of the brain is a defining pathological feature in the development of Parkinson's disease (PD). PD is, however, a multi-systemic disease, also affecting the peripheral nervous system and gastrointestinal tract (GIT) that interact via the gut-brain axis (GBA). Our dual-flow GIT-brain microphysiological system (MPS) was modified to investigate the gut-to-brain translocation of the neurotoxin trigger of PD, 1-methyl-4-phenylpyridinium (MPP+), and its impact on key GIT and brain cells that contribute to the GBA. The modular GIT-brain MPS in combination with quantitative and morphometric image analysis methods reproduces cell specific neurotoxin-induced dopaminergic cytotoxicity and mitochondria-toxicity with the drug having no detrimental impact on the viability or integrity of cellular membranes of GIT-derived colonic epithelial cells. Our findings demonstrate the utility and capability of the GIT-brain MPS for measuring neuronal responses and its suitability for identifying compounds or molecules produced in the GIT that can exacerbate or protect against neuronal inflammation and cell death.
Collapse
Affiliation(s)
- Emily J Jones
- Food, Microbiome and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - Benjamin M Skinner
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Aimee Parker
- Food, Microbiome and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - Lydia R Baldwin
- Centre of Biomedical Sciences, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - John Greenman
- Centre of Biomedical Sciences, Hull York Medical School, University of Hull, Hull, United Kingdom
| | | | | |
Collapse
|
45
|
Greenberg EF, Voorbach MJ, Smith A, Reuter DR, Zhuang Y, Wang JQ, Wooten DW, Asque E, Hu M, Hoft C, Duggan R, Townsend M, Orsi K, Dalecki K, Amberg W, Duggan L, Knight H, Spina JS, He Y, Marsh K, Zhao V, Ybarra S, Mollon J, Fang Y, Vasanthakumar A, Westmoreland S, Droescher M, Finnema SJ, Florian H. Navitoclax safety, tolerability, and effect on biomarkers of senescence and neurodegeneration in aged nonhuman primates. Heliyon 2024; 10:e36483. [PMID: 39253182 PMCID: PMC11382177 DOI: 10.1016/j.heliyon.2024.e36483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Alzheimer's disease (AD) is the most common global dementia and is universally fatal. Most late-stage AD disease-modifying therapies are intravenous and target amyloid beta (Aβ), with only modest effects on disease progression: there remains a high unmet need for convenient, safe, and effective therapeutics. Senescent cells (SC) and the senescence-associated secretory phenotype (SASP) drive AD pathology and increase with AD severity. Preclinical senolytic studies have shown improvements in neuroinflammation, tau, Aβ, and CNS damage; most were conducted in transgenic rodent models with uncertain human translational relevance. In this study, aged cynomolgus monkeys had significant elevation of biomarkers of senescence, SASP, and neurological damage. Intermittent treatment with the senolytic navitoclax induced modest reversible thrombocytopenia; no serious drug-related toxicity was noted. Navitoclax reduced several senescence and SASP biomarkers, with CSF concentrations sufficient for senolysis. Finally, navitoclax reduced TSPO-PET frontal cortex binding and showed trends of improvement in CSF biomarkers of neuroinflammation, neuronal damage, and synaptic dysfunction. Overall, navitoclax administration was safe and well tolerated in aged monkeys, inducing trends of biomarker changes relevant to human neurodegenerative disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Min Hu
- AbbVie Inc., North Chicago, IL, United States
| | - Carolin Hoft
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061, Ludwigshafen, Germany
| | - Ryan Duggan
- AbbVie Inc., North Chicago, IL, United States
| | - Matthew Townsend
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, United States
| | - Karin Orsi
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | | | - Willi Amberg
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061, Ludwigshafen, Germany
| | - Lori Duggan
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | - Heather Knight
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | - Joseph S Spina
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | - Yupeng He
- AbbVie Inc., North Chicago, IL, United States
| | | | - Vivian Zhao
- AbbVie Bay Area, 1000 Gateway Boulevard, South San Francisco, CA, 94080, United States
| | - Suzanne Ybarra
- AbbVie Bay Area, 1000 Gateway Boulevard, South San Francisco, CA, 94080, United States
| | - Jennifer Mollon
- AbbVie Deutschland GmbH & Co. KG, Statistical Sciences and Analytics, Knollstrasse, 67061, Ludwigshafen, Germany
| | - Yuni Fang
- AbbVie Bay Area, 1000 Gateway Boulevard, South San Francisco, CA, 94080, United States
| | | | - Susan Westmoreland
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | - Mathias Droescher
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061, Ludwigshafen, Germany
| | | | | |
Collapse
|
46
|
Shi Y, Zhang Y, Zhang Y, Yao J, Guo J, Xu X, Wang L. Advances in Nanotherapy for Targeting Senescent Cells. Int J Nanomedicine 2024; 19:8797-8813. [PMID: 39220198 PMCID: PMC11365502 DOI: 10.2147/ijn.s469110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
Aging is an inevitable process in the human body, and cellular senescence refers to irreversible cell cycle arrest caused by external aging-promoting mechanisms. Moreover, as age increases, the accumulation of senescent cells limits both the health of the body and lifespan and even accelerates the occurrence and progression of age-related diseases. Therefore, it is crucial to delay the periodic irreversible arrest and continuous accumulation of senescent cells to address the issue of aging. The fundamental solution is targeted therapy focused on eliminating senescent cells or reducing the senescence-associated secretory phenotype. Over the past few decades, the remarkable development of nanomaterials has revolutionized clinical drug delivery pathways. Their unique optical, magnetic, and electrical properties effectively compensate for the shortcomings of traditional drugs, such as low stability and short half-life, thereby maximizing the bioavailability and minimizing the toxicity of drug delivery. This article provides an overview of how nanomedicine systems control drug release and achieve effective diagnosis. By presenting and analyzing recent advances in nanotherapy for targeting senescent cells, the underlying mechanisms of nanomedicine for senolytic and senomorphic therapy are clarified, providing great potential for targeting senescent cells.
Collapse
Affiliation(s)
- Yurou Shi
- Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310015, People’s Republic of China
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Yingjie Zhang
- Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310015, People’s Republic of China
| | - Yaxuan Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Jiali Yao
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Junping Guo
- Rainbowfish Rehabilitation and Nursing School, Hangzhou Vocational & Technical College, Hangzhou, 310018, People’s Republic of China
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
| | - Lijun Wang
- Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310015, People’s Republic of China
| |
Collapse
|
47
|
Rosell MDLÁ, Quizhpe J, Ayuso P, Peñalver R, Nieto G. Proximate Composition, Health Benefits, and Food Applications in Bakery Products of Purple-Fleshed Sweet Potato ( Ipomoea batatas L.) and Its By-Products: A Comprehensive Review. Antioxidants (Basel) 2024; 13:954. [PMID: 39199200 PMCID: PMC11351671 DOI: 10.3390/antiox13080954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Ipomoea batatas (L.) Lam is a dicotyledonous plant originally from tropical regions, with China and Spain acting as the main producers from outside and within the EU, respectively. The root, including only flesh, is the edible part, and the peel, leaves, stems, or shoots are considered by-products, which are generated due to being discarded in the field and during processing. Therefore, this study aimed to perform a comprehensive review of the nutritional value, phytochemical composition, and health-promoting activities of purple-fleshed sweet potato and its by-products, which lead to its potential applications in bakery products for the development of functional foods. The methodology is applied to the selected topic and is used to conduct the search, review abstracts and full texts, and discuss the results using different general databases. The studies suggested that purple-fleshed sweet potato parts are characterized by a high content of essential minerals and bioactive compounds, including anthocyanins belonging to the cyanidin or the peonidin type. The flesh and leaves are also high in phenolic compounds and carotenoids such as lutein and β-carotene. The high content of phenolic compounds and anthocyanins provides the purple-fleshed sweet potato with high antioxidant and anti-inflammatory power due to the modulation effect of the transcription factor Nrf2 and NF-kB translocation, which may lead to protection against hepatic and neurological disorders, among others. Furthermore, purple-fleshed sweet potato and its by-products can play a dual role in food applications due to its attractive color and wide range of biological activities which enhance its nutritional profile. As a result, it is essential to harness the potential of the purple-fleshed sweet potato and its by-products that are generated during its processing through an appropriate agro-industrial valorization system.
Collapse
Affiliation(s)
| | | | | | | | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain; (M.d.l.Á.R.); (J.Q.); (P.A.); (R.P.)
| |
Collapse
|
48
|
Mahmud S, Pitcher LE, Torbenson E, Robbins PD, Zhang L, Dong X. Developing transcriptomic signatures as a biomarker of cellular senescence. Ageing Res Rev 2024; 99:102403. [PMID: 38964507 PMCID: PMC11338099 DOI: 10.1016/j.arr.2024.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Cellular senescence is a cell fate driven by different types of stress, where damaged cells exit from the cell cycle and, in many cases, develop an inflammatory senescence-associated secretory phenotype (SASP). Senescence has often been linked to driving aging and the onset of multiple diseases conferred by the harmful SASP, which disrupts tissue homeostasis and impairs the regular function of many tissues. This phenomenon was first observed in vitro when fibroblasts halted replication after approximately 50 population doublings. In addition to replication-induced senescence, factors such as DNA damage and oncogene activation can induce cellular senescence both in culture and in vivo. Despite their contribution to aging and disease, identifying senescent cells in vivo has been challenging due to their heterogeneity. Although senescent cells can express the cell cycle inhibitors p16Ink4a and/or p21Cip1 and exhibit SA-ß-gal activity and evidence of a DNA damage response, there is no universal biomarker for these cells, regardless of inducer or cell type. Recent studies have analyzed the transcriptomic characteristics of these cells, leading to the identification of signature gene sets like CellAge, SeneQuest, and SenMayo. Advancements in single-cell and spatial RNA sequencing now allow for analyzing senescent cell heterogeneity within the same tissue and the development of machine learning algorithms, e.g., SenPred, SenSig, and SenCID, to discover cellular senescence using RNA sequencing data. Such insights not only deepen our understanding of the genetic pathways driving cellular senescence, but also promote the development of its quantifiable biomarkers. This review summarizes the current knowledge of transcriptomic signatures of cellular senescence and their potential as in vivo biomarkers.
Collapse
Affiliation(s)
- Shamsed Mahmud
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA; Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Louise E Pitcher
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Elijah Torbenson
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA; Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Lei Zhang
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA
| | - Xiao Dong
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA; Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
49
|
Duarte LF, Villalobos V, Farías MA, Rangel-Ramírez MA, González-Madrid E, Navarro AJ, Carbone-Schellman J, Domínguez A, Alvarez A, Riedel CA, Bueno SM, Kalergis AM, Cáceres M, González PA. Asymptomatic herpes simplex virus brain infection elicits cellular senescence phenotypes in the central nervous system of mice suffering multiple sclerosis-like disease. Commun Biol 2024; 7:811. [PMID: 38965360 PMCID: PMC11224417 DOI: 10.1038/s42003-024-06486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease affecting the central nervous system (CNS) in animals that parallels several clinical and molecular traits of multiple sclerosis in humans. Herpes simplex virus type 1 (HSV-1) infection mainly causes cold sores and eye diseases, yet eventually, it can also reach the CNS, leading to acute encephalitis. Notably, a significant proportion of healthy individuals are likely to have asymptomatic HSV-1 brain infection with chronic brain inflammation due to persistent latent infection in neurons. Because cellular senescence is suggested as a potential factor contributing to the development of various neurodegenerative disorders, including multiple sclerosis, and viral infections may induce a premature senescence state in the CNS, potentially increasing susceptibility to such disorders, here we examine the presence of senescence-related markers in the brains and spinal cords of mice with asymptomatic HSV-1 brain infection, EAE, and both conditions. Across all scenarios, we find a significant increases of senescence biomarkers in the CNS with some differences depending on the analyzed group. Notably, some senescence biomarkers are exclusively observed in mice with the combined conditions. These results indicate that asymptomatic HSV-1 brain infection and EAE associate with a significant expression of senescence biomarkers in the CNS.
Collapse
MESH Headings
- Animals
- Cellular Senescence
- Mice
- Brain/virology
- Brain/pathology
- Brain/metabolism
- Multiple Sclerosis/virology
- Multiple Sclerosis/pathology
- Multiple Sclerosis/metabolism
- Herpesvirus 1, Human/physiology
- Herpesvirus 1, Human/pathogenicity
- Herpes Simplex/virology
- Herpes Simplex/pathology
- Female
- Mice, Inbred C57BL
- Encephalomyelitis, Autoimmune, Experimental/virology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Phenotype
- Central Nervous System/virology
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Spinal Cord/virology
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Biomarkers/metabolism
- Encephalitis, Herpes Simplex/virology
- Encephalitis, Herpes Simplex/pathology
- Encephalitis, Herpes Simplex/metabolism
Collapse
Affiliation(s)
- Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Verónica Villalobos
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ma Andreina Rangel-Ramírez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
| | - Enrique González-Madrid
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
| | - Areli J Navarro
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javier Carbone-Schellman
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angélica Domínguez
- Departamento de Salud Pública, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandra Alvarez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica Cáceres
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
50
|
Iacono A, Oremus M, Maxwell CJ, Tyas SL. Functional social isolation mediates the association between depression and executive function in older women: findings from the Canadian Longitudinal Study on Aging Comprehensive cohort. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2024; 31:661-681. [PMID: 37350151 DOI: 10.1080/13825585.2023.2226855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Depression and social isolation increase risk for executive function declines and are among the top five modifiable risk factors for dementia. However, the interrelationships between depression, social isolation and executive function are not well established. Further evidence is needed to inform strategies to promote executive function and independence in older age. We examined whether social isolation mediated the association between depression and executive function in community-dwelling middle-aged and older adults and whether this association was modified by age and sex. Adults aged 45 to 85 years from the Canadian Longitudinal Study on Aging (CLSA) Comprehensive cohort were followed over three years (complete case analysis, n = 14,133). Baseline depressive symptoms, a history of clinical depression, and functional social isolation (perceived lack of social support) were self-reported. Executive function at follow-up was a composite measure of five cognitive tests. Conditional process analysis assessed the mediating effects of functional social isolation across age group and sex, adjusted for sociodemographic and health covariates. Functional social isolation significantly mediated the association of depressive symptoms (proportion mediated [PM] = 8.0%) or clinical depression (PM = 17.5%) with executive function only among women aged 75+ years. Functional social isolation explains a proportion of the total effect of depressive symptoms or clinical depression on executive function in women aged 75 and older. Although reverse causation cannot be ruled out, our findings suggest that interventions that reduce functional social isolation or depression in older women may promote executive function.
Collapse
Affiliation(s)
- Anita Iacono
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Mark Oremus
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Colleen J Maxwell
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Suzanne L Tyas
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|