1
|
Korde A, Ramaswamy A, Anderson S, Jin L, Zhang JG, Hu B, Velasco WV, Diao L, Wang J, Pisani MA, Sauler M, Boffa DJ, Puchalski JT, Yan X, Moghaddam SJ, Takyar SS. Cigarette smoke induces angiogenic activation in the cancer field through dysregulation of an endothelial microRNA. Commun Biol 2025; 8:511. [PMID: 40155749 PMCID: PMC11953391 DOI: 10.1038/s42003-025-07710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/10/2025] [Indexed: 04/01/2025] Open
Abstract
Cigarette smoke (CS) creates a "cancer field" in the lung that promotes malignant transformation. The molecular changes within this field are not fully characterized. We examined the significance of microRNA-1 (miR-1) downregulation as one of these changes. We found that tumor miR-1 levels in three non-small cell lung cancer cohorts show inverse correlations with the smoking burden. Lung MiR-1 levels follow a spatial gradient, have prognostic significance, and correlate inversely with the molecular markers of injury. In CS-exposed lungs, miR-1 is specifically downregulated in the endothelium. Exposure to CS induces angiogenesis by selectively degrading mature miR-1 via a vascular endothelial growth factor-driven pathway. Applying a multi-step molecular screen, we identified angiogenic genes regulated by miR-1 in the lungs of smokers. Knockdown of one of these genes, Notch homolog protein 3, simulates the anti-angiogenic effects of miR-1. These findings suggest that miR-1 can be used as an indicator of malignant transformation.
Collapse
Affiliation(s)
- Asawari Korde
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Anuradha Ramaswamy
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Seth Anderson
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Lei Jin
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jian-Ge Zhang
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Buqu Hu
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Walter V Velasco
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lixia Diao
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Margaret A Pisani
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Maor Sauler
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Daniel J Boffa
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Jonathan T Puchalski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Xiting Yan
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shervin S Takyar
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Khan P, Ebenezer NS, Siddiqui JA, Maurya SK, Lakshmanan I, Salgia R, Batra SK, Nasser MW. MicroRNA-1: Diverse role of a small player in multiple cancers. Semin Cell Dev Biol 2021; 124:114-126. [PMID: 34034986 DOI: 10.1016/j.semcdb.2021.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 12/12/2022]
Abstract
The process of cancer initiation and development is a dynamic and complex mechanism involving multiple genetic and non-genetic variations. With the development of high throughput techniques like next-generation sequencing, the field of cancer biology extended beyond the protein-coding genes. It brought the functional role of noncoding RNAs into cancer-associated pathways. MicroRNAs (miRNAs) are one such class of noncoding RNAs regulating different cancer development aspects, including progression and metastasis. MicroRNA-1 (miR-1) is a highly conserved miRNA with a functional role in developing skeletal muscle precursor cells and cardiomyocytes and acts as a consistent tumor suppressor gene. In humans, two discrete genes, MIR-1-1 located on 20q13.333 and MIR-1-2 located on 18q11.2 loci encode for a single mature miR-1. Downregulation of miR-1 has been demonstrated in multiple cancers, including lung, breast, liver, prostate, colorectal, pancreatic, medulloblastoma, and gastric cancer. A vast number of studies have shown that miR-1 affects the hallmarks of cancer like proliferation, invasion and metastasis, apoptosis, angiogenesis, chemosensitization, and immune modulation. The potential therapeutic applications of miR-1 in multiple cancer pathways provide a novel platform for developing anticancer therapies. This review focuses on the different antitumorigenic and therapeutic aspects of miR-1, including how it regulates tumor development and associated immunomodulatory functions.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nivetha Sarah Ebenezer
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA 91010, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
3
|
Zhong S, Golpon H, Zardo P, Borlak J. miRNAs in lung cancer. A systematic review identifies predictive and prognostic miRNA candidates for precision medicine in lung cancer. Transl Res 2021; 230:164-196. [PMID: 33253979 DOI: 10.1016/j.trsl.2020.11.012] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Lung cancer (LC) is the leading cause of cancer-related death worldwide and miRNAs play a key role in LC development. To better diagnose LC and to predict drug treatment responses we evaluated 228 articles encompassing 16,697 patients and 12,582 healthy controls. Based on the criteria of ≥3 independent studies and a sensitivity and specificity of >0.8 we found blood-borne miR-20a, miR-10b, miR-150, and miR-223 to be excellent diagnostic biomarkers for non-small cell LC whereas miR-205 is specific for squamous cell carcinoma. The systematic review also revealed 38 commonly regulated miRNAs in tumor tissue and the circulation, thus enabling the prediction of histological subtypes of LC. Moreover, theranostic biomarker candidates with proven responsiveness to checkpoint inhibitor treatments were identified, notably miR-34a, miR-93, miR-106b, miR-181a, miR-193a-3p, and miR-375. Conversely, miR-103a-3p, miR-152, miR-152-3p, miR-15b, miR-16, miR-194, miR-34b, and miR-506 influence programmed cell death-ligand 1 and programmed cell death-1 receptor expression, therefore providing a rationale for the development of molecularly targeted therapies. Furthermore, miR-21, miR-25, miR-27b, miR-19b, miR-125b, miR-146a, and miR-210 predicted response to platinum-based treatments. We also highlight controversial reports on specific miRNAs. In conclusion, we report diagnostic miRNA biomarkers for in-depth clinical evaluation. Furthermore, in an effort to avoid unnecessary toxicity we propose predictive biomarkers. The biomarker candidates support personalized treatment decisions of LC patients and await their confirmation in randomized clinical trials.
Collapse
Affiliation(s)
- Shen Zhong
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | - Heiko Golpon
- Department of Pneumology, Hannover Medical School, Hannover, Germany
| | - Patrick Zardo
- Clinic for Cardiothoracic and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
4
|
Zhang D, Zhang H, Wang X, Hu B, Zhang F, Wei H, Li L. LINC01518 knockdown inhibits tumorigenicity by suppression of PIK3CA/Akt pathway in oesophageal squamous cell carcinoma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:4284-4292. [PMID: 31810385 DOI: 10.1080/21691401.2019.1699815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
LncRNA LINC01518 was previously reported to be upregulated in oesophageal squamous cell carcinoma (ESCC) tissues compared with normal tissues. However, there are no previous studies concerning the specific function and molecular mechanism of LINC01518 in ESCC. LINC01518 and miR-1-3p expression levels in ESCC cells were detected by qRT-PCR. Cell proliferation and apoptosis were evaluated by CCK-8 and flow cytometry analysis, respectively. The relationships between LINC01518, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA) and miR-1-3p were explored by luciferase reporter assay. The alteration of the PIK3CA/protein kinase B (Akt) pathway was examined by Western blot. We found that LINC01518 expression was upregulated and miR-1-3p expression was downregulated in ESCC cells. LINC01518 knockdown inhibited cell proliferation and promoted apoptosis in ESCC cells. In addition, LINC01518 functioned as a competing endogenous RNA (ceRNA) for miR-1-3p in ESCC cells and miR-1-3p downregulation blocked the effects of LINC01518 knockdown on cell proliferation and apoptosis in ESCC cells. Moreover, PIK3CA was identified as a target of miR-1-3p and LINC01518 knockdown inhibited the PIK3CA/Akt pathway by upregulating miR-1-3p in ESCC cells. In conclusion, LINC01518 knockdown inhibited tumorigenicity in ESCC cells by suppression of PIK3CA/Akt pathway through upregulating miR-1-3p.
Collapse
Affiliation(s)
- Donghong Zhang
- Department of Thoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, P. R. China
| | - Haifeng Zhang
- Department of Thoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, P. R. China
| | - Xiaolong Wang
- Department of Thoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, P. R. China
| | - Baoli Hu
- Department of Thoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, P. R. China
| | - Feng Zhang
- Department of Thoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, P. R. China
| | - Haitao Wei
- Department of Thoracic Surgery, Huaihe Hospital of Henan University, Kaifeng, P. R. China
| | - Li Li
- School of Nursing and Health, Henan University, Kaifeng, P. R. China
| |
Collapse
|
5
|
Song X, Zhang C, Liu Z, Liu Q, He K, Yu Z. Characterization of ceRNA network to reveal potential prognostic biomarkers in triple-negative breast cancer. PeerJ 2019; 7:e7522. [PMID: 31565554 PMCID: PMC6741283 DOI: 10.7717/peerj.7522] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 07/21/2019] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a particular subtype of breast malignant tumor with poorer prognosis than other molecular subtypes. Previous studies have demonstrated that some abnormal expression of non-coding RNAs including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) were closely related to tumor cell proliferation, apoptosis, invasion, migration and drug sensitivity. However, the role of non-coding RNAs in the pathogenesis of TNBC is still unclear. In order to characterize the molecular mechanism of non-coding RNAs in TNBC, we downloaded RNA data and miRNA data from the cancer genome atlas database. We successfully identified 686 message RNAs (mRNAs), 26 miRNAs and 50 lncRNAs as key molecules for high risk of TNBC. Then, we hypothesized that the lncRNA–miRNA–mRNA regulatory axis positively correlates with TNBC and constructed a competitive endogenous RNA (ceRNA) network of TNBC. Our series of analyses has shown that five molecules (TERT, TRIML2, PHBP4, mir-1-3p, mir-133a-3p) were significantly associated with the prognosis of TNBC, and there is a prognostic ceRNA sub-network between those molecules. We mapped the Kaplan–Meier curve of RNA on the sub-network and also suggested that the expression level of the selected RNA is related to the survival rate of breast cancer. Reverse transcription-quantitative polymerase chain reaction showed that the expression level of TRIML2 in TNBC cells was higher than normal. In general, our findings have implications for predicting metastasis, predicting prognosis and discovering new therapeutic targets for TNBC.
Collapse
Affiliation(s)
- Xiang Song
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China.,Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Chao Zhang
- The People's Hospital of Xintai City, Xintai, Shandong, People's Republic of China
| | - Zhaoyun Liu
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China.,School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Qi Liu
- School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Department of Breast and Thyroid Surgery, Weifang Traditional Chinese Hospital, Weifang, Shandong, People's Republic of China
| | - Kewen He
- School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Zhiyong Yu
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| |
Collapse
|
6
|
MicroRNA in Lung Cancer Metastasis. Cancers (Basel) 2019; 11:cancers11020265. [PMID: 30813457 PMCID: PMC6406837 DOI: 10.3390/cancers11020265] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor metastasis is a hallmark of cancer, with distant metastasis frequently developing in lung cancer, even at initial diagnosis, resulting in poor prognosis and high mortality. However, available biomarkers cannot reliably predict cancer spreading sites. The metastatic cascade involves highly complicated processes including invasion, migration, angiogenesis, and epithelial-to-mesenchymal transition that are tightly controlled by various genetic expression modalities along with interaction between cancer cells and the extracellular matrix. In particular, microRNAs (miRNAs), a group of small non-coding RNAs, can influence the transcriptional and post-transcriptional processes, with dysregulation of miRNA expression contributing to the regulation of cancer metastasis. Nevertheless, although miRNA-targeted therapy is widely studied in vitro and in vivo, this strategy currently affords limited feasibility and a few miRNA-targeted therapies for lung cancer have entered into clinical trials to date. Advances in understanding the molecular mechanism of metastasis will thus provide additional potential targets for lung cancer treatment. This review discusses the current research related to the role of miRNAs in lung cancer invasion and metastasis, with a particular focus on the different metastatic lesions and potential miRNA-targeted treatments for lung cancer with the expectation that further exploration of miRNA-targeted therapy may establish a new spectrum of lung cancer treatments.
Collapse
|
7
|
Chiu KL, Lin YS, Kuo TT, Lo CC, Huang YK, Chang HF, Chuang EY, Lin CC, Cheng WC, Liu YN, Lai LC, Sher YP. ADAM9 enhances CDCP1 by inhibiting miR-1 through EGFR signaling activation in lung cancer metastasis. Oncotarget 2018; 8:47365-47378. [PMID: 28537886 PMCID: PMC5564571 DOI: 10.18632/oncotarget.17648] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs), which are endogenous short noncoding RNAs, can regulate genes involved in important biological and pathological functions. Therefore, dysregulation of miRNAs plays a critical role in cancer progression. However, whether the aberrant expression of miRNAs is regulated by oncogenes remains unclear. We previously demonstrated that a disintegrin and metalloprotease domain 9 (ADAM9) promotes lung metastasis by enhancing the expression of a pro-migratory protein, CUB domain containing protein 1 (CDCP1). In this study, we found that this process occurred via miR-1 down-regulation. miR-1 expression was down-regulated in lung tumors, but increased in ADAM9-knockdown lung cancer cells, and was negatively correlated with CDCP1 expression as well as the migration ability of lung cancer cells. Luciferase-based reporter assays showed that miR-1 directly bound to the 3′-untranslated region of CDCP1 and inhibited its translation. Treatment with a miR-1 inhibitor restored CDCP1 protein levels and enhanced tumor cell mobility. Overexpression of miR-1 decreased tumor metastases and increased the survival rate in mice. ADAM9 knockdown reduced EGFR signaling and increased miR-1 expression. These results revealed that ADAM9 down-regulates miR-1 via activating EGFR signaling pathways, which in turn enhances CDCP1 expression to promote lung cancer progression.
Collapse
Affiliation(s)
- Kuo-Liang Chiu
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.,Division of Chest Medicine, Department of Internal Medicine, Taichung Tzu-Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Yu-Sen Lin
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.,Division of Thoracic Surgery, China Medical University Hospital, Taichung 404, Taiwan
| | - Ting-Ting Kuo
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Chia-Chien Lo
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Yu-Kai Huang
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Hsien-Fang Chang
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Eric Y Chuang
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ching-Chan Lin
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.,Division of Hematology and Oncology, China Medical University Hospital, Taichung 404, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of BioMedical Sciences, China Medical University, Taichung 404, Taiwan.,Research Center for Tumor Medical Science, China Medical University, Taichung 404, Taiwan
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Liang-Chuan Lai
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 100, Taiwan.,Graduate Institute of Physiology, National Taiwan University, Taipei 106, Taiwan
| | - Yuh-Pyng Sher
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.,Graduate Institute of BioMedical Sciences, China Medical University, Taichung 404, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
8
|
Role of miR-1 expression in clear cell renal cell carcinoma (ccRCC): A bioinformatics study based on GEO, ArrayExpress microarrays and TCGA database. Pathol Res Pract 2018; 214:195-206. [DOI: 10.1016/j.prp.2017.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 12/16/2022]
|
9
|
Wang JY, Huang JC, Chen G, Wei DM. Expression level and potential target pathways of miR-1-3p in colorectal carcinoma based on 645 cases from 9 microarray datasets. Mol Med Rep 2018; 17:5013-5020. [PMID: 29393467 PMCID: PMC5865962 DOI: 10.3892/mmr.2018.8532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/16/2018] [Indexed: 12/18/2022] Open
Abstract
For the purpose of demonstrating the clinical value and unraveling the molecular mechanisms of micro RNA (miR)-1-3p in colorectal carcinoma (CRC), the present study collected expression and diagnostic data from Gene Expression Omnibus (GEO), ArrayExpress and existing literature to conduct meta-analyses and diagnostic tests. Furthermore, the potential targets of miR-1-3p were attained from datasets that transfected miR-1-3p into CRC cells, online prediction databases and differentially expressed genes from The Cancer Genome Atlas and literature. Subsequently, bioinformatics analysis was conducted based on the aforementioned selected target genes. As a result, downregulation of miR-1-3p was observed. The combined standardized mean difference was −0.51 with 95% confidence interval (CI) of −0.68 to −0.33 using a fixed effect model, which demonstrated a significant downregulation of miR-1-3p in CRC. The combined sensitivity, specificity, positive likelihood ratio, negative likelihood ratio diagnostic score and odds ratio were 0.74 (95%CI: 0.48, 0.90), 0.75 (95%CI: 0.35, 0.94), 2.94 (95%CI: 1.01, 8.55), 0.34 (95%CI: 0.19, 0.60), 2.15 (95%CI: 1.06, 3.23) and 8.57 (95%CI: 2.89, 25.36). The summarized receiver operating characteristic curve demonstrated that the area under the curve was 0.81. In bioinformatics analyses based on 30 promising targets, the most enriched terms in Gene Ontology were positive regulation of transcription from RNA polymerase II promoter, extracellular region and transcription factor binding. Kyoto Encyclopedia of Genes and Genomes pathway analysis highlighted the pathway termed cytokine-cytokine receptor interaction. In protein-protein interaction analysis, platelet factor 4 was selected as the hub gene. To conclude, miR-1-3p is downregulated in CRC and likely suppresses CRC via multiple biological approaches, which indicates the diagnostic potential and tumor suppressive efficacy.
Collapse
Affiliation(s)
- Jie-Yu Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jia-Cheng Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dan-Ming Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
10
|
Xie M, Dart DA, Guo T, Xing XF, Cheng XJ, Du H, Jiang WG, Wen XZ, Ji JF. MicroRNA-1 acts as a tumor suppressor microRNA by inhibiting angiogenesis-related growth factors in human gastric cancer. Gastric Cancer 2018; 21:41-54. [PMID: 28493075 PMCID: PMC5741792 DOI: 10.1007/s10120-017-0721-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/17/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND We recently reported that miR-1 was one of the most significantly downregulated microRNAs in gastric cancer (GC) patients from The Cancer Genome Atlas microRNA sequencing data. Here we aim to elucidate the role of miR-1 in gastric carcinogenesis. METHODS We measured miR-1 expression in human GC cell lines and 90 paired primary GC samples, and analyzed the association of its status with clinicopathological features. The effect of miR-1 on GC cells was evaluated by proliferation and migration assay. To identify the target genes of miR-1, bioinformatic analysis and protein array analysis were performed. Moreover, the regulation mechanism of miR-1 with regard to these predicted targets was investigated by quantitative PCR (qPCR), Western blot, ELISA, and endothelial cell tube formation. The putative binding site of miR-1 on target genes was assessed by a reporter assay. RESULTS Expression of miR-1 was obviously decreased in GC cell lines and primary tissues. Patients with low miR-1 expression had significantly shorter overall survival compared with those with high miR-1 expression (P = 0.0027). Overexpression of miR-1 in GC cells inhibited proliferation, migration, and tube formation of endothelial cells by suppressing expression of vascular endothelial growth factor A (VEGF-A) and endothelin 1 (EDN1). Conversely, inhibition of miR-1 with use of antago-miR-1 caused an increase in expression of VEGF-A and EDN1 in nonmalignant GC cells or low-malignancy GC cells. CONCLUSIONS MiR-1 acts as a tumor suppressor by inhibiting angiogenesis-related growth factors in human gastric cancer. Downregulated miR-1 not only promotes cellular proliferation and migration of GC cells, but may activates proangiogenesis signaling and stimulates the proliferation and migration of endothelial cells, indicating the possibility of new strategies for GC therapy.
Collapse
Affiliation(s)
- Meng Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Dafydd Alwyn Dart
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Ting Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiao-Fang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiao-Jing Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hong Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK.
| | - Xian-Zi Wen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Jia-Fu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
11
|
Korde A, Jin L, Zhang JG, Ramaswamy A, Hu B, Kolahian S, Guardela BJ, Herazo-Maya J, Siegfried JM, Stabile L, Pisani MA, Herbst RS, Kaminski N, Elias JA, Puchalski JT, Takyar SS. Lung Endothelial MicroRNA-1 Regulates Tumor Growth and Angiogenesis. Am J Respir Crit Care Med 2017; 196:1443-1455. [PMID: 28853613 DOI: 10.1164/rccm.201610-2157oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RATIONALE Vascular endothelial growth factor down-regulates microRNA-1 (miR-1) in the lung endothelium, and endothelial cells play a critical role in tumor progression and angiogenesis. OBJECTIVES To examine the clinical significance of miR-1 in non-small cell lung cancer (NSCLC) and its specific role in tumor endothelium. METHODS miR-1 levels were measured by Taqman assay. Endothelial cells were isolated by magnetic sorting. We used vascular endothelial cadherin promoter to create a vascular-specific miR-1 lentiviral vector and an inducible transgenic mouse. KRASG12D mut/Trp53-/- (KP) mice, lung-specific vascular endothelial growth factor transgenic mice, Lewis lung carcinoma xenografts, and primary endothelial cells were used to test the effects of miR-1. MEASUREMENTS AND MAIN RESULTS In two cohorts of patients with NSCLC, miR-1 levels were lower in tumors than the cancer-free tissue. Tumor miR-1 levels correlated with the overall survival of patients with NSCLC. miR-1 levels were also lower in endothelial cells isolated from NSCLC tumors and tumor-bearing lungs of KP mouse model. We examined the significance of lower miR-1 levels by testing the effects of vascular-specific miR-1 overexpression. Vector-mediated delivery or transgenic overexpression of miR-1 in endothelial cells decreased tumor burden in KP mice, reduced the growth and vascularity of Lewis lung carcinoma xenografts, and decreased tracheal angiogenesis in vascular endothelial growth factor transgenic mice. In endothelial cells, miR-1 level was regulated through phosphoinositide 3-kinase and specifically controlled proliferation, de novo DNA synthesis, and ERK1/2 activation. Myeloproliferative leukemia oncogene was targeted by miR-1 in the lung endothelium and regulated tumor growth and angiogenesis. CONCLUSIONS Endothelial miR-1 is down-regulated in NSCLC tumors and controls tumor progression and angiogenesis.
Collapse
Affiliation(s)
- Asawari Korde
- 1 Section of Pulmonary, Critical Care, and Sleep Medicine and
| | - Lei Jin
- 1 Section of Pulmonary, Critical Care, and Sleep Medicine and.,2 Cleveland Clinic Cole Eye Institute and Lerner Research Institute, Cleveland, Ohio
| | - Jian-Ge Zhang
- 3 Department of Medicinal Chemistry, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, China
| | | | - Buqu Hu
- 1 Section of Pulmonary, Critical Care, and Sleep Medicine and
| | - Saeed Kolahian
- 4 Department of Pharmacology and Experimental Therapy, University of Tübingen, Tübingen, Germany
| | | | | | - Jill M Siegfried
- 5 Department of Pharmacology, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Laura Stabile
- 6 Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania; and
| | | | - Roy S Herbst
- 7 Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | | | - Jack A Elias
- 8 Division of Biology and Medicine, Warren Alpert School of Medicine at Brown University, Providence, Rhode Island
| | | | | |
Collapse
|
12
|
Yu Q, Liu Y, Wen C, Zhao Y, Jin S, Hu Y, Wang F, Chen L, Zhang B, Wang W, Zhu Q, Guo R. MicroRNA-1 inhibits tumorigenicity of esophageal squamous cell carcinoma and enhances sensitivity to gefitinib. Oncol Lett 2017; 15:963-971. [PMID: 29399158 PMCID: PMC5772756 DOI: 10.3892/ol.2017.7378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/07/2017] [Indexed: 01/04/2023] Open
Abstract
Dysregulation of microRNAs in various types of human cancer promote or suppress oncogenesis. MicroRNA (miR)-1 was previously revealed to function as a tumor suppressor in prostate cancer cells, and its expression was associated with reduced metastatic potential in lung cancer. The present study investigated the role of miR-1 and its association with phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA) in the pathophysiology of esophageal squamous cell carcinoma (ESCC), and analyzed the effects of miR-1 inhibitor or mimics on sensitivity to epidermal growth factor receptor-tyrosine kinase inhibitors, the alterations of cell cycle distribution and apoptosis in ESCC cells. Compared with normal tissues, the level of miR-1 expression was significantly lower and PIK3CA expression was higher in ESCC tissues. The level of miR-1 expression was also inversely associated with the level of PIK3CA mRNA expression. Low miR-1 and high PIK3CA expression levels were strongly associated with lymph node metastasis, and the level of miR-1 expression was negatively associated with clinical Tumor-Node-Metastasis stage. Furthermore, exogenous expression of miR-1 inhibited growth, arrested cell cycle in the G1 phase and increased apoptosis in ESCC cells, whereas it decreased PIK3CA protein expression levels. Furthermore, overexpression of miR-1 increased the sensitivity of ESCC cells to the anticancer drug, gefitinib. A possible mechanism for this increased sensitivity to gefitinib may be inactivation of the PIK3CA signaling pathway. To the best of our knowledge, this is the first time that the results of the present study demonstrated that miR-1 upregulation may be a potential strategy for the treatment of human ESCC.
Collapse
Affiliation(s)
- Qianqian Yu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yiqian Liu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chengcai Wen
- Department of Rehabilitation, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Yongzhao Zhao
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shidai Jin
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Youfang Hu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Feng Wang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Liang Chen
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Bin Zhang
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Wang
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Quan Zhu
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Renhua Guo
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
13
|
Wang X, Huang Y, Guo R, Liu Y, Qian Y, Liu D, Dai X, Wei Z, Jin F, Liu Y. Clinicopathological significance of ROCK1 and PIK3CA expression in nasopharyngeal carcinoma. Exp Ther Med 2017; 13:1064-1068. [PMID: 28450943 DOI: 10.3892/etm.2017.4076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 11/25/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to determine the expression of rho-associated coiled-coil-containing protein kinase 1 (ROCK1) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA) in nasopharyngeal carcinoma (NPC), and to assess the association between the expression of these proteins and the clinicopathological features of NPC. ROCK1 and PIK3CA expressions were assessed in a tissue microarray of sections prepared from the tumors of 81 patients with NPC using immunohistochemistry. Western blot analysis was used to detect ROCK1 and PIK3CA expression in NP69 and 5-8F cells. χ2 analysis revealed that upregulation of ROCK1 was significantly associated with advanced N stage (P=0.032) cancer and increased PIK3CA expression was significantly associated with advanced N stage (P=0.027) and TNM stage (P=0.019) cancer. Furthermore, ROCK1 expression was significantly positively correlated with PIK3CA expression (P=0.01). Western blot analysis demonstrated that levels of ROCK1 (P<0.001) and PIK3CA (P=0.015) were significantly higher in 5-8F cells compared with NP69 cells. The results of the present study indicate that high levels of ROCK1 and PIK3CA expression may be associated with advanced stages in NPC.
Collapse
Affiliation(s)
- Xuanyi Wang
- Rheumatology Department, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China.,Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yuxiang Huang
- Oncology Department, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Renhua Guo
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yongbiao Liu
- Department of Radiation Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yayun Qian
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Dan Liu
- Department of Pathology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Xiaojun Dai
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Zheng Wei
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Feng Jin
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yanqing Liu
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
14
|
Cohen A, Burgos-Aceves MA, Smith Y. A potential role for estrogen in cigarette smoke-induced microRNA alterations and lung cancer. Transl Lung Cancer Res 2016; 5:322-30. [PMID: 27413713 DOI: 10.21037/tlcr.2016.06.08] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alteration in the expression of microRNAs (miRNAs) is associated with oncogenesis and cancer progression. In this review we aim to suggest that elevated levels of estrogens and their metabolites inside the lungs as a result of cigarette smoke exposure can cause widespread repression of miRNA and contribute to lung tumor development. Anti-estrogenic compounds, such as the components of cruciferous vegetables, can attenuate this effect and potentially reduce the risk of lung cancer (LC) among smokers.
Collapse
Affiliation(s)
- Amit Cohen
- 1 Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel ; 2 Centro de Investigaciones Biológicas de Noroeste, S.C., Mar Bermejo 195, Col. Playa Palo de Sta, Rita, La Paz, BCS, México
| | - Mario Alberto Burgos-Aceves
- 1 Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel ; 2 Centro de Investigaciones Biológicas de Noroeste, S.C., Mar Bermejo 195, Col. Playa Palo de Sta, Rita, La Paz, BCS, México
| | - Yoav Smith
- 1 Genomic Data Analysis Unit, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel ; 2 Centro de Investigaciones Biológicas de Noroeste, S.C., Mar Bermejo 195, Col. Playa Palo de Sta, Rita, La Paz, BCS, México
| |
Collapse
|
15
|
Weiss M, Brandenburg LO, Burchardt M, Stope MB. MicroRNA-1 properties in cancer regulatory networks and tumor biology. Crit Rev Oncol Hematol 2016; 104:71-7. [PMID: 27286699 DOI: 10.1016/j.critrevonc.2016.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 04/18/2016] [Accepted: 05/25/2016] [Indexed: 02/07/2023] Open
Abstract
Short non-coding microRNAs have been identified to orchestrate crucial mechanisms in cancer progression and treatment resistance. MicroRNAs are involved in posttranscriptional modulation of gene expression and therefore represent promising targets for anticancer therapy. As mircoRNA-1 (miR-1) exerted to be predominantly downregulated in the majority of examined tumors, miR-1 is classified to be a tumor suppressor with high potential to diminish tumor development and therapy resistance. Here we review the complex functionality of miR-1 in tumor biology.
Collapse
Affiliation(s)
- Martin Weiss
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | | | - Martin Burchardt
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Matthias B Stope
- Department of Urology, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
16
|
Dong M, Wang HY, Zhao XX, Chen JN, Zhang YW, Huang Y, Xue L, Li HG, Du H, Wu XY, Shao CK. Expression and prognostic roles of PIK3CA, JAK2, PD-L1, and PD-L2 in Epstein-Barr virus-associated gastric carcinoma. Hum Pathol 2016; 53:25-34. [PMID: 26980034 DOI: 10.1016/j.humpath.2016.02.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/03/2016] [Accepted: 02/12/2016] [Indexed: 12/14/2022]
Abstract
As a special subtype of gastric carcinoma, Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVaGC) has distinct clinicopathological features. The Cancer Genome Atlas Research Network revealed that EBVaGC also has distinct molecular features: PIK3CA mutations, DNA hypermethylation, and JAK2, PD-L1, and PD-L2 amplification. Here, we evaluated PIK3CA, JAK2, PD-L1, and PD-L2 expression in 59 EBVaGC and 796 EBV-negative gastric carcinoma (EBVnGC) cases using immunohistochemistry and found that PIK3CA, JAK2, PD-L1, and PD-L2 were highly expressed in 75.9% and 48.8% (P<.001), 81.8% and 71.1% (P=.091), 92.5% and 84.8% (P=.132), and 98.1% and 89.7% (P=.049) of the EBVaGC and EBVnGC cases, respectively. However, the expression of PIK3CA, JAK2, PD-L1, or PD-L2 was not significantly associated with clinicopathological features or patient outcomes in EBVaGC. In contrast, in EBVnGC, high PIK3CA expression was significantly associated with indolent clinicopathological features and independently predicted better 5-year overall survival (57.8% versus 33.4%, P<.001). Our study indicated that the protein expression of the 4 characteristic molecules of EBVaGC was basically consistent with their genetic alterations, making them potential characteristic protein biomarkers and therapeutic targets of EBVaGC. The favorable impact of PIK3CA overexpression on survival found in this study gives us new insight into the clinical significance of PIK3CA in EBVnGC.
Collapse
Affiliation(s)
- Min Dong
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Hai-Yan Wang
- Department of Pathology and Institute of Oncology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, China
| | - Xiao-Xiao Zhao
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Department of Pathology, Wuhan Central Hospital, Wuhan 430014, China
| | - Jian-Ning Chen
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yi-Wang Zhang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yan Huang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Ling Xue
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hai-Gang Li
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Hong Du
- Department of Pathology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Xiang-Yuan Wu
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chun-Kui Shao
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
17
|
Du YY, Zhao LM, Chen L, Sang MX, Li J, Ma M, Liu JF. The tumor-suppressive function of miR-1 by targeting LASP1 and TAGLN2 in esophageal squamous cell carcinoma. J Gastroenterol Hepatol 2016; 31:384-93. [PMID: 26414725 DOI: 10.1111/jgh.13180] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 08/06/2015] [Accepted: 08/26/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE This study determined the expression of microRNA-1 in esophageal squamous cell carcinoma (ESCC) tissue and cell lines to evaluate its effects on clinicopathological parameters and its target genes LASP1 and TAGLN2. METHODS The expression of miR-1, lasp1, and tagln2 was detected in 55 ESCC tissues and adjacent normal tissues by reverse transcription-polymerase chain reaction (RT-PCR). The association between miR-1, lasp1, and tagln2 expression and clinicopathological characteristics was observed. MicroRNA-1 (mimics-miR-1) and its inhibitor (Inhibitor-miR-1) were transfected into esophageal cancer cells KYSE 510 and Eca 109; cell proliferation, migration, and invasion assays were carried out. Plasmid construction and dual-luciferase reporter assay were also carried out to indicate whether LASP1 and TAGLN2 were miR-1 target genes. The expression of LASP1 and TAGLN2 was detected with Western blot methods in cell lines, by immunohistochemistry in ESCC tissue. RESULTS The gene expression level of microRNA-1 in cancer tissues was significantly lower than that in adjacent normal tissues (P < 0.01). The expression of miR-1 in ESCC was correlated with involvement of lymph nodes (P = 0.002), histologic classification (P = 0.000), and vessel invasion (P = 0.022). The expression of lasp1 and tagln2 increased in cancer tissues compared with in adjacent normal tissues (P < 0.05). MiR-1 suppresses the cell growth, migration, and invasion in vitro. The expression of LASP1 and TAGLN2 decreased in mimics-miR-1 transfected cells, and increased in inhibitor-miR-1 transfected cells. Luciferase reporter assay confirmed that LASP1 and TAGLN2 mRNA actually had the target sites of miR-1. CONCLUSIONS miR-1 suppresses cell proliferation, invasiveness, metastasis, and progression of ESCC by binding its targeted genes LASP1 and TAGLN2.
Collapse
Affiliation(s)
- Yan-Yan Du
- Department of Clinical Laboratory, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| | - Lian-Mei Zhao
- Scientific Research Center, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| | - Liang Chen
- Scientific Research Center, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| | - Mei-Xiang Sang
- Scientific Research Center, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| | - Jie Li
- Scientific Research Center, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| | - Ming Ma
- Scientific Research Center, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| | - Jun-Feng Liu
- Department of Thoracic Surgery, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
18
|
Mitchelson KR, Qin WY. Roles of the canonical myomiRs miR-1, -133 and -206 in cell development and disease. World J Biol Chem 2015; 6:162-208. [PMID: 26322174 PMCID: PMC4549760 DOI: 10.4331/wjbc.v6.i3.162] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 03/13/2015] [Accepted: 05/28/2015] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs are small non-coding RNAs that participate in different biological processes, providing subtle combinational regulation of cellular pathways, often by regulating components of signalling pathways. Aberrant expression of miRNAs is an important factor in the development and progression of disease. The canonical myomiRs (miR-1, -133 and -206) are central to the development and health of mammalian skeletal and cardiac muscles, but new findings show they have regulatory roles in the development of other mammalian non-muscle tissues, including nerve, brain structures, adipose and some specialised immunological cells. Moreover, the deregulation of myomiR expression is associated with a variety of different cancers, where typically they have tumor suppressor functions, although examples of an oncogenic role illustrate their diverse function in different cell environments. This review examines the involvement of the related myomiRs at the crossroads between cell development/tissue regeneration/tissue inflammation responses, and cancer development.
Collapse
|
19
|
Han C, Zhou Y, An Q, Li F, Li D, Zhang X, Yu Z, Zheng L, Duan Z, Kan Q. MicroRNA-1 (miR-1) inhibits gastric cancer cell proliferation and migration by targeting MET. Tumour Biol 2015; 36:6715-23. [PMID: 25874496 PMCID: PMC4644207 DOI: 10.1007/s13277-015-3358-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/18/2015] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRs) are short endogenous non-coding RNAs that act as posttranscriptional regulatory factors of gene expression. Downregulation of miR-1 has been reported in gastric cancer; however, the mechanisms underlying its functions via target genes in gastric cancer remain largely unknown. The purpose of this study was to investigate the mechanism by which miR-1 inhibits gastric cancer cell proliferation and migration. The effects of miR-1 on gastric cancer cell proliferation and migration were determined by MTT and wound-healing assays. Cell protein expression of the miR-1 target gene MET was analyzed by Western blotting. Finally, MET expression was evaluated by immunohistochemistry in a stomach tumor tissue microarray (TMA). Ectopic expression of miR-1 inhibited proliferation and migration in both AGS and SGC-7901 gastric cancer cell lines. miR-1 directly targets the MET gene and downregulates its expression. MET siRNA also inhibited proliferation and migration in both cell lines. Immunohistochemistry revealed significantly higher MET expression levels in gastric cancer tissues compared with matched adjacent non-cancer tissues. These findings indicate that the miR-1/MET pathway is a potential therapeutic target due to its crucial role in gastric cancer cell proliferation and migration.
Collapse
Affiliation(s)
- Chao Han
- Department of Clinical Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Yubing Zhou
- Department of Clinical Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Qi An
- Department of Clinical Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Feng Li
- Department of Clinical Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Duolu Li
- Department of Clinical Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Xiaojian Zhang
- Department of Clinical Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Zujing Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Lili Zheng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Quancheng Kan
- Department of Clinical Pharmacology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
20
|
Wu RL, Ali S, Bandyopadhyay S, Alosh B, Hayek K, Daaboul MF, Winer I, Sarkar FH, Ali-Fehmi R. Comparative Analysis of Differentially Expressed miRNAs and their Downstream mRNAs in Ovarian Cancer and its Associated Endometriosis. ACTA ACUST UNITED AC 2015; 7:258-265. [PMID: 26819681 PMCID: PMC4725315 DOI: 10.4172/1948-5956.1000359] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective There is an increased risk of developing ovarian cancer (OC) in patients with endometriosis. Hence, development of new biomarkers may provide a positive clinical outcome for early detection. MicroRNAs (miRNAs) are small non-coding RNAs that play an important role in biological and pathological process and are currently used as diagnostic and prognostic markers in various cancers. In the current study, we assessed the differential expression of miRNAs from 19 paired ovarian cancer and its associated endometriosis tissue samples. In addition we also analyzed the downstream targets of those miRNAs. Methods Nineteen paired cases of ovarian cancer and endometriosis foci were identified by a gynecologic pathologist and macro-dissected. The total RNAs were extracted and subjected to comprehensive miRNA profiling from the pooled samples of these two different entities using microarray analysis. Later, the abnormal expressions of few selected miRNAs were validated in individual cases by quantitative real-time PCR (qRT-PCR). Ingenuity pathway analysis revealed target mRNAs which were validated by qRT-PCR. Results The miRNA profiling identified deregulation of greater than 1156 miRNAs in OC, of which the top seven were further validated by qRT-PCR. The expression of miR-1, miR-133a, and miR-451 were reduced significantly (p<0.0001) in the OC patients compared to its associated endometriosis. In contrast, the expression of miR-141, miR-200a, miR-200c, and miR-3613 were elevated significantly (p<0.05) in most of the OC patients. Furthermore, among the downstream mRNAs of these miRNAs, the level of PTEN expression was significantly (p<0.05) reduced in OC compared to endometriosis while no significant difference was observed in NF-κB expression. Conclusion The expression of miRNAs and mRNAs in OC were significantly different compared to its concurrent endometriosis. These differential expressed miRNAs may serve as potential diagnostic and prognostic biomarkers for OC associated with endometriosis.
Collapse
Affiliation(s)
- Richard Licheng Wu
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Shadan Ali
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sudeshna Bandyopadhyay
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Baraa Alosh
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kinda Hayek
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Mhd Fayez Daaboul
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ira Winer
- Department of obstetrics and Gynecology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Fazlul H Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA; Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Rouba Ali-Fehmi
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
21
|
Role of microRNA-1 in human cancer and its therapeutic potentials. BIOMED RESEARCH INTERNATIONAL 2014; 2014:428371. [PMID: 24949449 PMCID: PMC4052501 DOI: 10.1155/2014/428371] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/19/2014] [Accepted: 02/23/2014] [Indexed: 02/07/2023]
Abstract
While the mechanisms of human cancer development are not fully understood, evidence of microRNA (miRNA, miR) dysregulation has been reported in many human diseases, including cancer. miRs are small noncoding RNA molecules that regulate posttranscriptional gene expression by binding to complementary sequences in the specific region of gene mRNAs, resulting in downregulation of gene expression. Not only are certain miRs consistently dysregulated across many cancers, but they also play critical roles in many aspects of cell growth, proliferation, metastasis, apoptosis, and drug resistance. Recent studies from our group and others revealed that miR-1 is frequently downregulated in various types of cancer. Through targeting multiple oncogenes and oncogenic pathways, miR-1 has been demonstrated to be a tumor suppressor gene that represses cancer cell proliferation and metastasis and promotes apoptosis by ectopic expression. In this review, we highlight recent findings on the aberrant expression and functional significance of miR-1 in human cancers and emphasize its significant values for therapeutic potentials.
Collapse
|