1
|
Schleger IC, Pereira DMC, Resende AC, Romão S, Herrerias T, Neundorf AKA, Sloty AM, Guimarães IM, de Souza MRDP, Carster GP, Donatti L. Cold and warm waters: energy metabolism and antioxidant defenses of the freshwater fish Astyanax lacustris (Characiformes: Characidae) under thermal stress. J Comp Physiol B 2021; 192:77-94. [PMID: 34591144 DOI: 10.1007/s00360-021-01409-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 12/27/2022]
Abstract
Subtropical fish are exposed to seasonal variations in temperature that impose a set of adaptations on their metabolism necessary for the maintenance of homeostasis. In this study, we addressed the effects of temperature variation on the metabolism of Astyanax lacustris, a species of freshwater fish common in the subtropical region of Brazil. Biomarkers of carbohydrate and protein metabolism, antioxidant defense, and oxidative damage were evaluated in the liver of A. lacustris exposed to low (15 °C) and high (31 °C) temperature thermal shock, with controls at 23 °C for 2, 6, 12, 24, 48, 72, and 96 h. A high energy demand was observed during the first 48 h of exposure to 15 °C, which is necessary for metabolic adjustment at low temperatures, with an increase in glycolysis, citric acid cycle, and amino acid catabolism. In addition, at 31 °C, glucose was exported in the first 12 h of exposure, and an increase in the citric acid cycle suggested acetyl-CoA as the pathway substrate, originating from the oxidation of lipids. The antioxidant defenses did not change at 15 °C, as opposed to 31 °C, in which there were changes in several antioxidant defense markers, indicating a response to the production of ROS. However, oxidative stress was observed at both temperatures, with oxidative damage detected by lipid peroxidation at 15 °C and protein carbonylation at 31 °C.
Collapse
Affiliation(s)
- Ieda Cristina Schleger
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, CEP 81531-970, Curitiba, Paraná, 19031, Brazil
| | - Diego Mauro Carneiro Pereira
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, CEP 81531-970, Curitiba, Paraná, 19031, Brazil
| | - Anna Carolina Resende
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, CEP 81531-970, Curitiba, Paraná, 19031, Brazil
| | - Silvia Romão
- Federal University of Fronteira Sul, Laranjeiras do Sul, Paraná, Brazil
| | | | - Ananda Karla Alves Neundorf
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, CEP 81531-970, Curitiba, Paraná, 19031, Brazil
| | | | - Ivan Moyses Guimarães
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, CEP 81531-970, Curitiba, Paraná, 19031, Brazil
| | - Maria Rosa Dmengeon Pedreiro de Souza
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, CEP 81531-970, Curitiba, Paraná, 19031, Brazil
| | - Guilherme Prosperi Carster
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, CEP 81531-970, Curitiba, Paraná, 19031, Brazil
| | - Lucélia Donatti
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, CEP 81531-970, Curitiba, Paraná, 19031, Brazil.
| |
Collapse
|
2
|
SRISUKSAI K, PARUNYAKUL K, PHAONAKROP N, ROYTAKUL S, FUNGFUANG W. The effect of cordycepin on brain oxidative stress and protein expression in streptozotocin-induced diabetic mice. J Vet Med Sci 2021; 83:1425-1434. [PMID: 34334512 PMCID: PMC8498841 DOI: 10.1292/jvms.21-0268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022] Open
Abstract
Diabetes mellitus (DM) is characterized by metabolic disorders and psychological deficits, including cognitive decline. Here, we investigated the effect of cordycepin on oxidative stress and protein expression in the brains of diabetic mice. Twenty-four mice were divided into four groups, one comprising untreated healthy mice (N); one comprising healthy mice treated with cordycepin (24 mg/kg body weight) (N+Cor); one comprising untreated DM mice; and one comprising DM mice treated with cordycepin (24 mg/kg body weight) (DM+Cor). After 14 days of treatment, cognitive behavior was assessed using the novel object recognition (NOR) test. The brain levels of oxidative stress markers (glutathione, catalase, and superoxide dismutase) were examined using the respective detection kits. Protein expression in brain tissues was assessed by liquid chromatography with tandem mass spectrometry (LC-MS/MS); the functions of the identified proteins were annotated by PANTHER, while major protein-protein interactions were assessed using STITCH. We found that cordycepin treatment significantly decreased body weight and food and water intake in the DM+Cor group compared with that in the DM group; however, no differences in blood glucose levels were found between the two groups. Cordycepin treatment significantly reversed cognitive decline in diabetic mice in the NOR test and ameliorated antioxidant defenses. Additionally, we identified ULK1 isoform 2, a protein associated with cognitive function via the activated AMPK and autophagic pathways, as being uniquely expressed in the DM+Cor group. Our findings provide novel insights into the cellular mechanisms underlying how cordycepin improves cognitive decline in diabetic mice.
Collapse
Affiliation(s)
- Krittika SRISUKSAI
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Kongphop PARUNYAKUL
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Narumon PHAONAKROP
- Functional Ingredient and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology
Development Agency, Pathum Thani 12120, Thailand
| | - Sittiruk ROYTAKUL
- Functional Ingredient and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology
Development Agency, Pathum Thani 12120, Thailand
| | - Wirasak FUNGFUANG
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
3
|
Effect of Substituting Fish Oil with Camelina Oil on Growth Performance, Fatty Acid Profile, Digestibility, Liver Histology, and Antioxidative Status of Red Seabream ( Pagrus major). Animals (Basel) 2021; 11:ani11071990. [PMID: 34359117 PMCID: PMC8300156 DOI: 10.3390/ani11071990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The shortage of natural resources, prices, and high demand for fish oil has encouraged the use of non-traditional ingredients in aquafeed. The search for an alternative lipid source in aquafeeds has seen terrestrial vegetable oils at the epicenter of various flagship aqua-feed research. Herein, we investigated the effects of substituting fish oil (FO) with camelina oil (CO) on growth performance, fatty acid profile, digestibility, liver histology, and antioxidative status of red seabream (Pagrus major). After 56 days of the feeding trial, the results suggested that FO can be replaced with CO in the feeds of farmed red seabream without compromising growth, blood chemistry, digestibility, and overall health status. Abstract A 56-day feeding trial to evaluate the responses of red seabream (initial weight: 1.8 ± 0.02 g) to the substitution of fish oil (FO) with camelina oil (CO) at different ratios was conducted. The control diet formulated at 46% CP (6F0C) contained only FO without CO; from the second to the fifth diet, the FO was substituted with CO at rates of 5:1 (5F1C), 4:2 (4F2C), 3:3 (3F3C), 2:4 (2F4C), and 0:6 (0F6C). The results of the present study showed that up to full substitution of FO with CO showed no significant effect on growth variables BW = 26.2 g–28.3 g), body weight gain (BWG = 1275.5–1365.3%), specific growth rate (SGR = 4.6–4.7), feed intake (FI = 25.6–27.8), feed conversion ratio (FCR = 1.0–1.1), biometric indices condition factor (CF = 2.2–2.4), hepatosomatic index (HSI = 0.9–1.1), viscerasomatic index (VSI = 7.5–9.5), and survival rates (SR = 82.2–100) with different FO substitution levels with CO. Similarly, there were no significant differences (p < 0.05) found in the whole-body composition except for the crude lipid content, and the highest value was observed in the control group (291 g/kg) compared to the other groups FO5CO1 (232 k/kg), FO4CO2 (212 g/kg), FO2CO4 (232 g/kg) and FO0CO6 (244 g/kg). Blood chemistry levels were not influenced in response to test diets: hematocrit (36–33%), glucose (Glu = 78.3–71.3 mg/dL), total protein (T-pro = 3.1–3.8 g/dL), total cholesterol (T-Chol = 196.0–241 mg/dL), blood urea nitrogen (BUN = 9.0–14.6 mg/dL), total bilirubin (T-Bil = 0.4–0.5 mg/dL), triglyceride (TG = 393.3–497.6 mg/dL), alanine aminotransferase test (ALT = 50–65.5 UL/L), aspartate aminotransferase test (AST = 38–69.3 UL/L). A remarkable modulation was observed in catalase (CAT) and superoxide dismutase (SOD) activities in the liver, as CAT and SOD values were lower with the complete FO substitution with CO (0F6C), and the highest values were observed in the control and (4F2C). This study indicates that red seabream may have the ability to maintain LC-PUFAs between tissues and diets, and CO substitution of FO could improve both lipid metabolism and oxidation resistance as well as maintain digestibility. In conclusion, dietary FO can be replaced up to 100% or 95% by CO in the diets of red seabream as long as n-3 HUFA, EPA, and DHA are incorporated at the recommended level.
Collapse
|
4
|
Non-Specific Immunity Associated Gut Microbiome in Aristichthys nobilis under Different Rearing Strategies. Genes (Basel) 2021; 12:genes12060916. [PMID: 34198687 PMCID: PMC8232146 DOI: 10.3390/genes12060916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 01/20/2023] Open
Abstract
To understand the intestinal microbial diversity and community structure of bighead carp (Aristichthys nobilis) under different feeding strategies, 39 fish from three groups (A: 9 fish, natural live food only; B: 15 fish, natural live food + fish formulated feeds; C: 15 fish, natural live food + fish formulated feed + lactic acid bacteria) were obtained for the high throughput 16S rRNA gene sequencing. We first examined five non-specific immunity indications of the carp—lysozyme (LZM), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GSH-PX), and superoxide dismutase (SOD). Interestingly, the composition of gut microbiota and related non-specific immune indices were affected by the feeding treatment of the bighead carp. Notably, all enzyme activity indexes were significantly different (p < 0.01) in the spleen and three enzyme activity indexes (LZM, GSH-PX, and SOD) had significant differences in the hepatopancreas (p < 0.001) of the carp from the three groups. The 16S rRNA gene sequencing showed higher diversity in groups B and C. Compared to group A, the relative abundance of Actinobacteria increased significantly and the relative abundance of Proteobacteria and Firmicutes decreased significantly in groups B and C at the phylum level. Functional analysis revealed the association between non-specific immune indicators and import genera in the hepatopancreas and spleen of bighead carp. This study provides new insights into the gut microbiomes and non-specific immune of bighead carp.
Collapse
|
5
|
Ghasemkhani N, Tabrizi AS, Namazi F, Nazifi S. Treatment effects of Shilajit on aspirin-induced gastric lesions in rats. Physiol Rep 2021; 9:e14822. [PMID: 33818003 PMCID: PMC8020045 DOI: 10.14814/phy2.14822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
The present study investigated the effects of Shilajit extract on aspirin-induced gastric lesions in rats. We evaluated macroscopic and histopathological lesions in the stomach, measured the activity of oxidative stress enzymes in gastric tissue homogenates, and assessed serum electrolytes and parameters of kidney and liver function. Forty-five male rats were allocated to five groups: Normal control, positive control, omeprazole treatment, Shilajit treatment, and Shilajit control. The treatment period lasted for four consecutive days. The size and number of gastric lesions were significantly reduced in the Shilajit and omeprazole groups compared to the positive control group, indicating a reduction in mucosal damage and the severity of edema and leukocyte infiltration in tissue sections. A significant increase was observed in the levels of all oxidative stress parameters, except malondialdehyde, in rats treated with Shilajit and omeprazole compared to those in the positive control group. The effect of the aqueous extract of Shilajit was comparable to that of omeprazole. These results indicated the protective effects of Shilajit against aspirin-induced gastric lesions.
Collapse
Affiliation(s)
- Naghmeh Ghasemkhani
- Department of Clinical Studies, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Aidin Shojaee Tabrizi
- Department of Clinical Studies, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Fatemeh Namazi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saeed Nazifi
- Department of Clinical Studies, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
6
|
Conde-Guerrero P, Méndez-Rodríguez LC, de Anda-Montañez JA, Zenteno-Savín T. Nutritional content of Totoaba macdonaldi (Gilbert, 1890), Antioxidants and lipid peroxidation in muscle. PeerJ 2021; 9:e11129. [PMID: 33850660 PMCID: PMC8019309 DOI: 10.7717/peerj.11129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/27/2021] [Indexed: 11/24/2022] Open
Abstract
Background Totoaba, Totoaba macdonaldi, is an endemic species of the Gulf of California, where wide variations in sea temperature throughout the year, surface salinities that gradually increase towards the north, and contamination by discharge of wastewater have been recorded. In addition to the challenges of reproduction and swimming, its characteristic biannual migration presents totoaba with changes in environmental factors that could affect oxidative stress indicators. The objective of this study was to assess spatial and seasonal changes in the oxidative stress indicators in muscle samples of totoaba. Methods Reactive oxygen species production, antioxidant enzyme activities and lipid peroxidation levels were quantified by spectrophotometry. Results Results suggest spatial-temporal variations of the oxidative stress indicators in muscle of totoaba that may be associated to a complex interaction between environmental and biological factors, including reproduction and nutrient availability. These results contribute to explain the appeal of totoaba as a marketable meat and suggest totoaba may provide antioxidant nutrients to consumers.
Collapse
Affiliation(s)
- Priscila Conde-Guerrero
- Biología Marina, Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, México.,Programa de Planeación Ambiental y Conservación, Centro de Investigaciones Biológicas del Noroeste, S.C., La Paz, Baja California Sur, México
| | - Lia C Méndez-Rodríguez
- Programa de Planeación Ambiental y Conservación, Centro de Investigaciones Biológicas del Noroeste, S.C., La Paz, Baja California Sur, México
| | - Juan A de Anda-Montañez
- Programa de Ecología Pesquera, Centro de Investigaciones Biológicas del Noroeste, S.C., La Paz, Baja California Sur, México
| | - Tania Zenteno-Savín
- Programa de Planeación Ambiental y Conservación, Centro de Investigaciones Biológicas del Noroeste, S.C., La Paz, Baja California Sur, México
| |
Collapse
|
7
|
Therapeutic Potential of Rhododendron arboreum Polysaccharides in an Animal Model of Lipopolysaccharide-Inflicted Oxidative Stress and Systemic Inflammation. Molecules 2020; 25:molecules25246045. [PMID: 33371296 PMCID: PMC7767231 DOI: 10.3390/molecules25246045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
Systemic inflammation results in physiological changes, largely mediated by inflammatory cytokines. The present investigation was performed to determine the effect of Rhododendron arboreum (RAP) on inflammatory parameters in the animal model. The RAP (100 and 200 mg/kg) were pre-treated for animals, given orally for one week, followed by lipopolysaccharide (LPS) injection. Body temperature, burrowing, and open field behavioral changes were assessed. Biochemical parameters (AST, ALT, LDH, BIL, CK, Cr, BUN, and albumin) were done in the plasma after 6 h of LPS challenge. Oxidative stress markers SOD, CAT, and MDA were measured in different organs. Levels of inflammatory markers like tumor necrosis factor-alpha (TNF-α), interleukin-1-beta (IL-1β) and, interleukin-6 (IL-6) as well as VEGF, a specific sepsis marker in plasma, were quantified. The plasma enzymes, antioxidant markers and plasma pro-inflammatory cytokines were significantly restored (p < 0.5) by RAP treatment, thus preventing the multi-organ and tissue damage in LPS induced rats. The protective effect of RAP may be due to its potent antioxidant potential. Thus, RAP can prevent LPS induced oxidative stress, as well as inflammatory and multi-organ damage as reported in histopathological studies in rats when administered to the LPS treated animals. These findings indicate that RAP can benefit in the management of systemic inflammation from LPS and may have implications for a new treatment or preventive therapeutic strategies with an inflammatory component.
Collapse
|
8
|
Biochemical and Histopathological Studies of Key Tissues in Healthy Male Wistar Rats Fed on African Yam Bean Seed and Tuber Meals. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8892618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Food insecurity and malnutrition are currently major issues affecting most developing countries, especially on the African continent. To mitigate this effect, focus is being given to orphan or underutilized crops with immense potentials to boost food and nutrition security in Africa, such as the African yam bean (AYB) Sphenostylis stenocarpa. The effect of AYB seed and tuber meals on the tissues of the kidney, liver, and testis of healthy male Wistar rats were investigated in this study. Four accessions of AYB were used for this study, TSs 107, TSs 140, AYB 45, and AYB 57. Thirty rats were randomly assigned into five groups (n = 6). Group I was fed on standard pelletized rat chow (control), Group II fed on 50% seed meal, Group III fed on 100% seed meal, Group IV fed on 50% tuber meal, and Group-V fed on 100% tuber meal. At the end of the treatments, the animals were sacrificed after 72 h under light ether anesthesia, and biochemical and histopathological analyses were conducted on the tissues. Phytate concentration was higher in the seeds (TSs140 (550 mg 100g−1), AYB45 (460 mg 100g−1), and AYB57 (485 mg 100g−1)) compared to the tubers (TSs140 (14.8 mg 100g−1), AYB 45 (275 mg 100g−1), and AYB57 (240 mg 100g−1)). The consumption of 100% unprocessed AYB seeds caused liver and kidney damage in rats due to increased levels of aspartate aminotransferase (5.04 ± 1.62 U L−I), alanine aminotransferase (8.46 ± 2.43 U L−I), and lipid peroxidation (0.27 ± 0.02-unit mg−1protein). AYB tubers were innocuous to Wistar rats investigated. Good processing of AYB seeds is required for safe consumption by humans and livestock. This study has shown that tubers of AYB are safe for human consumption and should be utilized in meals as it contains fewer antinutrients and had no significant effect on the tissues examined in Wistar rats.
Collapse
|
9
|
Dumbo JC, Gilbert BM, Avenant-Oldewage A. Oxidative stress biomarkers in the African sharptooth catfish, Clarias gariepinus, associated with infections by adult digeneans and water quality. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 12:232-241. [PMID: 32714829 PMCID: PMC7369607 DOI: 10.1016/j.ijppaw.2020.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022]
Abstract
Parasites and environmental features could synergistically act as stressors to the health of their hosts. The objectives of this study were to evaluate the effect of: (i) water quality, host sex, size and body condition on adult digenean parasite infections; (ii) digenean infections and host sex and size on the oxidative stress biomarkers and body condition of hosts; and (iii) water quality on the oxidative stress biomarkers and body condition in Clarias gariepinus. Water quality variables were measured and C. gariepinus were collected each month for a year for examination of two intestinal digeneans, Masenia nkomatiensis and Glossidium pedatum, and determination of body condition and measurement of biomarkers in the host. The results indicated that the intensity of M. nkomatiensis was positively correlated with electrical conductivity and total dissolved solids. Prevalence of G. pedatum was negatively correlated with electrical conductivity, salinity and total dissolved solids. High summer water temperature was strongly associated with high digenean infections. There was no host body condition, sex or size bias for any of the parasite infection variables. Differences in the biomarker levels and body condition between uninfected fish and those infected with M. nkomatiensis or G. pedatum were insignificant indicating a low effect of the digenean parasites on oxidative stress biomarkers and body condition in the fish. However, total protein levels were positively associated with host size, and lipid peroxidation was negatively related to host body condition; total protein levels were also positively correlated with temperature and negatively correlated with dissolved oxygen. Host body condition was only negatively correlated with dissolved oxygen. Overall the trends observed in the data showed that the parasites have a negligible effect on oxidative stress in host fish and the trends observed for all variables (water quality, stress biomarkers, body condition and parasite infections) showed a strong seasonal pattern.
Collapse
Affiliation(s)
- José Chissiua Dumbo
- Department of Zoology, University of Johannesburg, P.O. Box 524 Auckland Park, Johannesburg, 2006, South Africa.,Department of Biological Sciences, Eduardo Mondlane University, P.O. Box 257, Maputo, Mozambique
| | - Beric Michael Gilbert
- Department of Zoology, University of Johannesburg, P.O. Box 524 Auckland Park, Johannesburg, 2006, South Africa.,Spectrum Analytical Facility, University of Johannesburg, P.O. Box 524 Auckland Park, Johannesburg, 2006, South Africa
| | - Annemariè Avenant-Oldewage
- Department of Zoology, University of Johannesburg, P.O. Box 524 Auckland Park, Johannesburg, 2006, South Africa
| |
Collapse
|
10
|
Ghasemkhani N, Tabrizi AS, Namazi F, Nazifi S, Shomali T. Gastroprotective effects of mumie on aspirin-induced gastric lesions in rats. COMPARATIVE CLINICAL PATHOLOGY 2019; 28:1313-1319. [DOI: 10.1007/s00580-019-02947-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/25/2019] [Indexed: 01/02/2025]
|
11
|
Influence of dietary linseed oil as substitution of fish oil on whole fish fatty acid composition, lipid metabolism and oxidative status of juvenile Manchurian trout, Brachymystax lenok. Sci Rep 2019; 9:13846. [PMID: 31554849 PMCID: PMC6761147 DOI: 10.1038/s41598-019-50243-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/02/2019] [Indexed: 12/23/2022] Open
Abstract
In this study, juvenile Manchurian trout, Brachymystax lenok (initial weight: 6.43 ± 0.02 g, mean ± SE) were received for nine weeks with five types of diets prepared by gradually replacing the proportion of fish oil (FO) with linseed oil (LO) from 0% (LO0) to 25% (LO25), 50% (LO50), 75% (LO75), and 100% (LO100). The eicosapentaenoic (EPA) and docosahexaenoic (DHA) composition decreased with increasing inclusion level of LO (P < 0.05). With increasing LO inclusion level, triglyceride (TAG) content of serum increased significantly, however, there was a decrease in high-density lipoprotein cholesterol (HDL) (P < 0.05). LO substitution of FO up-regulated the gene expression level of lipid metabolism-related genes Fatty Acid Desaturases 6 (FAD6), Acetyl-Coa Carboxylase (ACCα), Sterol Regulatory Element Binding Protein 1 (SREBP-1), and Sterol O- Acyl Transferase 2 (SOAT2), and down-regulated the gene expression level of Peroxisome Proliferator-Activated Receptor a (PPARα) (P < 0.05). The SOD activities of both serum and liver in LO100 were significantly lower than in LO25 (P < 0.05). The CAT activity of the liver in LO100 was significantly lower than in LO0 and LO25 (P < 0.05). This study indicates that the Manchurian trout may have the ability to synthesize LC-PUFAs from ALA, and an appropriate LO in substitution of FO (<75%) could improve both the lipid metabolism and the oxidation resistance.
Collapse
|
12
|
Juárez OE, Lafarga-De la Cruz F, Leyva-Valencia I, López-Landavery E, García-Esquivel Z, Díaz F, Re-Araujo D, Vadopalas B, Galindo-Sánchez CE. Transcriptomic and metabolic response to chronic and acute thermal exposure of juvenile geoduck clams Panopea globosa. Mar Genomics 2018; 42:1-13. [DOI: 10.1016/j.margen.2018.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
|
13
|
Martacic J, Filipovic MK, Borozan S, Cvetkovic Z, Popovic T, Arsic A, Takic M, Vucic V, Glibetic M. N-acetyl-L-cysteine protects dental tissue stem cells against oxidative stress in vitro. Clin Oral Investig 2018; 22:2897-2903. [PMID: 29450735 DOI: 10.1007/s00784-018-2377-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 02/01/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The aim of our study was to investigate whether N-acetyl-L-cysteine (NAC) could protect stem cells from exfoliated deciduous teeth (SHED) against oxidative damage, during in vitro cultivation, to preserve regenerative potential of these cells. Accordingly, we examined the potential of cell culture supplementation with NAC in prevention of lipid peroxidation, unfavorable changes of total lipids fatty acid composition, and the effects on the activity of antioxidant enzymes. MATERIAL AND METHODS We analyzed the extent of oxidative damage in SHED after 48 h treatment with different NAC concentrations. Cellular lipid peroxidation was determined upon reaction with thiobarbituric acid. All enzyme activities were measured spectrophotometrically, based on published methods. Fatty acid methyl esters were analyzed by gas-liquid chromatography. RESULTS Concentration of 0.1 mM NAC showed the most profound effects on SHED, significantly decreasing levels of lipid peroxidation in comparison to control. This dose also diminished the activities of antioxidant enzymes. Furthermore, NAC treatment significantly changed fatty acid composition of cells, reducing levels of oleic acid and monounsaturated fatty acids and increasing linoleic acid, n-6, and total polyunsaturated fatty acid (PUFA) proportions. CONCLUSION Low dose of NAC significantly decreased lipid peroxidation and altered fatty acid composition towards increasing PUFA. The reduced oxidative damage of cellular lipids could be strongly related to improved SHED survival in vitro. CLINICAL RELEVANCE Low doses of antioxidants, applied during stem cells culturing and maintenance, could improve cellular characteristics in vitro. This is prerequisite for successful use of stem cells in various clinical applications.
Collapse
Affiliation(s)
- Jasmina Martacic
- Institute for Medical Research, University of Belgrade, Dr Subotica 4, Belgrade, 11000, Serbia
| | - Milica Kovacevic Filipovic
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, Belgrade, 11000, Serbia
| | - Suncica Borozan
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, Belgrade, 11000, Serbia
| | - Zorica Cvetkovic
- Department of Hematology, Clinical Hospital Center Zemun, Vukova 9, Belgrade, 11080, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, Belgrade, 11000, Serbia
| | - Tamara Popovic
- Institute for Medical Research, University of Belgrade, Dr Subotica 4, Belgrade, 11000, Serbia
| | - Aleksandra Arsic
- Institute for Medical Research, University of Belgrade, Dr Subotica 4, Belgrade, 11000, Serbia
| | - Marija Takic
- Institute for Medical Research, University of Belgrade, Dr Subotica 4, Belgrade, 11000, Serbia
| | - Vesna Vucic
- Institute for Medical Research, University of Belgrade, Dr Subotica 4, Belgrade, 11000, Serbia.
| | - Maria Glibetic
- Institute for Medical Research, University of Belgrade, Dr Subotica 4, Belgrade, 11000, Serbia
| |
Collapse
|
14
|
Amuno S, Jamwal A, Grahn B, Niyogi S. Chronic arsenicosis and cadmium exposure in wild snowshoe hares (Lepus americanus) breeding near Yellowknife, Northwest Territories (Canada), part 1: Evaluation of oxidative stress, antioxidant activities and hepatic damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:916-926. [PMID: 29037475 DOI: 10.1016/j.scitotenv.2017.08.278] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
Previous gold mining activities and arsenopyrite ore roasting activities at the Giant mine site (1948 to 2004) resulted in the release of high amounts of arsenic and trace metals into the terrestrial and aquatic ecosystems of Yellowknife, Northwest Territories, Canada. While elevated levels of arsenic has been consistently reported in surface soils and vegetation near the vicinity of the Giant mine area and in surrounding locations, systematic studies evaluating the overall health status of terrestrial small mammals endemic to the area are lacking. The purpose of this present study was to evaluate and comparatively assess the biochemical responses and histopathological effects induced by chronic arsenic and cadmium exposure in wild snowshoe hares breeding near the city of Yellowknife, specifically around the vicinity of the abandoned Giant mine site and in reference locations. Analysis included measurement of total arsenic and cadmium concentration in nails, livers, kidneys, bones, stomach content of hares, in addition to histopathological evaluation of hepatic and ocular lesions. Biochemical responses were determined through measurement of lipid peroxidation levels and antioxidant enzymes activities (catalase, superoxide dismutase, glutathione peroxidase, and glutathione disulfide). The results revealed that arsenic concentration was 17.8 to 48.9 times higher in the stomach content, and in the range of 4 to 23 times elevated in the nails of hares from the mine area compared to the reference location. Arsenic and cadmium levels were also noted to be increased in the bones, renal and hepatic tissues of hares captured near the mine area compared to the reference site. Specifically, hares from the mine area showed nail cadmium levels that was 2.3 to 17.6 times higher than those from the reference site. Histopathological examination of the eyes revealed no specific ocular lesions, such as lens opacity (cataracts) or conjunctivitis; however, hares from both locations exhibited hepatic steatosis (fatty liver change). Lipid peroxidation levels were relatively increased and accompanied with reduced antioxidant enzyme activities in hares from the mine area compared to the hares from the reference site. The results of this preliminary study suggest that the snowshoe hares breeding near the vicinity of Yellowknife, including near the Giant mine area have been chronically exposed to elevated levels of arsenic and cadmium, which consequently led to the increased levels of oxidative stress and perturbation of antioxidant defense system in exposed animals. The results of this present study constitute the first observation of chronic arsenicosis in wild small mammal species in Canada.
Collapse
Affiliation(s)
- S Amuno
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada.
| | - A Jamwal
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - B Grahn
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - S Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
15
|
Niu Y, Cao W, Zhao Y, Zhai H, Zhao Y, Tang X, Chen Q. The levels of oxidative stress and antioxidant capacity in hibernating Nanorana parkeri. Comp Biochem Physiol A Mol Integr Physiol 2018; 219-220:19-27. [PMID: 29454142 DOI: 10.1016/j.cbpa.2018.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 01/18/2023]
Abstract
The effect of hibernation on oxidative stress and antioxidant defense was assessed in the frog Nanorana parkeri which inhabits the southern Tibetan Plateau. We compared the indices of oxidative stress (GSSG/GSH), the degree of oxidative damage (content of carbonyl proteins and lipid peroxide products) and the activities of antioxidant enzymes (SOD, CAT, GPx, GST and GR) in liver, brain, heart and muscle of N. parkeri sampled during summer and winter. Obtained results showed that hibernation induced a significant decrease in the level of GSH in heart, liver, and muscle, while the ratio of GSSG/GSH markedly increased in all tissues except for muscle. Regarding oxidative damage, significant increases in TBARS were observed in all tissues of N. parkeri in the midst of hibernation, and the lipid peroxides level also clearly elevated in these tissues except the liver. In liver and brain, the level of carbonyl proteins was significantly higher in winter relative to summer. Additionally, the activity of antioxidant enzymes obviously reduced in the liver of hibernating N. parkeri. The total antioxidant capacity was also significantly lower in all tissues during winter than summer. In conclusion, hibernation in N. parkeri induced oxidative stress which was supported by oxidative damage to lipids and proteins with suppression of antioxidant defense.
Collapse
Affiliation(s)
- Yonggang Niu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wangjie Cao
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yaofeng Zhao
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Haotian Zhai
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yao Zhao
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaolong Tang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qiang Chen
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
16
|
Hernández-Arciga U, Herrera M. LG, Ibáñez-Contreras A, Miranda-Labra RU, Flores-Martínez JJ, Königsberg M. Baseline and post-stress seasonal changes in immunocompetence and redox state maintenance in the fishing bat Myotis vivesi. PLoS One 2018; 13:e0190047. [PMID: 29293551 PMCID: PMC5749750 DOI: 10.1371/journal.pone.0190047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/07/2017] [Indexed: 01/24/2023] Open
Abstract
Little is known of how the stress response varies when animals confront seasonal life-history processes. Antioxidant defenses and damage caused by oxidative stress and their link with immunocompetence are powerful biomarkers to assess animal´s physiological stress response. The aim of this study was A) to determine redox state and variation in basal (pre-acute stress) immune function during summer, autumn and winter (spring was not assessed due to restrictions in collecting permit) in the fish-eating Myotis (Myotis vivesi; Chiroptera), and B) to determine the effect of acute stress on immunocompetence and redox state during each season. Acute stress was stimulated by restricting animal movement for 6 and 12 h. The magnitude of the cellular immune response was higher during winter whilst that of the humoral response was at its highest during summer. Humoral response increased after 6 h of movement restriction stress and returned to baseline levels after 12 h. Basal redox state was maintained throughout the year, with no significant changes in protein damage, and antioxidant activity was modulated mainly in relation to variation to environment cues, increasing during high temperatures and decreasing during windy nights. Antioxidant activity increased after the 6 h of stressful stimuli especially during summer and autumn, and to a lesser extent in early winter, but redox state did not vary. However, protein damage increased after 12 h of stress during summer. Prolonged stress when the bat is engaged in activities of high energy demand overcame its capacity to maintain homeostasis resulting in oxidative damage.
Collapse
Affiliation(s)
- Ulalume Hernández-Arciga
- Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Unidad Iztapalapa, Universidad Autónoma Metropolitana, Ciudad de México, México
| | - L. Gerardo Herrera M.
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, San Patricio, Jalisco, México
| | - Alejandra Ibáñez-Contreras
- Laboratorio de Neurofisiología, Applied Research in Experimental Biomedicine S.A. de C.V. (APREXBIO), Ciudad de México, México
- Unidad de Experimentación Animal, Biología Integral para Vertebrados (BIOINVERT®), Estado de México, México
| | - Roxana U. Miranda-Labra
- Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, Unidad Iztapalapa, Universidad Autónoma Metropolitana, Ciudad de México, México
| | - José Juan Flores-Martínez
- Laboratorio de Sistemas de Información Geográfica, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mina Königsberg
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la Salud, Unidad Iztapalapa, Universidad Autónoma Metropolitana, Ciudad de México, México
| |
Collapse
|
17
|
Telomere length and antioxidant defense associate with parasite-induced retarded growth in wild brown trout. Oecologia 2017; 185:365-374. [PMID: 28900791 DOI: 10.1007/s00442-017-3953-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 09/02/2017] [Indexed: 02/03/2023]
Abstract
Early growth conditions can have profound impacts on individuals' development, growth and physiology, with subsequent long-term consequences for individuals' fitness and life expectancy. Telomere length (TL) has been suggested to indicate both individual fitness and life expectancy in wide range of species, as the telomere attrition rate at early age can be accelerated due to exposure to various stressors, including parasites and inflammatory diseases, which increase production of reactive oxygen species (ROS) and influence antioxidant (AO) levels. We investigated impacts of Tetracapsuloides bryosalmonae infection, a causative agent of proliferative kidney disease (PKD), on AO status and TL in a natural population of juvenile brown trout (Salmo trutta). The fish with higher parasite load showed more severe kidney hyperplasia, anemia and smaller body size compared to less parasitized fish. Furthermore, fish with severe PKD symptoms had lower SOD-, CAT- and GST activity than fish with milder kidney hyperplasia. However, parasite load was not directly correlated either with AOs or with TL. Smaller fish showed shorter TLs, potentially reflecting lower individual quality. The fish, which were less sensitive to parasite-induced impaired growth, quantified as parasite load-adjusted fork length, showed also longer TLs, lower GR- and GST activity and less GSHtot compared to more sensitive fish. These results provide novel knowledge about the impacts of the PKD in brown trout at the molecular level and support the idea that TL may reflect individual quality and ability to cope with parasitic infections.
Collapse
|
18
|
Abd El-Latif AAEA, Sayed AA, Soliman AM, Fahmy SR. Exploration of the therapeutic potential effect of Sepia officinalis in animal model of sepsis induced by cecal ligation and puncture. Injury 2016; 47:2709-2717. [PMID: 27743598 DOI: 10.1016/j.injury.2016.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/05/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The present investigation explored the therapeutic potential effect of Sepia officinalis body tissue (SOBT) and Sepia officinalis polysaccharide (SOP) extracts, in animal model of sepsis [induced by cecal ligation and puncture (CLP)]. MATERIALS AND METHODS Experimental animals were divided into 4 groups, Group 1: Sham control rats. Group 2: Septic rats. Group 3: Septic rats treated with methanolic extract of Sepia officinalis body tissue (SOBT) (500mg/kg body weight) for 2days. Group 4: Septic rats treated with Sepia officinalis polysaccharide (SOP) extract (200mg/kg body weight) for 2days. RESULTS The antioxidant activity of SOBT and SOP was proven by DPPH test. CLP-induced liver and kidney toxicities showed by an increase in the ALAT, ASAT, γGT, ALP, creatinine, BUN and uric acid concentrations in serum. Moreover, CLP-induced oxidative stress in liver and kidney evidenced by the increase of MDA levels, decrease in GSH concentrations and decrease in the enzymatic antioxidants (SOD, CAT, GST). In addition, CLP caused decrease in CYP1A2 content in liver. CONCLUSIONS Our findings demonstrate the therapeutic efficacy of SOBT and SOP in liver and kidney disorders. Therefore this study suggests that SOBT and SOP could be a potential therapeutic agents for sepsis treatment.
Collapse
Affiliation(s)
| | - Amany Ahmed Sayed
- Zoology Department, Faculty of Science, Cairo University, 12613, Giza, Egypt.
| | | | | |
Collapse
|
19
|
Chainy GBN, Paital B, Dandapat J. An Overview of Seasonal Changes in Oxidative Stress and Antioxidant Defence Parameters in Some Invertebrate and Vertebrate Species. SCIENTIFICA 2016; 2016:6126570. [PMID: 27127682 PMCID: PMC4834391 DOI: 10.1155/2016/6126570] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/05/2016] [Accepted: 03/15/2016] [Indexed: 05/22/2023]
Abstract
Antioxidant defence system, a highly conserved biochemical mechanism, protects organisms from harmful effects of reactive oxygen species (ROS), a by-product of metabolism. Both invertebrates and vertebrates are unable to modify environmental physical factors such as photoperiod, temperature, salinity, humidity, oxygen content, and food availability as per their requirement. Therefore, they have evolved mechanisms to modulate their metabolic pathways to cope their physiology with changing environmental challenges for survival. Antioxidant defences are one of such biochemical mechanisms. At low concentration, ROS regulates several physiological processes, whereas at higher concentration they are toxic to organisms because they impair cellular functions by oxidizing biomolecules. Seasonal changes in antioxidant defences make species able to maintain their correct ROS titre to take various physiological functions such as hibernation, aestivation, migration, and reproduction against changing environmental physical parameters. In this paper, we have compiled information available in the literature on seasonal variation in antioxidant defence system in various species of invertebrates and vertebrates. The primary objective was to understand the relationship between varied biological phenomena seen in different animal species and conserved antioxidant defence system with respect to seasons.
Collapse
Affiliation(s)
| | - Biswaranjan Paital
- Department of Zoology, College of Basic Science and Humanities, Orissa University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Jagneswar Dandapat
- Department of Biotechnology, Utkal University, Bhubaneswar 751004, India
| |
Collapse
|
20
|
Paital B, Panda SK, Hati AK, Mohanty B, Mohapatra MK, Kanungo S, Chainy GBN. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming. World J Biol Chem 2016; 7:110-127. [PMID: 26981200 PMCID: PMC4768115 DOI: 10.4331/wjbc.v7.i1.110] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/30/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023] Open
Abstract
The world is projected to experience an approximate doubling of atmospheric CO2 concentration in the next decades. Rise in atmospheric CO2 level as one of the most important reasons is expected to contribute to raise the mean global temperature 1.4 °C-5.8 °C by that time. A survey from 128 countries speculates that global warming is primarily due to increase in atmospheric CO2 level that is produced mainly by anthropogenic activities. Exposure of animals to high environmental temperatures is mostly accompanied by unwanted acceleration of certain biochemical pathways in their cells. One of such examples is augmentation in generation of reactive oxygen species (ROS) and subsequent increase in oxidation of lipids, proteins and nucleic acids by ROS. Increase in oxidation of biomolecules leads to a state called as oxidative stress (OS). Finally, the increase in OS condition induces abnormality in physiology of animals under elevated temperature. Exposure of animals to rise in habitat temperature is found to boost the metabolism of animals and a very strong and positive correlation exists between metabolism and levels of ROS and OS. Continuous induction of OS is negatively correlated with survivability and longevity and positively correlated with ageing in animals. Thus, it can be predicted that continuous exposure of animals to acute or gradual rise in habitat temperature due to global warming may induce OS, reduced survivability and longevity in animals in general and poikilotherms in particular. A positive correlation between metabolism and temperature in general and altered O2 consumption at elevated temperature in particular could also increase the risk of experiencing OS in homeotherms. Effects of global warming on longevity of animals through increased risk of protein misfolding and disease susceptibility due to OS as the cause or effects or both also cannot be ignored. Therefore, understanding the physiological impacts of global warming in relation to longevity of animals will become very crucial challenge to biologists of the present millennium.
Collapse
|
21
|
Danabas D, Yildirim NC, Yildirim N, Onal AO, Uslu G, Unlu E, Danabas S, Ergin C, Tayhan N. Changes in antioxidant defense system in gills of Capoeta umbla caught from Uzuncayir Dam Lake, Turkey. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.09.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Bownik A, Stępniewska Z, Skowroński T. Effects of ectoine on behavioural, physiological and biochemical parameters of Daphnia magna. Comp Biochem Physiol C Toxicol Pharmacol 2015; 168:2-10. [PMID: 25460046 DOI: 10.1016/j.cbpc.2014.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 11/20/2022]
Abstract
Ectoine (ECT) is a compatible solute produced by soil, marine and freshwater bacteria in response to stressful factors. The purpose of our study was to determine the possible toxic influence of ECT on Daphnia magna. We determined the following endpoints: survival rate during exposure and recovery, swimming performance, heart rate, thoracic limb movement determined by image analysis, haemoglobin level by ELISA assay, catalase and nitric oxide species (NOx) by spectrophotometric methods. The results showed 80% survival of daphnids exposed to 50mg/L of ECT after 24h and 10% after 90h, however lower concentrations of ECT were well tolerated. A concentration-dependent reduction of swimming velocity was noted at 24 and 48h of the exposure. ECT (at 2.5 and 4mg/L) induced an increase of heart rate and thoracic limb movement (at 2.5, 4 and 20mg/L) after 24h. After 10h of the exposure to ECT daphnids showed a concentration-dependent increase of haemoglobin level synthesized and accumulated in the epipodite epithelia. After 24h we noted a concentration-dependent decrease of haemoglobin level and its lowest value was found after 48h of the exposure. ECT at a concentration of 20 and 25mg/L slightly stimulated catalase activity after 24h. NOx level was also increased after 10h of the exposure to 20 and 25mg/L of ECT reaching maximal activity after 24h. Our results suggest that ECT possesses some modulatory potential on the behaviour, physiology and biochemical parameters in daphnids.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Physiology and Ecotoxicology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Kontstantynow 1 "I", 20-708 Lublin, Poland.
| | - Zofia Stępniewska
- Department of Biochemistry Environmental Chemistry, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Kontstantynow 1 "I", 20-708 Lublin, Poland
| | - Tadeusz Skowroński
- Department of Physiology and Ecotoxicology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, Kontstantynow 1 "I", 20-708 Lublin, Poland
| |
Collapse
|
23
|
Neuparth T, Capela R, Rey-Salgueiro L, Moreira SM, Santos MM, Reis-Henriques MA. Simulation of a Hazardous and Noxious Substances (HNS) spill in the marine environment: lethal and sublethal effects of acrylonitrile to the European seabass. CHEMOSPHERE 2013; 93:978-985. [PMID: 23800594 DOI: 10.1016/j.chemosphere.2013.05.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 05/21/2013] [Accepted: 05/24/2013] [Indexed: 06/02/2023]
Abstract
Despite the extensive maritime transportation of Hazardous and Noxious Substances (HNS), there is a current lack of knowledge on the effects posed by HNS spills on the marine biota. Among the HNS identified as priority, acrylonitrile was selected to conduct ecotoxicological assays. We assessed the acute and subletal effects of acrylonitrile in seabass, followed by a recovery phase to simulate the conditions of a spill incident. The work aimed at testing a broad range of biological responses induced by acrylonitrile. Sublethal exposure to the highest two doses increased the fish mortality rate (8.3% and 25% mortality in 0.75 and 2 mg L(-1) acrylonitrile concentrations), whereas no mortality were observed in control and 0.15 mg L(-1) treatments. Additionally, important alterations at sub-individual level were observed. Acrylonitrile significantly induced the activities of Catalase- CAT and Glutathione S-Transferase - GST; and the levels of DNA damage were significantly increased. Conversely, Superoxide Dismutase- SOD - activity was found to be significantly inhibited and no effects were found on Lipid Peroxidation- LPO and ethoxyresorufin O-deethylase - EROD - activity. Following a 7d recovery period, the levels of CAT, GST and EROD fell to levels at or below those in the control. In the 2 mg L(-1) group, SOD remained at the levels found during exposure phase. This study has gathered essential information on the acute and subletal toxicity of acrylonitrile to seabass. It also demonstrated that 7d recovery allowed a return of most endpoints to background levels. These data will be useful to assist relevant bodies in preparedness and response to HNS spills.
Collapse
Affiliation(s)
- T Neuparth
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
24
|
Britton JR, Pegg J. Ecology of European BarbelBarbus Barbus: Implications for River, Fishery, and Conservation Management. ACTA ACUST UNITED AC 2011. [DOI: 10.1080/10641262.2011.599886] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|